邵亞會,葛耀君,柯世堂
(同濟大學土木工程防災(zāi)國家重點實驗室,200092上海,yahuishao@hotmail.com)
超大跨度懸索橋二維顫振頻域直接分析方法
邵亞會,葛耀君,柯世堂
(同濟大學土木工程防災(zāi)國家重點實驗室,200092上海,yahuishao@hotmail.com)
為改善傳統(tǒng)復(fù)模態(tài)特征值分析方法(CEVA)求解二維顫振問題時迭代不收斂和運算時間較長的問題,基于傳統(tǒng)復(fù)模態(tài)特征值分析方法和費拉里求解一元四次方程的思路,提出了二維顫振頻域直接分析方法(Straight forward method),在超大跨度懸索橋二維顫振分析中無需頻率的預(yù)先選取和迭代求解,計算時間短.采用該方法對閉口鋼箱梁、理想平板、中央開槽鋼箱梁、中央雙開槽鋼箱梁這4種典型斷面各6種跨度的懸索橋進行二維顫振頻域直接分析.結(jié)果表明:從顫振穩(wěn)定性能的要求出發(fā),跨度小于1 500 m的懸索橋可采用閉口鋼箱梁,跨度小于3 000 m的懸索橋需采用單開槽鋼箱梁,跨度大于3 000 m的懸索橋需采用雙開槽鋼箱梁.
二維顫振;超大跨度懸索橋;直接分析方法;頻域
橋梁斷面屬非流線型斷面,當氣流經(jīng)過時,流體和固體相互作用,形態(tài)十分復(fù)雜,為了求解此類分離流顫振問題,Scanlan等[1]提出了基于風洞試驗6個氣動導(dǎo)數(shù)的非定常氣動力表達式.Scanlan在進行顫振求解時,采用的是半逆解法.K.Wilde等[2]在進行二維顫振機理的研究過程中采用二自由度的狀態(tài)空間復(fù)模態(tài)特征值求解方法(CEVA方法),將二自由度顫振體系的振動響應(yīng)表達為復(fù)模態(tài)疊加的形式.文獻[3-4]采用了與此相同的方法.該方法的缺點是:當懸索橋跨度增加,柔性增強,扭彎頻率比接近于1時,復(fù)頻率的迭代可能會出現(xiàn)不收斂的情況;迭代求解頻率的做法,需花費較多時間.文獻[5-8]提出了二維顫振頻域分析的分步分析方法(SBS方法),與傳統(tǒng)復(fù)模態(tài)特征值方法(CEVA方法)不同的是,該方法將顫振分析分解為扭轉(zhuǎn)振動分支和豎向振動分支,在各分支中考慮扭轉(zhuǎn)和豎向2個自由度的相互耦合效應(yīng),該方法的優(yōu)點在于可以分析不同的顫振導(dǎo)數(shù)在結(jié)構(gòu)顫振穩(wěn)定中所發(fā)揮的作用.SBS方法在求解特征值問題上仍然是采用頻率的迭代算法.考慮到二維顫振復(fù)模態(tài)分析方法的關(guān)鍵問題在于求解關(guān)于系統(tǒng)振動頻率的特征方程,而特征方程是標準一元四次方程,因此可以借鑒費拉里求解四次方程的方法,基于Scanlan二維顫振理論框架和二自由度狀態(tài)空間復(fù)模態(tài)求解思路,建立不需頻率迭代的超大跨度懸索橋二維顫振直接分析方法,并分析超大跨度懸索橋的顫振性能和顫振形態(tài)隨中跨跨度、加勁梁斷面形式等的變化規(guī)律.
二維顫振分析和節(jié)段模型風洞試驗,是研究橋梁顫振性能的常用手段,橋梁節(jié)段模型風洞試驗懸掛模型如圖1所示,二維橋梁斷面顫振分析模型如圖2.
圖1 二維節(jié)段模型風洞試驗示意圖
二維顫振分析模型有豎向h和扭轉(zhuǎn)向α二個自由度,運動方程為
其中:m和It為節(jié)段模型延米質(zhì)量和質(zhì)量慣矩;kh和kt分別為豎彎和扭轉(zhuǎn)剛度;ch和ct分別為豎彎和扭轉(zhuǎn)阻尼比;L和M分別為延米氣動升力和升力矩.
圖2 二維橋梁斷面顫振分析模型
基于小位移和攻角不變假定的Scanlan氣動自激力的頻域表達式為
其中:ρ為空氣密度;U為來流平均風速;B為橋梁寬度;K=Bω/U,是無量綱折減頻率;ω為振動圓頻率;h和α分別為橋梁斷面的豎向和扭轉(zhuǎn)位移;H*和A*分別為豎彎向和扭轉(zhuǎn)向氣動導(dǎo)數(shù).
二維橋梁節(jié)段模型的顫振運動方程轉(zhuǎn)化為
則復(fù)特征值問題轉(zhuǎn)化為求解以下一元四次方程的問題:
求解該方程的步驟分為
1)將方程轉(zhuǎn)化為無三次項的四次方程:
2)將方程轉(zhuǎn)化為三次方程:
求解出特征值和特征向量之后,即得到了二維顫振系統(tǒng)隨風速變化的振動頻率和振動阻尼比,而振動系統(tǒng)在顫振發(fā)散狀態(tài)之前的每個時刻的運動方程的通解為
基于上述求解過程,可編制二維顫振頻域直接分析方法的程序(Straight forward method).
為研究超大跨度橋梁隨著跨徑增加,其顫振性能的變化規(guī)律,本文采用APDL語言建立了超大跨度懸索橋有限元參數(shù)化模型,如圖3所示.加勁梁、橋塔采用空間梁單元模擬;主纜和吊桿采用空間桿單元模擬.主纜、加勁梁的質(zhì)量和幾何參數(shù),按照滿足懸索橋撓度理論靜力條件來取值[9-13],以保證全橋模型的可行性.只需修改參數(shù)即可得到滿足靜力要求的結(jié)構(gòu)尺寸,并快速找到初始平衡狀態(tài).
圖3 超大跨度懸索橋有限元參數(shù)化模型
以矢跨比1∶10為例,求得的自由振動頻率如圖4所示.隨跨徑的增大,各階振動頻率的值逐漸接近;側(cè)向振動頻率下降的速率最快,跨徑大于1 500 m時,正對稱側(cè)向振動頻率將最先出現(xiàn),這說明隨著跨徑的增加,懸索橋側(cè)向剛度降低非常迅速;扭轉(zhuǎn)振動頻率隨跨徑增加變化次之,跨度在1 000~4 000 m之間,正對稱扭轉(zhuǎn)振動的出現(xiàn)總是先于反對稱扭轉(zhuǎn)振動,但在5 000 m左右跨度時,反對稱扭轉(zhuǎn)振動和正對稱扭轉(zhuǎn)振動頻率不相上下;豎向振動頻率隨跨徑的增加變化相對較小.采用規(guī)范公式積分得到的各階廣義質(zhì)量如圖5所示.雖然反對稱豎彎振動頻率一直小于正對稱豎彎振動頻率,但是二者對應(yīng)的豎向廣義質(zhì)量卻隨跨度不同而交替著先后出現(xiàn),無固定規(guī)律.跨度小于3 000 m的懸索橋反對稱扭轉(zhuǎn)廣義質(zhì)量大于正對稱扭轉(zhuǎn)廣義質(zhì)量,而3 000~5 000 m跨度范圍的懸索橋可能出現(xiàn)反對稱扭轉(zhuǎn)振動頻率較小的情況.
圖5 懸索橋質(zhì)量參數(shù)隨跨徑的變化
分別取4種具有代表性的橋梁斷面,即江陰大橋閉口鋼箱梁斷面、理想平板斷面、西堠門單開槽鋼箱梁斷面和墨西拿海峽大橋雙開槽鋼箱梁斷面,采用本文二維顫振直接分析方法(Straight forward method)進行顫振分析,研究懸索橋不同跨度范圍、不同斷面形式的顫振臨界風速、顫振頻率等問題.
不同跨度,不同斷面形式的懸索橋的顫振臨界風速見表 1,系統(tǒng)二階振動阻尼比隨風速的變化如圖6所示.
表1 顫振臨界風速隨跨徑的變化
圖6 系統(tǒng)自由振動阻尼比隨風速的變化
研究發(fā)現(xiàn):系統(tǒng)豎彎向阻尼比隨著風速的增加逐漸增大;扭轉(zhuǎn)向阻尼比隨著風速的增加總體呈現(xiàn)先增加后減小的趨勢.相同斷面、不同跨度的懸索橋的阻尼比-風速曲線形狀基本保持不變,只是幅值大小有所變化.雙開槽斷面的顫振臨界風速最高,單開槽斷面次之,平板斷面再次之,閉口斷面最低.雙開槽斷面具有很好的顫振穩(wěn)定性能,是超大跨度懸索橋理想的斷面形式.對于1 000 m跨度的懸索橋,4種斷面形式都能滿足顫振穩(wěn)定性能的要求,可不考慮開槽措施;跨度增加到1 500 m左右時,非開槽斷面的臨界風速最大為63 m/s,而開槽斷面分別為 111、180 m/s,這以跨度范圍建議采取單開槽斷面;跨度為2 000 m左右時,非開槽斷面已經(jīng)不能滿足顫振穩(wěn)定性的要求,必須采取開槽措施,單開槽和雙開槽都可滿足要求;跨度在3 000~5 000 m之間時,建議采取雙開槽斷面.
1)提出懸索橋二維顫振直接分析方法(Straight forward method),采用費拉里求解四次方程的方法求解四次廣義特征值問題,該方法無需顫振頻率的選取和迭代求解,對求解超大跨度懸索橋二維顫振問題方便有效.
2)建立懸索橋有限元參數(shù)化模型,該模型靈活可變性強,通過控制參數(shù)可以建成任意幾何參數(shù)、質(zhì)量參數(shù)、剛度參數(shù)的懸索橋模型,并能同時進行非線性靜力計算、考慮預(yù)應(yīng)力的模態(tài)計算、模態(tài)輸出、積分求解廣義質(zhì)量參數(shù)等.
3)對1 500 m跨度以下的懸索橋采用非開槽箱形斷面可以滿足顫振穩(wěn)定性能的要求;1 500~5 000 m跨度的懸索橋建議采取開槽措施,尤其對于跨度在3 000~5 000 m的懸索橋,建議采取類似于墨西拿橋斷面的雙開槽措施.
[1]SCANLAN R,TOMKO J.Airfoil and bridge deck flutter derivatives [J]. Journal of Engineering Mechanics, 1971,97(6):1717-1737.
[2]WILDE K,F(xiàn)UJINO Y,MASUKAWA J.Time domain modeling of bridge deck flutter[J].Structural Engineering Earthquake Engineering, 1996,13:93-104.
[3]XIANG H,ZHANG R.On mechanism of flutter and unified flutter theory of bridges[C]//Wind Engineering into the 21st Century.Rotterdam:[s.n.],1999:1069 -1074.
[4]YANG Y,GE Y,XIANG H.Coupling effects of degrees of freedom in flutter instability of long-span bridges[C]//Proceeding of the 2nd International Symposium on Advances in Wind & Structures.Busan:Techno Press,2002:625-632.
[5]MATSUMOTO M,NIHARA Y,KOBAYASHI Y,et al.Flutter mechanism and its stabilization of bluff bodies[C]//Proceedings of the Ninth International Conference on Wind Engineering.New Delhi,India:[s.n.],1995:827-838.
[6]MATSUMOTO M,HAMASAKI H,YOSHIZUMI F.On flutter stability of decks for super long-span bridge[J].Structural Engineering Earthquake Engineering, 1997,14:185-200.
[7]MATSUMOTO M,DAITO Y,YOSHIZUMI F,et al.Torsional flutter of bluff bodies[J].Journal of Wind Engineering& Industrial Aerodynamics, 1997,69:871-882.
[8]MATSUMOTO M,MIZUNO K.Flutter instability and recent development in stabilization of structures[J].Journal of Wind Engineering and Industrial Aerodynamics, 2007,95:888-907.
[9]YONEDA M,MANABU I.Effects of dead weight on aerodynamic stability of long-span suspension bridges[J].Structural Engineering Earthquake Engineering, 1986,3(1):135-145.
[10]CLEMENTE P,NICOLOSI G,RAITHEL A.Preliminary design of very long-span suspension bridges[J].Engineering Structures, 2000,22(12):1699 -1706.
[11]DEL ARCO D,APARICIO A.Preliminary static analysis of suspension bridges[J].Engineering Structures, 2001,23(9):1096-1103.
[12]XIANG H,GE Y.Refinements on aerodynamic stability analysis of super long-span bridges[J].Journal of Wind Engineering & Industrial Aerodynamics, 2002,90:1493-1515.
[13]丁泉順,大跨度橋梁耦合顫抖振響應(yīng)的精細化分析[D].上海:同濟大學,2001.
Straight forward method for two-dimensional flutter analysis of super-long-span suspension bridge in frequency domain
SHAO Ya-hui,GE Yao-jun,KE Shi-tang
(State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University,200092 Shanghai,China,yahuishao@hotmail.com)
The conventional eigen value analysis method(CEVA)has some shortcomings in solving two-dimensional coupled flutter problems,for example,when the frequency ratio of torsional to bending is approaching 1,the pre-selection of frequency and its iteration is a time consuming work.This paper presents an straight forward method for analyzing two-dimensional coupled flutter of super-long-span suspension bridges,utilizing CEVA method and Ferrari’s thoughts on solving univariate equations of four degrees,which has both improvements on work process and work time compared with the CEVA method.Case studies of four different cross section suspension bridges(the ideal plate,close steel box,single slotted steel box,and double slotted steel box)are provided to validate the developed procedure as well as to demonstrate the flutter analysis of super-long-span suspension bridges using straight forward method.The proposed method in this paper enables the researchers to make comparison on the flutter modality,flutter stability performance and freedom coupling extent of suspension bridges with different mid-span and different cross sections.
two-dimensional flutter;super-long-span suspension bridges;straight forward method;frequency domain
U441
A
0367-6234(2011)08-0119-05
2009-12-29.
國家自然科學基金重大研究計劃項目(90715039).
邵亞會(1981—),女,博士研究生;
葛耀君(1958—),男,教授,博士生導(dǎo)師.
(編輯 魏希柱)