近年來,慢性腎臟病(CKD)在人群中的發(fā)病率、患病率均明顯上升。心血管疾病(CVD)與CKD密切相關,是終末期腎病(ESRD)患者最常見的并發(fā)癥和首位致死病因。CKD患者的CVD風險是非CKD患者的2~3倍[1]。成纖維細胞生長因子23(FGF23)由成骨細胞分泌,是調節(jié)鈣磷代謝的重要因子。FGF23不僅可通過抑制近端腎小管刷狀緣上鈉磷共轉運體2a和2c促進尿磷排泄,還能抑制甲狀旁腺素(PTH)的分泌,下調25羥維生素D[25(OH)D]的1α羥化酶(骨化三醇合成酶)表達,降低血清骨化三醇[1,25(OH)2D]水平,并上調24-羥化酶表達,促進低活性的24,25(OH)2D合成[2]。
CKD患者血清FGF23水平會隨著腎小球濾過率(GFR)下降而進行性增加。CKD早期隨著腎磷酸鹽排泄能力降低,出現磷潴留,FGF23代償性升高,促進尿磷排泄增加和腸道吸收磷減少,從而保持正常血磷水平[3]。Gutierrez等[4]發(fā)現CKD時各種骨調激素中最早升高即FGF23,CKD 2期就會升高,而PTH一般于CKD 3期升高,低鈣高磷一般要發(fā)展到CKD 4~5期才會發(fā)生。因此,FGF23是反映CKD患者早期磷負荷過多的最敏感指標。CKD早期FGF23的升高雖有助于維持體內的磷平衡,但它同時抑制了1,25(OH)2D合成,這會觸發(fā)早期的繼發(fā)性甲狀旁腺功能亢進(SHPT);隨著腎臟衰竭的進展,FGF23的升高已不能有效地促進腎臟排磷,進而出現高磷血癥并刺激FGF23和PTH 的分泌[5]。另一方面,生理狀況下FGF23可作用于甲狀旁腺抑制PTH分泌,使之維持在較低水平。CKD時甲狀旁腺細胞上FGFR及klotho表達下降,使得甲狀旁腺對FGF23負向調控產生抵抗,SHPT逐漸加重,PTH持續(xù)上升[6]。體內外多項研究表明PTH可直接或間接刺激FGF23分泌增加[7-9],因而CKD中明顯升高的血清PTH水平也是促進FGF23升高的重要因素。發(fā)展至ESRD時,血清FGF23可升至正常水平的10~1 000倍。
FGF23的升高不僅影響CKD的血磷、1,25(OH)2D、PTH、SHPT等礦物質與骨代謝紊亂,且對心血管系統產生損害,明顯增加CVD的發(fā)病風險,并與透析、腎移植和CKD患者的死亡率增加呈顯著相關[1]。本文將就FGF23在CKD中介導CVD的表現、機制及干預做一綜述。
左心室肥厚(LVH) LVH是CKD患者很重要的危險因素,約40% CKD 2~4期患者存在LVH[10]。多項臨床研究證實了FGF23對LVH的促進作用。Hsu等[11]發(fā)現,透析前CKD患者高水平FGF23不伴血磷升高可獨立促進LVH發(fā)生及左心室質量指數升高。慢性腎功能不全隊列研究(CRIC)納入3 070例CKD 2~4期患者,同樣發(fā)現FGF23水平升高與LVH發(fā)病率呈顯著正相關,與GFR、PTH、血磷水平不相關[12]。高FGF23的CKD患者發(fā)生LVH的風險往往高于FGF23較低的CKD患者。同時,FGF23在CKD患者中對心臟的損害往往加重,Ford等[13]發(fā)現CKD 3~4期患者中FGF23水平與心肌損傷標志物肌鈣蛋白T呈獨立正相關。
心血管事件FGF23的病理性升高可促進多種心血管事件(心肌梗死、心力衰竭、冠心病發(fā)作等)的發(fā)生,與血管內皮功能紊亂有關。有研究證明伴高FGF23的冠脈疾病患者更易發(fā)生猝死[14]。Nakano等[15]發(fā)現FGF23水平能預測透析前CKD患者偶發(fā)CVD住院治療的概率,而25(OH)D、PTH和堿性磷酸酶則不能,且先前伴有CVD或糖尿病病史患者預后更差。另一項研究發(fā)現,FGF23的升高可預測CKD患者心肌梗死、冠狀動脈、頸動脈和下肢動脈介入治療,甚至死亡的發(fā)生率[10]。Kendrick等[16]發(fā)現美洲CKD人群中,高FGF23與急性心肌梗死發(fā)病率、下肢截肢率和病死率呈顯著正相關。Ix等[17]發(fā)現伴高FGF23的CKD患者更易發(fā)生心力衰竭。FGF23誘導的心肌和血管損傷因子(腦鈉肽、肌鈣蛋白等)上升促進了CKD患者心血管事件的發(fā)生[13]。
血管鈣化在正常腎功能冠心病患者中FGF23和血管鈣化之間并無聯系[18]。但在CKD及透析患者中,高FGF23卻與血管鈣化密切相關。Mirza等[19]發(fā)現高FGF23的CKD患者較GFR正?;颊咭装l(fā)生血管反應性受損及血管鈣化。一項對142例CKD 2~5期患者的研究發(fā)現,FGF23水平升高與動脈鈣化指數呈正相關,與CKD分期和年齡無關[20]。Nakayama等[21]證實,FGF23水平與透析前CKD患者頸動脈鈣化率獨立正相關。CKD及透析患者多伴有高磷和高FGF23血癥,而高磷是促進血管鈣化的重要致病因素,也刺激了FGF23分泌。在血管鈣化過程中,血管平滑肌細胞可向成骨細胞樣細胞分化,進一步促進血清FGF23升高。
除血管鈣化外,CKD中高FGF23與血管內皮紊亂,如動脈僵硬度、血管舒張性異常及動脈粥樣硬化等同樣存在緊密聯系,因此高FGF23可作為CVD的重要預警因子。
在CKD進程中FGF23病理性升高引起CVD與多方面的因素有關:(1)腎功能下降本身就是CVD的重要危險因素之一;(2)高FGF23可以抑制1-α羥化酶使1,25(OH)2D合成進一步降低,而低1,25(OH)2D與CVD關系密切;(3)高FGF23是CKD時機體高磷負荷無法排泄長期刺激形成的結果,長期高磷可引起心血管的鈣化;(4)FGF23可直接對CVD發(fā)揮調控作用。
klotho信號通路FGF23經典靶器官效應需要klotho蛋白參與和靶細胞FGF受體(FGFR)結合并誘導下游信號轉導通路[22]。FGFR和klotho主要結合分布在腎臟,腦部脈絡叢和甲狀旁腺。在不同組織,FGF23-FGFR-klotho復合體主要介導Ras/MAPK信號通路的激活[23]。在血管內皮細胞中,FGF23-klotho通過干擾一氧化氮(NO)合成酶影響血管反應性。高FGF23的CKD患者血流介導內皮依賴性血管舒張功能往往更低[24]。但由于心肌細胞不表達klotho,FGF23對心臟的作用主要是通過直接刺激FGFR而不依賴klotho[12],活化T細胞鈣調磷酸酶/核因子通路是促進LVH形成的主要信號通路。CKD患者klotho顯著減少,而klotho是心血管鈣化的保護因子,能減少內皮細胞功能紊亂和氧化應激[25]。因此,klotho缺乏加劇了FGF23引起CVD的風險。
腎素-血管緊張素系統(RAS)活化VD-FGF23-klotho軸與RAS之間存在“交互作用”(圖1)[26]。腎功能正常時,1,25(OH)2D可負性調控腎素的表達,且不依賴于血鈣和血PTH的影響[27]。1,25(OH)2D和維生素D受體(VDR)結合后,阻止了腎素啟動子上CRE-CREB-CBP復合物的形成,導致腎素表達下降[28]。VDR敲除的小鼠腎組織中,腎素基因表達明顯升高,且伴血漿血管緊張素Ⅱ(AngⅡ)水平升高,高血壓和心肌肥厚[27]。CKD時血清FGF23升高可下調1-α羥化酶表達,從而導致1,25(OH)2D水平下降,腎素分泌增加,激活RAS,而升高的AngⅡ可下調klotho的表達[29],造成FGF23信號轉導通路受體抵抗,進而刺激FGF23進一步上升。通過基因芯片研究發(fā)現,FGF23升高對腎臟血管緊張素轉化酶2(ACE2)存在負向調控作用[30],這可能也參與了CKD狀態(tài)下RAS系統活化。
圖1 正常生理狀態(tài)和CKD時體內VD-FGF23-klotho軸與腎素-血管緊張素系統之間的“交互作用”[26]
直接誘導LVH FGF23可直接調控LVH,而不依賴klotho、高血壓等因素。Faul等[12]發(fā)現,小鼠左心室心肌層注射重組FGF23后分別在5d和14d處死,發(fā)現小鼠心臟均伴LVH,且心臟重量、左心室壁厚度、單個心肌細胞橫截面面積和心肌肥大標記物表達均明顯增加,且與時間成正比。klotho缺陷(KL/KL)小鼠和klotho雜合子(KL/+)小鼠(均高表達血FGF23)生長到12周心臟均發(fā)生LVH,說明缺乏klotho并不影響小鼠LVH的發(fā)生和發(fā)展。FGF23在KL/KL小鼠中升高了約15倍,在KL/+小鼠中升高了約3倍,提示FGF23促進LVH的作用具有劑量依賴性。對5/6腎切除大鼠的實驗研究發(fā)現,腎衰竭大鼠在術后14d FGF23水平顯著增加,同時伴LVH和高血壓。FGFR抑制劑可顯著減輕慢性腎衰竭大鼠的LVH程度,且不影響大鼠的腎功能、高血壓和FGF23水平[12]。
隨著對FGF23心血管毒性認識的不斷深入,臨床迫切需要研發(fā)出安全有效降低FGF23的治療策略。
限磷飲食和磷結合劑早期對健康人群的研究發(fā)現,限制食物中的磷或使用磷結合劑可以降低血清FGF23的水平[31]。Koiwa等[32]對透析患者進行 4周的司維拉姆和碳酸鈣治療后發(fā)現,FGF23顯著下降。Oliveira等[33]使用司維拉姆對CKD 3~4期血磷正常的患者治療6周后,患者FGF23的水平下降50%。Gonzalez等[34]使用碳酸鑭治療CKD3期患者4周后,使患者FGF23的水平減少22%。因此,降低磷負荷可減少FGF23產生。
降低PTH 西那卡塞通過激活甲狀旁腺中的鈣敏感受體降低PTH的分泌,從而減少FGF23產生。Koizumi等[35]使用西那卡塞治療伴甲狀旁腺亢進功能的血液透析患者后,FGF23水平在治療后12周明顯下降。
拮抗FGF23活性心臟特異性FGFR抑制劑和FGF23抗體都有望成為新的治療方法。其中FGF23抗體在治療低磷性佝僂病已顯示出良好應用前景,可明顯降低FGF23水平,改善骨質疏松狀態(tài),但在CKD時FGF23抗體會引起血磷升高[36],增加死亡風險。
低劑量骨化三醇聯合其他藥物治療可以較好地平衡藥物療效及風險,是一項較為穩(wěn)妥的方法。Wetmore等[37]發(fā)現,使用西那卡塞合并低劑量骨化三醇治療CKD患者27周,血清FGF23水平比單用骨化三醇組顯著降低。
近年來FGF23的升高已被視為CKD患者CVD的一個獨立危險因素,并且可作為一種新型的生物標志物用以診斷CKD進展或預測CKD患者CVD不良事件的發(fā)生。針對FGF23的心血管毒性臨床上亦亟需安全有效的治療方法,盡管已有文獻報道磷結合劑和低磷飲食可降低CKD及透析患者FGF23水平,但仍需要大型的臨床隨機對照試驗來驗證。已有研究表明在CKD患者在血磷正常情況下,予低磷飲食和磷結合劑降低血磷水平可改善患者預后,基于血清FGF23水平早期給予限磷和磷結合劑是否會給CKD患者帶來臨床裨益仍值得關注。特異性FGFR阻斷劑或FGF23抗體雖有望成為新的治療熱點,但其應用時機、療程及安全性、耐受性仍有待探索。
1 Isakova T.Fibroblast growth factor 23 and adverse clinical outcomes in chronic kidney disease.Curr Opin Nephrol Hypertens,2012,21(3):334-340.
2 Wolf M.Forging forward with 10 burning questions on FGF23 in kidney disease.J Am Soc Nephrol,2010,21(9):1427-1435.
3 Isakova T,Wahl P,Vargas GS,et al.Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease.Kidney Int,2011,79(12):1370-1378.
4 Gutierrez O,Isakova T,Rhee E,et al.Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease.J Am Soc Nephrol,2005,16(7):2205-2215.
5 Isakova T,Wolf MS.FGF23 or PTH:which comes first in CKD? Kidney Int,2010,78(10):947-949.
6 Ben-Dov IZ,Galitzer H,Lavi-Moshayoff V,et al.The parathyroid is a target organ for FGF23 in rats.J Clin Invest,2007,117(12):4003-4008.
7 Lavi-Moshayoff V,Wasserman G,Meir T,et al.PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure:a bone parathyroid feedback loop.Am J Physiol Renal Physiol,2010,299(4):F882-F889.
8 Rhee Y,Bivi N,Farrow E,et al.Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo.Bone,2011,49(4):636-643.
9 López I,Rodríguez-Ortiz ME,Almadén Y,et al.Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo.Kidney Int,2011,80(5):475-482.
10 Seiler S,Reichart B,Roth D,et al.FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment.Nephrol Dial Transplant,2010,25(12):3983-3989.
11 Hsu HJ,Wu MS.Fibroblast growth factor 23:a possible cause of left ventricular hypertrophy in hemodialysis patients.Am J Med Sci,2009,337(2):116-122.
12 Faul C,Amaral AP,Oskouei B,et al.FGF23 induces left ventricular hypertrophy.J Clin Invest,2011,121(11):4393-4408.
13 Ford ML,Smith ER,Tomlinson LA,et al.FGF-23 and osteoprotegerin are independently associated with myocardial damage in chronic kidney disease stages 3 and 4.Another link between chronic kidney disease-mineral bone disorder and the heart.Nephrol Dial Transplant,2012,27(2):727-733.
14 Parker BD,Schurgers LJ,Brandenburg VM,et al.The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease:the Heart and Soul Study.Ann Intern Med,2010,152(10):640-648.
15 Nakano C,Hamano T,Fujii N,et al.Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis.Bone,2012,50(6):1266-1274.
16 Kendrick J,Cheung AK,Kaufman JS,et al.FGF-23 associates with death,cardiovascular events,and initiation of chronic dialysis.J Am Soc Nephrol,2011,22(10):1913-1922.
17 Ix JH,Katz R,Kestenbaum BR,et al.Fibroblast growth factor-23 and death,heart failure,and cardiovascular events in community-living individuals:CHS (Cardiovascular Health Study).J Am Coll Cardiol,2012,60(3):200-207.
18 Roos M,Lutz J,Salmhofer H,et al.Relation between plasma fibroblast growth factor-23,serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function.Clin Endocrinol (Oxf),2008,68(4):660-665.
19 Mirza MA,Larsson A,Lind L,et al.Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community.Atherosclerosis,2009,205(2):385-390.
20 Desjardins L,Liabeuf S,Renard C,et al.FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages.Osteoporos Int,2012,23(7):2017-2025.
21 Nakayama M,Kaizu Y,Nagata M,et al.Fibroblast growth factor 23 is associated with carotid artery calcification in chronic kidney disease patients not undergoing dialysis:a cross-sectional study.BMC Nephrol,2013,14:22.
22 Urakawa I,Yamazaki Y,Shimada T,et al.Klotho converts canonical FGF receptor into a specific receptor for FGF23.Nature,2006,444(7120):770-774.
23 Goetz R,Beenken A,Ibrahimi OA,et al.Molecular insights into the klotho-dependent,endocrine mode of action of fibroblast growth factor 19 subfamily members.Mol Cell Biol,2007,27(9):3417-3428.
24 Yilmaz MI,Sonmez A,Saglam M,et al.FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease.Kidney Int,2010,78(7):679-685.
25 Hu MC,Shi M,Zhang J,et al.Klotho deficiency causes vascular calcification in chronic kidney disease.J Am Soc Nephrol,2011,22(1):124-136.
26 de Borst MH,Vervloet MG,ter Wee PM,et al.Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease.J Am Soc Nephrol,2011,22(9):1603-1609.
27 Li YC,Kong J,Wei M,et al.1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system.J Clin Invest,2002,110(2):229-238.
28 Yuan W,Pan W,Kong J,et al.1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter.J Biol Chem,2007,282(41):29821-29830.
29 Yoon HE,Ghee JY,Piao S,et al.Angiotensin II blockade upregulates the expression of Klotho,the anti-ageing gene,in an experimental model of chronic cyclosporine nephropathy.Nephrol Dial Transplant,2011,26(3):800-813.
30 Dai B,David V,Martin A,et al.A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model.PLoS One,2012,7(9):e44161.
31 Ferrari SL,Bonjour JP,Rizzoli R.Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men.J Clin Endocrinol Metab,2005,90(3):1519-1524.
32 Koiwa F,Kazama JJ,Tokumoto A,et al.Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients.Ther Apher Dial,2005,9(4):336-339.
33 Oliveira RB,Cancela AL,Graciolli FG,et al.Early control of PTH and FGF23 in normophosphatemic CKD patients:a new target in CKD-MBD therapy? Clin J Am Soc Nephrol,2010,5(2):286-291.
34 Gonzalez-Parra E,Gonzalez-Casaus ML,Galán A,et al.Lanthanum carbonate reduces FGF23 in chronic kidney disease Stage 3 patients.Nephrol Dial Transplant,2011,26(8):2567-2571.
35 Koizumi M,Komaba H,Nakanishi S,et al.Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism.Nephrol Dial Transplant,2012,27(2):784-790.
36 Hasegawa H,Nagano N,Urakawa I,et al.Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease.Kidney Int,2010,78(10):975-980.
37 Wetmore JB,Liu S,Krebill R,et al.Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD.Clin J Am Soc Nephrol,2010,5(1):110-116.