林敏,伍麗娜,胡曉松,李帥
縫隙連接(gap junction,GJ)是目前認(rèn)為細(xì)胞間唯一能直接進(jìn)行物質(zhì)和信息交換的通道,這種物質(zhì)和信息交流稱為由縫隙連接介導(dǎo)的細(xì)胞間通訊(gap junctional intercellular communication,GJIC),在中樞神經(jīng)系統(tǒng)中分布廣泛,對維持正常的神經(jīng)活動起著重要作用。近年來,多項(xiàng)研究發(fā)現(xiàn)中樞神經(jīng)系統(tǒng)疾病的發(fā)生發(fā)展與縫隙連接重構(gòu)或功能異常有關(guān),一些縫隙連接阻斷劑可能成為中樞神經(jīng)系統(tǒng)疾病治療的有效藥物。
縫隙連接是一種廣泛存在的細(xì)胞連接形式,由相鄰細(xì)胞膜上的連接小體組成。連接小體一一對應(yīng),小體中心的小管對接,構(gòu)成了細(xì)胞間的直接通道[1]。研究發(fā)現(xiàn),每個(gè)連接小體只能由6個(gè)同型的縫隙連接蛋白(connexin,Cx)組成,而一個(gè)縫隙連接可由兩個(gè)不同類型的連接小體組成[2]。Cx是構(gòu)成縫隙連接通道的一大類膜蛋白,至今在哺乳動物中已發(fā)現(xiàn)21種[3],其中Cx26、 Cx29、 Cx30、 Cx32、 Cx36、 Cx37、 Cx40、 Cx43、Cx45、Cx46及Cx47這11種在成熟和發(fā)育中的中樞神經(jīng)系統(tǒng)有不同程度表達(dá)[4]。研究發(fā)現(xiàn),在哺乳類動物腦組織中表達(dá)的Cx類型分布不同,具有一定特異性。神經(jīng)元上主要是Cx32、Cx36、Cx26,星形膠質(zhì)細(xì)胞上主要為Cx43、Cx30、Cx45、Cx40、Cx32,少突膠質(zhì)細(xì)胞上主要是Cx32、Cx45。其中星形膠質(zhì)細(xì)胞上的Cx43表達(dá)最強(qiáng),神經(jīng)元和少突膠質(zhì)細(xì)胞上的Cx32位居第二[5]。
1.1.1 參與神經(jīng)元的電活動 縫隙連接以電流作為信息載體,存在于中樞神經(jīng)系統(tǒng)的同類神經(jīng)元之間,促進(jìn)神經(jīng)元的同步活動。Meister等發(fā)現(xiàn),相鄰神經(jīng)節(jié)細(xì)胞動作電位傳遞的時(shí)間間隔幾乎為零,因此認(rèn)為這種傳遞是直接通過縫隙連接促使神經(jīng)元活動達(dá)到同步化的[6]。
1.1.2 參與神經(jīng)元的發(fā)育與再生 研究表明,在哺乳動物中樞神經(jīng)系統(tǒng),神經(jīng)元之間以縫隙連接相互連接并表達(dá)Cx36;Cx36在人早期發(fā)育過程中呈短暫升高,隨后下降,并在成年期保持低表達(dá)。在腦外傷和癲癇等神經(jīng)元損傷疾病中,縫隙連接的表達(dá)又有所上升,縫隙連接參與了神經(jīng)元的發(fā)育[7]。
1.1.3 參與物質(zhì)傳遞 在Ca2+和其他因素作用下,縫隙連接可開放或閉合。一般分子量小于1500 Da的物質(zhì),包括離子、環(huán)磷酸腺苷(cAMP)等信息分子、氨基酸、葡萄糖、維生素等,均得以在相鄰細(xì)胞間流通,使細(xì)胞在營養(yǎng)代謝、增殖分化和功能等方面成為統(tǒng)一體。
1.2.1 緩沖K+Magnotti等發(fā)現(xiàn),在神經(jīng)活動中,各種膠質(zhì)細(xì)胞Cx的交匯點(diǎn)是構(gòu)成吸收和遷移細(xì)胞外K+的網(wǎng)絡(luò),有利于神經(jīng)元外部過多K+攝入,并迅速通過縫隙連接分散到相鄰的膠質(zhì)細(xì)胞,以維持細(xì)胞外K+的穩(wěn)態(tài),有助于神經(jīng)元電活動的正常進(jìn)行[8]。
1.2.2 傳遞Ca2+Ca2+通過縫隙連接在星形膠質(zhì)細(xì)胞中擴(kuò)散,稱為Ca2+波。Ca2+波為遠(yuǎn)距離信號的傳播提供基礎(chǔ)[9]。此外,星形膠質(zhì)細(xì)胞與神經(jīng)元之間的縫隙連接通訊還參與Ca2+的自身調(diào)節(jié)。
近年來,多項(xiàng)研究發(fā)現(xiàn)縫隙連接與癲癇之間有密切關(guān)系。神經(jīng)元間存在的縫隙連接促使神經(jīng)元超同步化放電,引起癲癇[10]。Wang等在大鼠體內(nèi)外軀體感覺皮質(zhì)中檢測到,活化的谷氨酸(glutamate,Glu)增加了神經(jīng)元縫隙連接偶聯(lián)和Cx36表達(dá);相反,滅活的谷氨酸阻礙癲癇和Cx36表達(dá)[11]。神經(jīng)元的縫隙連接偶聯(lián)是谷氨酸導(dǎo)致神經(jīng)元死亡的關(guān)鍵部位。
Cx43在癲癇中呈高表達(dá)。其機(jī)制可能為Cx43增加了星形膠質(zhì)細(xì)胞之間突觸偶聯(lián)數(shù)目,有利于神經(jīng)元同步放電,從而增加了癲癇持續(xù)狀態(tài)發(fā)生的可能性。但究竟是癲癇引起Cx43表達(dá)升高,還是Cx43表達(dá)增強(qiáng)引起癲癇,一直困擾人們。Beheshti等發(fā)現(xiàn),在大鼠急性癲癇模型中,海馬區(qū)Cx36 mRNA和蛋白水平均上調(diào),而Cx43卻沒有改變[12]。提示Cx36的上調(diào)誘發(fā)了癲癇,在癲癇發(fā)展中才有Cx43的上調(diào)。Takahashi等檢測到難治性癲癇患者星形膠質(zhì)細(xì)胞標(biāo)記物膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)和Cx43的增加,而K+電流的改變卻沒有馬上觀察到[13]。提示在難治性癲癇發(fā)病之初Cx43上調(diào),但星形膠質(zhì)細(xì)胞縫隙連接功能沒有改變,無法誘導(dǎo)癲癇。因此推測是癲癇誘導(dǎo)了Cx43上調(diào)。
對于Cx32在癲癇中的表達(dá)存在爭議。曾楊濱等在氯化鋰-匹羅卡品致癇大鼠模型中檢測到,海馬區(qū)與皮層區(qū)Cx32和Cx43免疫陽性表達(dá)都較正常組高[14]。Collignon等對47例接受杏仁核海馬切開術(shù)的頑固性癲癇患者進(jìn)行海馬的連續(xù)取樣,觀察Cx32、Cx36和Cx43的表達(dá)情況,結(jié)果顯示癲癇患者海馬區(qū)Cx43表達(dá)升高,Cx36表達(dá)不變,Cx32表達(dá)降低[15]。姚伯昕等檢測了30例難治性顳葉癲癇患者的組織標(biāo)本,發(fā)現(xiàn)癲癇灶組及周邊腦組織組中Cx32的表達(dá)無顯著性差異[16]。
縫隙連接在少突膠質(zhì)細(xì)胞中的作用是營養(yǎng)髓鞘,Cx32是在少突膠質(zhì)細(xì)胞最早被檢測出來的連接蛋白,它在髓鞘發(fā)育、沃勒變性和軸突再生時(shí)表達(dá)。敲除Cx32的轉(zhuǎn)基因大鼠髓鞘很稀疏,神經(jīng)傳導(dǎo)速度明顯下降。推測Cx32是影響癲癇異常電傳播速度的重要因素,也是治療癲癇、延長癲癇潛伏期的一個(gè)新的研究方向。
GJIC對細(xì)胞的生長、繁殖等生物學(xué)行為起著重要調(diào)控作用;GJIC功能障礙,Cx表達(dá)低下或缺失與神經(jīng)膠質(zhì)細(xì)胞瘤的發(fā)生、發(fā)展關(guān)系極為密切。Cx43通過增加p21和p27的表達(dá)延長細(xì)胞周期[17]。用Cx43 cDNA轉(zhuǎn)染腫瘤細(xì)胞后,Cx43 mRNA明顯增加,GJIC功能增強(qiáng),細(xì)胞增殖速度較未轉(zhuǎn)染的腫瘤細(xì)胞明顯下降[18-19]。Herrero-Gonzalez等發(fā)現(xiàn),Cx43能減少神經(jīng)膠質(zhì)瘤的致癌活動并減慢腫瘤細(xì)胞的增長速率[17]。因此尋找有效藥物促進(jìn)Cx表達(dá)上調(diào),可為抗癌治療提供一種新手段[20]。Leone用細(xì)胞熒光檢測技術(shù)檢測用白藜蘆醇及X線處理過的神經(jīng)膠質(zhì)瘤細(xì)胞中縫隙連接數(shù)目,發(fā)現(xiàn)白藜蘆醇能誘導(dǎo)細(xì)胞周期的延遲,與X線聯(lián)合能增加GJIC[21]。
然而體外研究提示,敲除Cx43,降低細(xì)胞運(yùn)動性;過表達(dá)Cx43,提高細(xì)胞運(yùn)動性,Cx43與神經(jīng)膠質(zhì)瘤細(xì)胞遷移呈正相關(guān)[22]。Oliveira等也發(fā)現(xiàn),膠質(zhì)瘤C6細(xì)胞系與正常膠質(zhì)細(xì)胞共培養(yǎng)的遷移過程中,GJIC阻斷劑生胃酮可阻止細(xì)胞遷移[23]。推測膠質(zhì)瘤C6細(xì)胞系可能與正常的膠質(zhì)細(xì)胞建立異源性GJIC,以正常膠質(zhì)細(xì)胞作為基層或附著層向遠(yuǎn)處遷移。研究發(fā)現(xiàn),惡性膠質(zhì)瘤中心低表達(dá)Cx43,而邊緣及星形膠質(zhì)細(xì)胞高表達(dá)Cx43,可能促進(jìn)膠質(zhì)瘤細(xì)胞侵襲[24]。
現(xiàn)階段對是否應(yīng)該通過增強(qiáng)GJIC來治療神經(jīng)膠質(zhì)細(xì)胞瘤的意見尚不統(tǒng)一,但眾多研究證明了細(xì)胞間縫隙連接與膠質(zhì)細(xì)胞瘤密切相關(guān)。
近年來發(fā)現(xiàn),在腦梗死后神經(jīng)元損傷過程中,膠質(zhì)細(xì)胞活化扮演著極其重要的角色[25-26],膠質(zhì)細(xì)胞間縫隙連接在缺血狀態(tài)下仍然有部分開放[27]。研究者對GJIC的腦保護(hù)作用意見尚不統(tǒng)一。有研究發(fā)現(xiàn),在大腦中動脈閉塞后,神經(jīng)膠質(zhì)細(xì)胞GJIC誘導(dǎo)了遠(yuǎn)側(cè)海馬損傷和認(rèn)知障礙[28]。Zhang等發(fā)現(xiàn),腦缺血提高縫隙連接的開放,通過縫隙連接阻斷劑生胃酮的干預(yù)減小了腦缺血或再灌住后的腦損傷[29]。
然而一些持相反觀念的專家認(rèn)為,通過GJIC建立的功能合胞體可以稀釋缺血區(qū)的有害物質(zhì),有利于營養(yǎng)物質(zhì)的輸送和分配;阻斷GJIC會加重神經(jīng)元的損害。Blanc等發(fā)現(xiàn),星形膠質(zhì)細(xì)胞間縫隙連接通過參與細(xì)胞間Ca2+穩(wěn)定的自動調(diào)節(jié),減少神經(jīng)元對氧化性損傷的易感性[30]。
GJIC在腦梗死中可能是把“雙刃劍”,既有利于有益物質(zhì)的傳導(dǎo),又是有害物質(zhì)傳導(dǎo)的通道。
在蛛網(wǎng)膜下腔出血引起腦血管痙攣的研究中,GJIC的作用越來越受到重視。Yamazaki等通過膜片鉗、電壓鉗技術(shù)證實(shí),腦血管平滑?。交〖?xì)胞間、平滑?。瓋?nèi)皮細(xì)胞間存在GJIC,由此傳遞信息分子和點(diǎn)沖動,引起相鄰肌纖維的同步功能活動,從而誘發(fā)腦血管痙攣的產(chǎn)生[31]。Wang等在研究Cx43在兔基底動脈內(nèi)皮血管緊張素Ⅰ(angiotensin I,AngⅠ)被激活后的作用發(fā)現(xiàn),GJIC的增加是通過AngⅠ調(diào)整Cx43的表達(dá)來實(shí)現(xiàn)的[32]。由此提出了蛛網(wǎng)膜下腔出血后限制血管內(nèi)GJIC可能成為減少腦血管痙攣的治療方法??p隙連接阻斷劑生胃酮減少實(shí)驗(yàn)性腦血管痙攣,下調(diào)實(shí)驗(yàn)性蛛網(wǎng)膜下腔出血后Cx43的表達(dá)[33]。
隨著人口老齡化程度的加劇,阿爾茨海默病(Alzheimer's disease,AD)的發(fā)病趨勢呈上升態(tài)勢。Nagy等發(fā)現(xiàn),AD患者含大量淀粉樣蛋白斑的皮質(zhì)區(qū)域中,Cx43免疫染色密度明顯增加,并且一些淀粉樣蛋白斑與加強(qiáng)的Cx43免疫反應(yīng)性區(qū)域位置相吻合[34]。Koulakoff等發(fā)現(xiàn),神經(jīng)膠質(zhì)縫隙連接通道參與AD的神經(jīng)退行性變過程[35]。AD與縫隙連接間的內(nèi)在聯(lián)系已越來越受到人們的重視。
腦外傷會導(dǎo)致神經(jīng)細(xì)胞的丟失和相關(guān)神經(jīng)功能缺損,而細(xì)胞間縫隙連接及Cx43也有不同程度改變。創(chuàng)傷后,由于病灶處細(xì)胞酸中毒,內(nèi)皮素表達(dá)上調(diào),致炎因子大量釋放,導(dǎo)致縫隙連接關(guān)閉和功能降低。Ohsumi等發(fā)現(xiàn),腦外傷后,海馬和皮層磷酸化Cx43和磷酸化細(xì)胞外信號調(diào)節(jié)激酶(phosphorylated extracellular signal-regulated kinase,p-ERK)雙標(biāo)免疫染色顯示,在損傷后6 h,磷酸化Cx43和p-ERK免疫活性在同一星形膠質(zhì)細(xì)胞中增強(qiáng)[36]。證實(shí)在腦外傷中,星形膠質(zhì)細(xì)胞縫隙連接參與海馬的病理生理過程。Manaenko等發(fā)現(xiàn),高劑量縫隙連接阻斷劑生胃酮加重神經(jīng)功能缺損,增加死亡率[37]??p隙連接的抑制作用沒有在腦出血引起的大腦損傷中發(fā)揮神經(jīng)保護(hù)作用。
中樞神經(jīng)系統(tǒng)內(nèi)縫隙連接的研究正逐步滲透到各種中樞神經(jīng)系統(tǒng)疾病中,GJIC的研究尚處于起步發(fā)展階段。GJIC和Cx在神經(jīng)膠質(zhì)細(xì)胞瘤、腦梗死等中樞神經(jīng)系統(tǒng)疾病中的表達(dá)仍存在爭議;以GJIC和Cx作為靶點(diǎn)治療中樞神經(jīng)系統(tǒng)疾病機(jī)制的研究還有較大的空間??p隙連接阻斷劑如生胃酮、奎寧等的運(yùn)用也為治療中樞神經(jīng)系統(tǒng)疾病開辟新的治療途徑。
[1]Harris AL.Connexin channel permeability to cytoplasmic molecules[J].Prog Biophys Mol Biol,2007,94(1-2):120-143.
[2]Orthmann-Murphy JL,Freidin M,Fischer E,et al.Two distinct heterotypic channelsmediategap junction coupling between astrocyte and oligodendrocyteconnexins[J].JNeurosci,2007,27(51):13949-13957.
[3]Lee IH,Lindqvist E,Kiehn O,et al.Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury[J].Comp Neurol,2005,489(1):1-10.
[4]Nakase T,Naus CC.Gap junctions and neurological disorders of the central nervous system[J].Biochim Biophys Acta,2004,1662(1-2):149-158.
[5]Mathias RT,White TW,Gong X,et al.Lens gap junctions in growth differentiation and homeostasis[J].Physiol Rev,2010,90(1):179-206.
[6]Meister M,Wong RO,Baylor DA,et al.Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina[J].Science,1991,252(5008):939-943.
[7]Belousov AB,Fontes JD.Neuronal gap junctions:making and breaking connections during development and injury [J].Trends Neurosci,2013,36(4):227-236.
[8]Magnotti LM,Goodenough DA,Paul DL.Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation,astrocyte loss and early mortality[J].Glia,2011,59(7):1064-1074.
[9]Longuemare MC,Rose CR,Farrell K,et al.K(+)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na(+)[J].Neuroscience,1999,93(1):285-292.
[10]Bostanci MO,Bagirici F.Anticonvulsive effectsof carbenoxolone on penicillin-induced epileptiform activity:an in vivo study[J].Neuropharmacology,2007,52(2):362-367.
[11]Wang Y,Song JH,Denisova JV,et al.Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury[J].J Neurosci,2012,32(2):713-725.
[12]Beheshti S,Sayyah M,Golkar M,et al.Changes in hippocampal connexin 36 mRNA and protein levels during epileptogenesis in the kindling model of epilepsy[J].Prog Neuropsychopharmacol Biol Psychiatry,2010,34(3):510-515.
[13]Takahashi DK,Vargas JR,Wilcox KS.Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus[J].Neurobiol Dis,2010,40(3):573-585.
[14]曾楊濱,劉宇明.縫隙連接蛋白Cx32與Cx43在癲癇發(fā)病中的作用[J].實(shí)用醫(yī)學(xué)雜志,2012,28(9):1438-1440.
[15]Collignon F,Wetjen NM,Gohen-Gadol AA,et al.Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans[J].JNeurosurg,2006,105(1):77-87.
[16]姚伯昕,蔡若蔚,張鵬飛,等.難治性顳葉癲癇病灶中Cx32與Cx43表達(dá)的研究[J].中國綜合臨床,2012,28(3):256-258.
[17]Herrero-Gonzalez S,Gangoso E,Giaume C,et al.Connexin 43 inhibits the oncogenic activity of c-Src in C6 glioma cells[J].Oncegene,2010,29(42):5712-5723.
[18]Leithe E,Sirnes S,Omori Y,et al.Down regulation of gapjunctions in cancer cells[J].Crit Rev Oncog,2006,12(3-4):225-256.
[19]Czyz J.The stage-specific function of gap junctions during tumourigenesis[J].Cell Mol Biol Lett,2008,13(1):92-102.
[20]Pointis G,Fiorini C,GiIleron J,et al.Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis[J].Curr Med Chem,2007,14(21):2288-2303.
[21]Leone S,Fiore M,Lauro MG,et al.Resveratrol and X rays affect gap junction intercellular communications in human glioblastomacells[J].Mol Carcinog,2008,47(8):587-598.
[22]Mennecier G,Derangeon M,Coronas V,et al.Aberrant expression and localization of connexin 43 and connexin 30 in a rat gliomacell line[J].Mol Carcinog,2008,47(5):391-401.
[23]Oliveira R,Christov C,Guillamo JS,et al.Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas[J].BMCCell Biol,2005,6(1):1-7.
[24]Baklaushev VP,Yusubalieva GM,Tsitrin EB,et al.Visualization of Connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies[J].Drug Deliv,2011,18(5):331-337.
[25]Nedergaard M,Dirnagl U.Role of glial cells in cerebral ischemia[J].Glia,2005,50(4):281-286.
[26]Pekny M,Nilsson M.Astrocyte activation and reactive gliosis[J].Glia,2005,50(4):427-434.
[27]Cotrina ML,Kang J,Lin JH,et al.Astrocytic gap junctionsremain open during ischemic conditions[J].JNeurosci,1998,18(7):2520-2537.
[28]Xie M,Yi C,Luo X,et al.Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion[J].Ann Neurol,2011,70(1):121-132.
[29]Zhang L,Li YM,Jing YH,et al.Protective effects of carbenoxolone are associated with attenuation of oxidative stress in ischemic brain injury[J].Neurosci Bull,2013,29(3):311-320.
[30]Blanc EM,Bruce-Keller AJ,Mattson MP.Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+homeostasis and cell death[J].JNeurochem,1998,70(3):958-970.
[31]Yamazaki J,Kitamura K.Intercellular electrical coupling in vascular cells present in rat intact cerebral arterioles[J].JVasc Res,2003,40(1):11-27.
[32]Wang H,Hong T,Wang Y,et al.Altered expression of connexin 43 and its possible role in endothelin-1-induced contraction in rabbit basilar artery[J].Neurol Res,2009,31(1):67-73.
[33]Hong T,Wang H,Wang Y,et al.Effects of gap junctional blockers on cerebral vasospasm after subarachnoid hemorrhage in rabbits[J].Neurol Res,2009,31(3):238-244.
[34]Nagy JI,Li W,Hertzberg EL,et al.Elevated connexin 43 immunoreactivity at sites of amyloid plaques in Alzheimer's disease[J].Brain Res,1996,717(1-2):173-178.
[35]Koulakoff A,Mei X,Orellana JA,et al.Glial connexin expression and function in the context of Alzheimer's disease[J].Biochim Biophys Acta,2012,1818(8):2048-2057.
[36]Ohsumi A,Nawashiro H,Otani N,et al.Temporal and spatial profile of phosphorylated connexin 43 after traumatic brain injury in rats[J].Neurotrauma,2010,27(7):1255-1263.
[37]Manaenko A,Lekic T,Sozen T,et al.Effect of gap junction inhibition on intracerebral hemorrhage-induced brain injury in mice[J].Neurol Res,2009,31(2):173-178.