王 磊,李海洋
(河南工業(yè)職業(yè)技術(shù)學(xué)院基礎(chǔ)教學(xué)部,河南南陽473000)
Burgers方程是流體力學(xué)的基本偏微分方程,它發(fā)生在數(shù)學(xué)和物理的各個(gè)領(lǐng)域,如氣體動(dòng)力學(xué)模型和交通流模型[1-3].目前,常用的求解Burgers方程的方法是空間有限差分、有限元、間斷有限元等,時(shí)間上一般用TVD Runge-Kutta法或一般顯式方法等,這些方法存在的缺陷是在時(shí)空上不具備高階精度.Chebyshev偽譜法是一種高效的、高精度的計(jì)算微分方程的數(shù)值方法,它與有限元法和有限差分相比,它的計(jì)算速度快,計(jì)算精度高,適合大規(guī)模模型的計(jì)算[4-6].因此,研究用時(shí)空Chebyshev偽譜方法求解Burgers方程就顯得尤為重要了.
考慮下面Burgers方程[1]的初邊值問題
其中,v為常數(shù),φ(x)、ψ1(t)和 ψ2(t)為已知函數(shù).
本文首先運(yùn)用Chebyshev偽譜法對(duì)空間導(dǎo)數(shù)進(jìn)行離散,然后再使用Chebyshev偽譜方法求解離散后的常微分方程組,并通過數(shù)值試驗(yàn)給出性能分析圖,證明了此方法的有效性.
考慮方程(1)[1],取t0=0,T=1,a=0,b=1,初始條件為
邊界值條件為
該問題的精確解為
圖1為Nt=8,Nx=10時(shí)的時(shí)空網(wǎng)格圖,圖2為Nt=25,Nx=30時(shí)的時(shí)空網(wǎng)格圖,圖3為精確解曲面圖,圖4為Nt=25,Nx=30時(shí)的數(shù)值解曲面圖,圖5為Nt=25,Nx=30時(shí)的精確解和數(shù)值解的絕對(duì)誤差曲面圖,當(dāng)Nt=20時(shí),對(duì)空間配置節(jié)點(diǎn)進(jìn)行誤差性能分析得到圖6,當(dāng)Nx=30時(shí),對(duì)空間配置節(jié)點(diǎn)進(jìn)行誤差性能分析得到圖7.
圖1 Nt=8,Nx=10時(shí)的時(shí)空網(wǎng)格圖Fig.1 The space-time trellis of Nt=8,Nx=10
圖2 Nt=25,Nx=30時(shí)的時(shí)空網(wǎng)格圖Fig.2 The space-time trellis of Nt=8,Nx=10
圖3 精確解曲面圖Fig.3 The surface chart of exact solutions
圖4 取Nt=25,Nx=30時(shí)的數(shù)值解曲面圖Fig.4 The numerical solution surface chart of Nt=25,Nx=30
圖5 取Nt=25,Nx=30時(shí)的精確解和數(shù)值解的絕對(duì)誤差曲面圖Fig.5 The absolute error surface plot for the exact solution and the numerical solution of Nt=25,Nx=30
圖6 Nt=20時(shí)的對(duì)空間配置節(jié)點(diǎn)進(jìn)行誤差性能分析圖Fig.6 The error performance analysis chart for spatial configuration node of Nt=20
圖7 Nx=30時(shí)的對(duì)時(shí)間配置節(jié)點(diǎn)進(jìn)行誤差性能分析圖Fig.7 The error performance analysis chart for time configuration node for of Nx=30
本文從理論上論述了用時(shí)空Chebyshev偽譜法求解Burgers方程的可行性,并通過數(shù)值實(shí)例給出了性能分析圖,可以說明該方法是非常有效的.該方法思路清晰,易于理解,是對(duì)求解Burgers方程問題的豐富和發(fā)展.
[1]彭亞綿,閔濤,張世梅,等.Burgers方程的MOL數(shù)值解法[J].西安理工大學(xué)學(xué)報(bào),2004,20(3):178-183.
[2]楊水平,李壽佛,莫宏敏.2類高階格式數(shù)值測(cè)試盒比較[J].吉首大學(xué)學(xué)報(bào):自然科學(xué)版,2007,28(4):30-32.
[3]田鈞方.交通流復(fù)雜特性的微觀建模與模擬[D].北京:北京交通大學(xué),2010:62-64.
[4]Shen J,Tang T.Spectral and High-order Methods with Applications[M].Beijing:Science Press,2006:302-320.
[5]Guo B Y.Spectral Methods and Their Applications[M].Hong Kong:World Scientific,1998:278-297.
[6]Canuto C,Hussaini M Y,Quarteroni A,et al.Spectral Methods in Fluid Dynamics[M].Berlin:Springer-Verlag,1987:243-272.
[7]Berrut J P,Trefethen L N.Barycentric Lagrange interpolation[J].SIAM Rev,2004,46:501-517.
[8]Baltensperger R,Trummer R M.Spectral differencing with a twist[J].SIAM J Sci Comput,2003,24:1465-1487.
[9]Higham N J.The numerical stability of Barycentric Lagrange interpolation[J].IMA J Num Anal,2004,24:547-556.
[10] Javidi M,Golbabai A.Spectral collocation method for parabolic partial differential equations with Neumann boundary conditions[J].Appl Math Sci,2007(1):211-218.
[11]Wang Z Q,Guo B Y.Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations[J].J Sci Comput,2012,52:226-255.
[12]Guo B Y,Wang Z Q.Legendre-Gauss collocation methods for ordinary differential equations[J].Adv Comput Math,2009,30:249-280.
[13]Guo B Y,Yan J P.Legendre-Gauss collocation methods for initial value problems of second order ordinary differential equations[J].Appl Num Math,2009,59:1386-1408.