王方圓,李 瑩,許洲慧,查秀秀
(1.聊城大學數學科學學院,山東聊城 252000;2.聊城市技師學院基礎教學部,山東聊城 252000)
王方圓1,李 瑩1,許洲慧2,查秀秀1
(1.聊城大學數學科學學院,山東聊城 252000;2.聊城市技師學院基礎教學部,山東聊城 252000)
矩陣函數;矩陣方程;秩;慣性指數;最小二乘解
引理2[10]設A∈Cm×n,B∈Cm×k,C∈Cl×n。則:
由引理2可得到以下秩公式:
引理3[11]設A∈Cm×n,B∈Cm×k,C∈Cl×n。則有:
引理4[12]設A∈Cm×n,B∈Cm×k,C∈Cl×n。若R(AQ)=R(A),R((PA)*)=R(A*)。則:
b)[12]設A,B,C,D,P與Q使得矩陣表達式D-CP+AQ+B有意義。則有:
引理7[13]給定A∈Cm×n,B∈Cn×p與C∈Cm×p,設X∈Cn×n為變量矩陣,假設矩陣方程AXB=C相容,則下列各項等價。
a)矩陣方程AXB=C存在Hermitian解;
c)矩陣方程AYB=C與B*YA*=C*有公共解Y。
X=A+B(A+)*+FAV+V*FA,
其中V∈Cn×n為任意矩陣。
記
則
由文獻[6]知A1XB1=C1的Hermitian最小二乘解的通解表達式為
(1)
(2)
式(2)是一個關于3個變量U1,U2與U3的線性Hermitian矩陣函數,將其表示為
(3)
(4)
對式(3)應用引理9可得:
則
(5)
(6)
(7)
證明在式(4)的條件下,對式(3)應用引理9得:
(8)
利用矩陣的初等變換可得:
(9)
(10)
利用引理2—引理6及引理9計算得:
(11)
r(A1)-r(B1)=r(M2)-2r(A1)-2r(B1),
(12)
2r(A1)-r(B1)=r(N1)-3r(A1)-r(B1),
(13)
r(A1)-2r(B1)=r(N2)-2r(A1)-3r(B1),
(14)
(15)
將式(9)—式(15)分別代入式(8)即得式(5)—式(7)。
利用以上秩與慣性指數極值與引理1即得如下結論。
定理2矩陣A1,B1,C1,A2,C2如定理1所述,記M1,M2,N1,N2,M,G,N為定理1所定義。則
i+(N)=2r(A1)+2r(B1)+m2。
i-(N)=2r(A1)+2r(B1)+m2。
特別的,在定理2中,當A2=Im2時有如下推論。
推論1矩陣A1,B1,C1如定理1所述。M3,N3如下定義:
則: a)A1XB1=C1存在滿足X b)A1XB1=C1存在滿足X>C2的Hermitian最小二乘解當且僅當i-(N3)=2r(A1)+2r(B1)+m2; c)A1XB1=C1存在滿足X≤C2的Hermitian最小二乘解當且僅當r(M3)=i+(N3)-m2; d)A1XB1=C1存在滿足X≥C2的Hermitian最小二乘解當且僅當r(M3)=i-(N3)-m2。 如果在定理1中有A2=Im2,C2=0,則可得到矩陣方程A1XB1=C1存在(半)正(負)定Hermitian最小二乘解的等價條件如下。 推論2矩陣A1,B1,C1如定理1所述。M4,N4如下定義: 則: a)方程A1XB1=C1存在負定Hermitian最小二乘解當且僅當i+(N4)=2r(A1)+2r(B1)+m2; b)方程A1XB1=C1存在正定Hermitian最小二乘解當且僅當i-(N4)=2r(A1)+2r(B1)+m2; c)方程A1XB1=C1存在半負定Hermitian最小二乘解當且僅當r(M4)=i+(N4)-m2; d)方程A1XB1=C1存在半正定Hermitian最小二乘解當且僅當r(M4)=i-(N4)-m2。 / [1] XIE X.A new matrix in control theory[A].IEEE CDC[C].[S.l.]:[s.n.],1985.539-541. [2] 張國山,張慶靈,趙植武.矩陣束A+BKC的最小秩及其應用[J].控制與決策,1998,13(sup):508-511. ZHANG Guoshan,ZHANG Qingling,ZHAO Zhiwu.The minimum rank of the matrix pencilA+BKCand its applications[J].Control and Decision,1998,13(sup):508-511. [3] 朱建棟.通過輸出反饋使廣義系統(tǒng)變?yōu)闊o脈沖模系統(tǒng)的一種新方法[J].山東大學學報(自然科學版),2001,36(3):247-250. ZHU Jiandong.A new method to make descriptor systems regular and impulsive-free by output feedback[J].Journal of Shandong University (Natural Sciences),2001,36(3):247-250. [4] WANG D H,XIE Xukai.Elimination of impulsive modes by output feedback in descriptor systems[J].Control Theory and Applications,1995,12(3):371-376. [5] HUA D,LANCASTER P.Linear matrix equations from an inverse problem of vibration theory[J].Linear Algebra and Its Applications,1996,246:31-47. [6] LI Ying, GAO Yan,GUO Wenbin.A Hermitian least squares solution of the matrix equationAXB=Csubject to inequality restrictions[J].Computers and Mathematics with Applications,2012,64(6):1752-1760. [7] TIAN Yongge,WANG Hongxing.Relations between least-squares and least-rank solutions of the matrix equationAXB=C[J].Applied Mathematics and Computation,2013,219(20):10293-10301. [8] LIU Yonghui,TIAN Yongge,TAKANE Y.Ranks of Hermitian and skew-Hermition solutions to the matrix equationAXA*=B[J].Linear Algebra and Its Applications,2009,431(12):2359-2372. [9] TIAN Y.Equalities and inequalities for inertias of Hermitian matrices with applications[J].Linear Algebra Apple,2010,433(1):263-296. [10] MARSAGLIA G,STYAN G P H.Equalities and inequalities for ranks of matrices[J].Linear and Multilinear Algebra,1974(2):269-292. [11] KHATSKEVICH V A,OSTROVSKII M I ,SHULMAN V S.Quadratic inequalities for Hilbert space operators[J].Integral Equations and Operator Theory,2007,59(1):19-34. [12] TIAN Yongge.Rank equalities related to generalized inverses of matrices and their applications[J].Master Thesis,2000,30(3):245-256. [13] TIAN Yongge.Maximization and minimization of the rank and inertia of the Hermitian matrix expressionA-BX-(BX)*with applications[J].Linear Algebra and Its Applications,2011,434(10):2109-2139. [14] BJERHAMMAR A.Rectangular reciprocal matrices with special reference to geodetic calculations[J]. Bulletin Geodesique,1951,20(1):188-220. [15] GROB J.Nonnegative-definite and positive-definite solution to matrix equationAXA*=B-revisited[J].Linear Algebra and Its Applications,2000,321(1/2/3):123-129. WANG Fangyuan1, LI Ying1, XU Zhouhui2, CHA Xiuxiu1 (1.School of Mathematical Sciences,Liaocheng University,Liaocheng Shandong 252000,China;2.Department of Foundation Education,Technician College of Liaocheng City,Liaocheng Shandong 252000,China) matrix function; matrix equation; rank; inertia; least-squares solution 2014-03-28; 2014-04-24;責任編輯:張 軍 國家自然科學基金(11301247) 王方圓(1987-),女,河南許昌人,碩士研究生,主要從事線性系統(tǒng)理論方面的研究。 李 瑩副教授。 E-mail:liyingld@163.com 1008-1542(2014)06-0529-09 10.7535/hbkd.2014yx06007 O151.21MSC(2010)主題分類15A60 A