王代玉+王震宇+喬鑫
文章編號:16742974(2014)04003908
收稿日期:20130713
基金項目:國家自然科學(xué)基金資助項目(51078109,51278150);深圳市科技研發(fā)資金基礎(chǔ)研究重點項目(JC201005250051A)
作者簡介:王代玉(1984-),男,山東鄒城人,哈爾濱工業(yè)大學(xué)講師,博士
通訊聯(lián)系人,E-mail:daiyuwang@hit.edu.cn
摘要:為填補FRP約束混凝土滯回本構(gòu)模型的空白,對邊長305mm,高915mm及邊長204mm,高612mm兩種尺寸的CFRP約束鋼筋混凝土方柱,采用500t四棱柱壓力試驗機進行了單調(diào)及反復(fù)軸壓試驗.試驗結(jié)果表明,大尺寸CFRP約束鋼筋混凝土方柱的應(yīng)力應(yīng)變關(guān)系曲線存在軟化段,CFRP的約束作用為中等約束,且尺寸效應(yīng)對CFRP的有效約束作用有明顯影響;箍筋對單調(diào)受壓應(yīng)力應(yīng)變曲線形狀、極限壓應(yīng)變、反復(fù)受壓卸載曲線和殘余應(yīng)變影響均較大.基于試驗結(jié)果提出了考慮鋼筋、尺寸效應(yīng)及CFRP包裹層數(shù)等影響參數(shù)的CFRP中等約束混凝土方柱的反復(fù)受壓本構(gòu)模型.模型由描述包絡(luò)線的單調(diào)受壓本構(gòu)模型、曲線形式的卸載曲線及直線形式的再加載曲線3部分組成,模型預(yù)測結(jié)果與試驗結(jié)果吻合較好.
關(guān)鍵詞:碳纖維;約束混凝土;方柱;單軸受壓;應(yīng)力應(yīng)變模型
中圖分類號:TU352;TU375.3 文獻標(biāo)識碼:A
CyclicStressstrainModelforCFRPModeratelyconfined
ReinforcedConcreteSquareColumns
WANGDaiyu1,2,WANGZhenyu1,2,QIAOXin3
(1.KeyLabofStructuresDynamicBehaviorandControl(HarbinInstituteofTechnology),MinistryofEducation,Harbin,
Heilongjiang150090,China;2.SchoolofCivilEngineering,HarbinInstituteofTechnology,Harbin,Heilongjiang150090,China;
3.CCTEGShenyangEngineeringCoLtd,Shenyang,Liaoning110015,China)
Abstract:ToaddresstheknowledgegapsofthecyclicstressstrainmodelofFRPconfinedconcrete,thispaperpresentedtheexperimentalresultsofCFRPconfinedplainandRCsquarecolumnsundermonotonicandcyclicaxialcompression.Thespecimensweredividedintotwogroupsonthebasisofsize.Thewidthofthecrosssectionandtheheightofthetotalcolumnwere305mm,915mmand204mm,612mmforthetwogroups,respectively.TestresultsshowedthatthestressstraincurvesoftheCFRPconfinedlargercolumnsexhibitedalocalizedstrainsofteningbehavior,inwhichtheconfinementofCFRPwrapwasmoderatelyconfinedandsignificantlyinfluencedbysizeeffect.Moreover,theultimatecompressionstrain,unloadingcurvesandplasticstrainwereremarkablyinfluencedbyhoops.Basedonthetestdata,acyclicaxialstressstrainmodelforFRPconfinedsquareconcretecolumnswasproposed.Theproposedcyclicaxialstressstrainmodelconsistsofthreemaincomponents,namely(i)amonotonicstressstrainmodeltodescribetheenvelopecurve,(ii)apolynomialexpressionfortheunloadingcurve,and(iii)astraightlineforthereloadingpath.Theinfluencesofinternalsteelreinforcements,sizeeffectandaswellasthenumberoflayersofCFRPwrapwereconsidered.Thegoodagreementbetweenthepredictionsoftheproposedmodelandthetestresultsdemonstratesthecapabilityandaccuracyoftheproposedmodel.
Keywords:carbonfiber;confinedconcrete;squaresectionRCcolumns;cycliccompression;stressstrainmodel
FRP約束混凝土反復(fù)受壓滯回本構(gòu)模型是對FRP加固混凝土構(gòu)件及結(jié)構(gòu)抗震性能進行研究和分析的基礎(chǔ).目前,國內(nèi)外學(xué)者對FRP約束混凝土單調(diào)受壓性能進行了許多研究,并提出了多種單調(diào)受壓本構(gòu)模型[1-10],但對反復(fù)受壓性能的研究卻較少;而已有的研究對象多為FRP約束小尺寸的素混凝土圓柱,考慮已有縱筋和箍筋的存在對反復(fù)受壓性能的研究則更少.
Shao等[11]對24個采用不同F(xiàn)RP材料和包裹層數(shù)約束的素混凝土圓柱進行了不同加卸載水平的反復(fù)受壓試驗,發(fā)現(xiàn)殘余應(yīng)變與卸載應(yīng)變具有很好的線性關(guān)系,建立了FRP約束素混凝土的加卸載規(guī)則,提出了FRP素混凝土的強化型滯回本構(gòu)模型.Lam和Teng等[12-13]進行了FRP約束素混凝土圓柱的反復(fù)受壓試驗,結(jié)果表明:加卸載歷史對反復(fù)受壓時的應(yīng)力應(yīng)變包絡(luò)線影響不大,可用單調(diào)受壓應(yīng)力應(yīng)變曲線代替反復(fù)受壓包絡(luò)線,反復(fù)加卸載可產(chǎn)生累積損傷,對殘余應(yīng)變及應(yīng)力的退化有影響.并在隨后的分析中建立了FRP約束混凝土圓柱的加、卸載規(guī)則,細(xì)化了再加載曲線的表述,將再加載曲線分為共同點之前的直線段和之后的曲線過渡段,建立了適于圓柱強約束的應(yīng)力應(yīng)變滯回模型.王震宇等[14]對12個CFRP約束素混凝土方柱進行了反復(fù)受壓試驗,研究發(fā)現(xiàn)FRP約束方柱與約束圓柱的反復(fù)受壓性能有明顯差異:兩者具有不同的殘余應(yīng)變與卸載應(yīng)變關(guān)系,且再加載曲線形式也不同,圓柱近似為直線,而方柱的再加載曲線與卸載曲線相似,為下凸的曲線形式.隨后基于試驗結(jié)果,建立了FRP約束素混凝土方柱的滯回本構(gòu)模型.Abbasnia等[15]對10個CFRP約束混凝土方柱開展了反復(fù)受壓試驗,建立了殘余應(yīng)變與卸載應(yīng)變的線性關(guān)系,但并未提出相應(yīng)的反復(fù)受壓滯回本構(gòu)模型.
針對目前FRP約束混凝土反復(fù)受壓性能研究較少,且研究對象也多為小尺寸的素混凝土柱,沒有考慮尺寸效應(yīng)及已有鋼筋對反復(fù)受壓應(yīng)力應(yīng)變滯回模型影響的情況,本文對較大尺寸CFRP約束鋼筋混凝土方柱開展了單調(diào)及反復(fù)受壓的試驗研究,考察了尺寸效應(yīng)、縱筋、箍筋和CFRP包裹層數(shù)對反復(fù)受壓應(yīng)力應(yīng)變關(guān)系的影響,在材料層面上建立了可用于CFRP約束鋼筋混凝土柱非線性分析的滯回本構(gòu)模型.
1試驗概況
1.1試件設(shè)計
共設(shè)計了30個試件,根據(jù)截面尺寸分為2個系列,其中S1系列試件為12個邊長305mm,高915mm的方柱,包裹0~3層CFRP;S2系列試件為18個邊長204mm,高612mm的方柱,分別包裹0~2層CFRP.未約束混凝土實測抗壓強度為25.5MPa,縱筋配筋率均為1.46%,箍筋體積配箍率分別為0,0.4%和0.8%;縱筋和箍筋分別采用HRB335和HPB235級鋼筋.為保證破壞出現(xiàn)在柱中,上下柱端采取箍筋加密并多包裹一層CFRP.試件尺寸及配筋如圖1所示,具體試件試驗工況見表1.其中直徑分別為6,10和12mm鋼筋實測屈服強度分別為397,312和340MPa;CFRP的極限抗拉強度、彈性模量和單層厚度分別為4340MPa,2.4×105MPa和0.167mm;MS系列碳纖維配套粘結(jié)樹脂的抗拉強度及受拉彈性模量分別為46.3和2745MPa.
圖1試件尺寸及配筋
Fig.1Dimensionandreinforcementofspecimens
表1試件工況及主要試驗結(jié)果
Tab.1Specimencharacteristicsandmaintestresults
試件編號
b/mm
h/mm
縱筋
箍筋
L
R/mm
fcc
/MPa
εcc/%
fcu/MPa
εcu/%
εh,rup/%
εfe/%
S1H1L0M
305
915
1212
6@80
0
0
32.1
0.373
25.7
0.662
-
-
S1H2L0M
305
915
1212
6@40
0
0
34.7
0.412
27.8
0.684
-
S1H0L1M
305
915
-
-
1
30
29.4
0.313
17.2
0.786
-0.843
-0.880
S1H0L2M
305
915
-
-
2
30
32.3
0.393
24.4
1.771
-0.951
-0.700
S1H1L1M
305
915
1212
6@80
1
30
35.1
0.428
24.1
1.538
-0.735
-0.370
S1H1L2M
305
915
1212
6@80
2
30
34.9
0.434
30.7
2.269
-1.257
-0.280
S1H1L2C
305
915
1212
6@80
2
30
33.9
0.387
27.9
2.507
-1.103
-0.810
S1H1L3M
305
915
1212
6@80
3
30
36.9
0.428
33.3
2.521
-1.186
-0.600
S1H1L3C
305
915
1212
6@80
3
30
36.5
0.487
33.9
3.830
-1.108
-1.210
S1H2L1M
305
915
1212
6@40
1
30
30.7
0.530
29.6
1.832
-1.307
-
S1H2L2M
305
915
1212
6@40
2
30
35.5
0.416
30.9
2.104
-1.002
-0.330
S1H2L3M
305
915
1212
6@40
3
30
37.2
0.529
35.8
2.584
-1.093
-1.240
S2H1L0M
204
612
810
6@120
0
0
29.9
0.364
23.9
0.834
-
S2H2L0M
204
612
810
6@60
0
0
32.5
0.406
26.0
1.352
-
S2H0L1M
204
612
-
-
1
20
28.7
0.391
25.0
1.740
-0.986
-0.860
S2H0L1P
204
612
-
-
1
20
28.8
0.308
24.6
1.699
-0.919
-0.990
S2H0L1C
204
612
-
-
1
20
31.2
0.355
23.5
2.220
-1.172
-1.190
S2H0L2M
204
612
-
-
2
20
30.8
0.481
31.4
2.287
-1.212
-0.620
S2H0L2P
204
612
-
-
2
20
31.9
0.446
27.9
2.810
-1.115
-0.990
S2H0L2C
204
612
-
-
2
20
32.4
1.512
32.1
3.162
-1.024
-1.090
S2H1L1M
204
612
810
6@120
1
20
35.5
0.704
34.4
2.969
-1.387
-
S2H1L1P
204
612
810
6@120
1
20
33.1
0.485
31.0
1.990
-0.868
-
S2H1L1C
204
612
810
6@120
1
20
33.5
0.535
32.8
3.043
-1.394
-
S2H1L2M
204
612
810
6@120
2
20
34.6
0.633
40.0
3.588
-1.064
-
S2H1L2P
204
612
810
6@120
2
20
37.7
0.921
43.8
3.801
-1.143
-
S2H1L2C
204
612
810
6@120
2
20
34.6
0.797
38.6
4.574
-1.202
-
S2H2L1M
204
612
810
6@60
1
20
33.0
0.465
31.6
2.562
-1.339
-
S2H2L1C
204
612
810
6@60
1
20
34.1
0.654
34.8
2.661
-1.358
-
S2H2L2M
204
612
810
6@60
2
20
34.3
0.652
40.8
4.230
-1.410
-1.420
S2H2L2C
204
612
810
6@60
2
20
36.0
0.801
41.4
4.839
-1.198
-0.960
注:試件編號中S表示方柱,數(shù)字1和2分別代表截面邊長305mm和204mm,H表示配箍率,數(shù)字0,1,2分別代表無箍筋及配箍率為0.4%和0.8%,L1,L2和L3分別表示CFRP的包裹層數(shù)為1,2和3層,M,C,P分別表示單調(diào)加載及完全和部分加卸載;b為柱截面寬度;h為柱高;R為倒角半徑;fcc,εcc分別為峰值點時混凝土的應(yīng)力和應(yīng)變;fcu,εcu分別為約束后極限應(yīng)力和應(yīng)變,未包裹CFRP鋼筋混凝土柱的極限強度取為其峰值強度的80%;εh,rup為所有應(yīng)變片量測的FRP斷裂應(yīng)變的平均值;εfe為倒角處應(yīng)變片量測的FRP斷裂應(yīng)變的平均值.
1.2加載及量測裝置
軸向荷載采用5000kN壓力機加載,縱向位移采用4個LVDT測量,量測范圍為柱中間1/3高度,箍筋和CFRP應(yīng)變采用應(yīng)變片量測,量測方案如圖2所示.
圖2LVDT及應(yīng)變片位置
Fig.2LocationsofLVDTandstrain
2試驗結(jié)果與分析
2.1破壞模式
試件最終破壞均是由于標(biāo)距范圍倒角附近區(qū)域的CFRP由于應(yīng)力集中被拉斷導(dǎo)致,典型破壞模式如圖3所示.CFRP約束素混凝土試件(圖3(a))破壞時表現(xiàn)出明顯的脆性,柱中區(qū)域CFRP幾乎被同時拉斷,試件迅速喪失承載力.而包裹相同CFRP層數(shù)的鋼筋混凝土試件(圖3(b))則表現(xiàn)出一定的延性特征,CFRP隨荷載增加而逐步拉斷,直至擴展到柱中間較大區(qū)域后試件才最終喪失承載力.試驗結(jié)束后剝掉CFRP發(fā)現(xiàn),約束素混凝土柱(圖3(c))表面出現(xiàn)交叉斜裂縫;而約束鋼筋混凝土柱(圖3(d))則表現(xiàn)出明顯膨脹變形,箍筋由于混凝土的膨脹,受彎向外彎曲,縱筋受壓屈曲成燈籠狀.
圖3試件破壞模式
Fig.3Failuremodesofspecimens
2.2應(yīng)力應(yīng)變試驗曲線
反復(fù)受壓試件及對應(yīng)工況下單調(diào)受壓試件的應(yīng)力應(yīng)變試驗曲線如圖4所示.圖中應(yīng)力為實測軸力
除以試件截面面積,應(yīng)變?yōu)長VDT量測位移平均值除以標(biāo)距,且應(yīng)力、應(yīng)變均以受壓為正受拉為負(fù).由圖4可知:1)與未約束鋼筋混凝土試件相比,F(xiàn)RP約束柱的極限壓應(yīng)變得到顯著提高,但承載力的提高幅度不大;2)應(yīng)力應(yīng)變關(guān)系試驗曲線多為峰值點后存在軟化段的中等約束情況;3)單調(diào)受壓應(yīng)力應(yīng)變曲線與反復(fù)受壓時的包絡(luò)線整體趨勢基本一致;4)對S1和S2系列柱,全部CFRP應(yīng)變片量測的橫向斷裂應(yīng)變平均值分別為CFRP極限拉應(yīng)變的57%和68%,兩者相差不大;而柱倒角部位CFRP應(yīng)變片量測的橫向斷裂應(yīng)變平均值分別為CFRP極限拉應(yīng)變的40%和60%,由于方柱僅角部混凝土受到了FRP的有效約束,故計算FRP的有效約束作用時應(yīng)取倒角部位應(yīng)變片的量測結(jié)果平均值.
圖4應(yīng)力應(yīng)變試驗曲線
Fig.4Stressstraintestcurves
2.3鋼筋對應(yīng)力應(yīng)變曲線的影響?yīng)?/p>
單調(diào)受壓試驗結(jié)果表明,鋼筋的存在對單調(diào)受壓應(yīng)力應(yīng)變關(guān)系曲線形狀、峰值應(yīng)力及極限應(yīng)變等有明顯影響,詳細(xì)結(jié)果討論見文獻[16-17].
本文反復(fù)受壓試驗結(jié)果表明:鋼筋的存在對加卸載曲線同樣有較大影響.部分包裹層數(shù)相同的鋼筋混凝土柱和素混凝土柱反復(fù)受壓應(yīng)力應(yīng)變關(guān)系試驗曲線的比較如圖5所示.由圖5可知,卸載曲線前期近似為直線,后期呈明顯的曲線形式,素混凝土方柱在卸載后期的模量變化很大,而鋼筋混凝土方柱的卸載模量變化較??;在卸載應(yīng)變相同時,鋼筋混凝土柱的殘余應(yīng)變明顯大于素混凝土柱.素混凝土方柱與鋼筋混凝土方柱的再加載曲線也不同,鋼筋混凝土方柱為直線,而素混凝土方柱為曲線.因此,在建立反復(fù)受壓應(yīng)力應(yīng)變關(guān)系模型時不應(yīng)忽略鋼筋的影響.
軸向應(yīng)變
圖5鋼筋對加卸載曲線的影響?yīng)?/p>
Fig.5Influenceofsteelbarsonunloading/reloadingcurves
3反復(fù)受壓應(yīng)力應(yīng)變模型
本文試驗結(jié)果表明,由于鋼筋的存在導(dǎo)致柱的倒角半徑不能做到很大,此時對截面尺寸較大的柱其應(yīng)力應(yīng)變關(guān)系曲線存在軟化段,CFRP的約束作用降低,為中等約束.已有FRP約束混凝土本構(gòu)模型多針對應(yīng)力應(yīng)變關(guān)系曲線為單調(diào)上升的強約束情況提出,中等約束本構(gòu)模型很少,考慮鋼筋影響的反復(fù)受壓本構(gòu)模型則更少.而在實際工程中,由于構(gòu)件截面尺寸較大且均為鋼筋混凝土,此時約束混凝土應(yīng)多為中等約束情況.故本文針對FRP中等約束鋼筋混凝土方柱建立反復(fù)受壓應(yīng)力應(yīng)變關(guān)系模型.
3.1有效側(cè)向約束應(yīng)力
前文試驗結(jié)果表明,F(xiàn)RP約束鋼筋混凝土柱應(yīng)考慮箍筋約束對有效側(cè)向約束應(yīng)力的影響,故本文所建立的修正有效約束應(yīng)力模型為:
flm=flf+fls,(1)
flf=κa2EfntfεfeB=0.5κaρfEfεfe,(2)
fls=0.5keskvρstfyt.(3)
式中:flm為修正后有效側(cè)向約束應(yīng)力;flf為FRP有效側(cè)向約束應(yīng)力;fls為箍筋約束應(yīng)力;Ef為FRP彈性模量;n為FRP包裹層數(shù);tf為FRP單層厚度;ρf為FRP體積含纖率;εfe為FRP有效斷裂應(yīng)變,由前文可知應(yīng)取倒角部位應(yīng)變片量測結(jié)果平均值且應(yīng)考慮截面尺寸的影響,基于試驗結(jié)果本文建議:當(dāng)約束方柱截面尺寸大于300mm時,εfe=0.4εfu,當(dāng)截面尺寸小于300mm時取εfe=0.6εfu;ρst為體積配箍率;fyt為箍筋屈服強度;截面形狀系數(shù)κa及箍筋有效約束系數(shù)kes和kv分別為:
κa=1-2B-2rc23Ag-ρg1-ρg,(4)
Ag=B-4-πr2c,(5)
kes=1-∑w2xi+w2yi/6B-2rc21-ρcc,(6)
kv=1-s′/2B-2rc2.(7)
式中:ρg和ρcc分別為全截面和核心區(qū)截面縱筋配筋率;rc為截面倒角半徑;wxi和wyi分別為沿截面兩垂直方向第i個縱筋間凈距.
目前多以FRP側(cè)向約束應(yīng)力與未約束混凝土峰值應(yīng)力之比即約束比進行FRP強弱約束的界定,但已有界定標(biāo)準(zhǔn)大都未考慮鋼筋及截面尺寸對側(cè)向約束作用的影響;故本文基于建立的修正后有效側(cè)向約束應(yīng)力模型(式(1))與未約束混凝土峰值應(yīng)力之比對強弱約束重新進行了界定:即當(dāng)修正約束比大于0.17時為強約束,小于0.09時為弱約束,介于兩者之間時為中等約束.對于FRP約束鋼筋混凝土強弱約束的劃分已有另文介紹,限于篇幅,本文不再重復(fù)介紹,詳見文獻[16-17].
3.2包絡(luò)線
本文試驗及已有研究[11-12]均表明,F(xiàn)RP約束混凝土反復(fù)受壓時的包絡(luò)線可用其單調(diào)受壓時的應(yīng)力應(yīng)變曲線代替.故本文采用文獻[16]已提出的FRP中等約束鋼筋混凝土柱單調(diào)受壓應(yīng)力應(yīng)變模型作為反復(fù)受壓時的包絡(luò)線,其方程形式為:
y=Ax+3-2Ax2+A-2x3,x≤1.0;y=x/αx-12+x,1.0<x≤xct;y=ycu,xct<x≤xcu.(8)
式中:y=fc/fcc;ycu=fcu/fcc;x=εc/εcc;xct=εct/εcc;xcu=εcu/εcc;fc,εc分別為混凝土軸向應(yīng)力和應(yīng)變;fcc,εcc分別為峰值點應(yīng)力和應(yīng)變;fcu,εcu分別為極限點應(yīng)力和應(yīng)變;εct為轉(zhuǎn)折點應(yīng)變;A=Ec/Ep為初始上升段曲線控制參數(shù),Ec=4730fc0為混凝土初始彈性模量,fc0為素混凝土峰值應(yīng)力,Ep=fcc/εcc為約束后峰值點割線模量;α為下降段控制參數(shù).
上式中各參數(shù)的詳細(xì)計算公式在文獻[16-17]中根據(jù)單調(diào)受壓試驗結(jié)果已經(jīng)回歸得到.本文基于反復(fù)受壓試驗結(jié)果,又對各參數(shù)進行了重新修正,修正后的極限應(yīng)力和應(yīng)變及下降段控制參數(shù)表達式分別為:
fcu=fc00.2+3.47flffc00.64+0.59flsfc00.20,(9)
εcu=εc02+73.31flffc01.07+5.06flsfc00.03,(10)
α=1-fcu/fcc1.66.(11)
式中:εc0=0.002為未約束混凝土峰值點應(yīng)變.
3.3卸載曲線
根據(jù)試驗卸載曲線的形狀特征,CFRP約束鋼筋混凝土方柱的卸載曲線描述如下:
fcσun=B0εc-εpεun-εpB1+1-B1εc-εpεun-εp.(12)
式中:σun和εun分別為卸載點應(yīng)力和應(yīng)變;εp為卸載殘余應(yīng)變;B0和B1為卸載曲線形狀系數(shù),由試驗數(shù)據(jù)回歸分析可得:
B0=0.5+0.48flffc00.32-0.16flsfc00.04.(13)
對約束鋼筋混凝土柱:
B1=-0.1εunεc01.28+0.33εunεc0+2.15.(14)
對約束素混凝土柱:
B1=-0.26εunεc01.31+0.89εunεc0+1.51.(15)
已有研究表明[11-15],殘余應(yīng)變與卸載應(yīng)變成線性關(guān)系,本文試驗得到同樣結(jié)論,但鋼筋的存在對殘余應(yīng)變有較大影響,如圖6所示.
由試驗結(jié)果可知,當(dāng)卸載應(yīng)變小于0.001時,試件處于彈性段無殘余應(yīng)變產(chǎn)生,當(dāng)卸載應(yīng)變大于0.001時,回歸分析得到的殘余應(yīng)變表達式如下.
約束鋼筋混凝土柱時:
εp=0.580εun-0.0006,0.001≤εun≤0.004;
0.930εun-0.002,εun>0.004.(16)
約束素混凝土柱時:
εp=0.443εun-0.0004,0.001≤εun≤0.004;
0.836εun-0.002,εun>0.004.(17)
卸載應(yīng)變εun
圖6殘余應(yīng)變和卸載應(yīng)變關(guān)系
Fig.6Lasticstrainsversusunloadingstrains
3.4再加載曲線
根據(jù)試驗得到的再加載曲線特征,采用直線模型描述再加載曲線,其表達式為:
fc=σnewεnew-εpεc-εp.(18)
式中:σnew和εnew分別為卸載曲線與再加載曲線交點處的應(yīng)力和應(yīng)變,由試驗結(jié)果分析可知其分別與σun和εun成線性關(guān)系,如圖7和圖8所示.
卸載點應(yīng)力σun/MPa
圖7共同點應(yīng)力和卸載應(yīng)力關(guān)系
Fig.7Stressofcommonpointsversusunloadstress
卸載點應(yīng)變εun
圖8共同點應(yīng)變和卸載應(yīng)變關(guān)系
Fig.8Strainsofcommonpointsversusunloadstrains
基于試驗數(shù)據(jù)的回歸,σnew和εnew確定如下:
σnew=0.921σun,(19)
εnew=εun.(20)
3.5本文模型與試驗結(jié)果的比較驗證
以前述單調(diào)受壓應(yīng)力應(yīng)變曲線作為骨架曲線,結(jié)合加卸載曲線模型,即可建立CFRP中等約束鋼筋混凝土方柱的滯回本構(gòu)模型.部分卸載時先按完全卸載曲線卸載至殘余應(yīng)力點,然后從殘余應(yīng)力點以直線加載至共同點,并與骨架曲線延伸相交.部分計算結(jié)果與試驗結(jié)果的比較,如圖9所示.由圖9可以看出,本文所提滯回本構(gòu)模型對CFRP約束鋼筋混凝土及素混凝土柱在完全卸載和部分卸載時均與試驗結(jié)果吻合較好,模型精度較高.
圖9計算結(jié)果與試驗結(jié)果的比較
Fig.9Comparisonofcalculationresultsversustestdata
4結(jié)論
本文對CFRP約束鋼筋混凝土方柱單調(diào)及反復(fù)受壓性能進行了試驗研究,在此基礎(chǔ)上建立了反復(fù)受壓應(yīng)力應(yīng)變滯回本構(gòu)模型,得到以下主要結(jié)論:
1)對大尺寸鋼筋混凝土方柱CFRP約束后明顯改善了柱的延性,但對應(yīng)力提高幅度不大,其應(yīng)力應(yīng)變關(guān)系曲線多為峰值點后存在軟化段的中等約束情況.
2)單調(diào)受壓試件的應(yīng)力應(yīng)變關(guān)系曲線與相同工況反復(fù)受壓試件的包絡(luò)線基本一致,鋼筋對約束混凝土反復(fù)受壓時的加卸載曲線形狀及殘余應(yīng)變大小有明顯影響,殘余應(yīng)變與卸載應(yīng)變成很好的線性關(guān)系.
3)提出了CFRP中等約束鋼筋混凝土方柱單調(diào)受壓應(yīng)力應(yīng)變曲線、卸載曲線和再加載曲線的數(shù)學(xué)描述,在此基礎(chǔ)上建立了反復(fù)受壓應(yīng)力應(yīng)變滯回本構(gòu)模型,模型預(yù)測結(jié)果與試驗結(jié)果吻合較好,可用于CFRP約束鋼筋混凝土結(jié)構(gòu)及構(gòu)件的非線性分析.
參考文獻[1] XIAO Y, WU H. Compressive behavior of concrete confined by fiber composite jackets[J]. Journal of Materials in Civil Engineering, 2000, 12(2):139-146.
參考文獻[2] ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. MI, USA:American Concrete Institute(ACI), Farmington Hills,2008.[3] 丁洪濤, 易偉建, 冼巧玲. 碳纖維布(CFRP)加固壓彎構(gòu)件全過程分析[J]. 湖南大學(xué)學(xué)報:自然科學(xué)版, 2003, 30(3):139-141.DING Hongtao, YI Weijian, XIAN Qiaoling. Nonlinear analysis of carbon fiber sheets (CFRP) strengthened members subjected to axial load and lateral shear[J]. Journal of Hunan University:Natural Sciences, 2003, 30(3):139-141.(In Chinese)[4] JIANG T,TENG J G.Analysisoriented stressstrain models for FRPconfined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.[5] TENG J G,JIANG T,LAM L,et al.Refinement of a designoriented stressstrain model for FRPconfined concrete[J]. Journal of Composites for Construction, 2009, 13(4):269-278.[6] HARAJLI M H. Axial stressstrain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10):938-948.[7] YOUSSEF M N,FENG M Q,MOSALLAM A S.Stressstrain model for concrete confined by FRP composites[J]. Composites: Part B, 2007, 38(5/6):614-628.[8] EID R,PAULTRE P.Analytical model for FRPconfined circular reinforced concrete columns[J]. Journal of Composites for Construction, 2008, 12(5):541-552.[9]TURGAY T,POLAT Z,KOKSAL H O,et al.Compressive behavior of largescale square reinforced concrete columns confined with carbon fiber reinforced polymer wraps[J]. Materials and Design, 2010, 31(1):357-364.[10]吳剛, 呂志濤. FRP約束混凝土圓柱無軟化段時的應(yīng)力應(yīng)變關(guān)系研究[J].建筑結(jié)構(gòu)學(xué)報, 2003, 24(5):1-9.WU Gang, LV Zhitao. Study on the stressstrain relationship of FRPconfined concrete circular column without a strainsoftening response[J].Journal of Building Structures,2003,24(5):1-9.(In Chinease)[11]SHAO Y,ZHU Z,MIRMIRAN A.Cyclic modeling of FRPconfined concrete with improved ductility[J].Cement & Concrete Composites, 2006, 28(10):959-968.[12]LAM L,TENG J G,CHEUNG C H,et al.FRPconfined concrete under axial cyclic compression[J].Cement & Concrete Composites, 2006, 28(10):949-958.[13]LAM L,TENG J G.Stressstrain model for FRPconfined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2):308-321.[14]王震宇, 李洪鵬. 重復(fù)荷載作用下碳纖維預(yù)設(shè)混凝土加卸載準(zhǔn)則 [J]. 建筑結(jié)構(gòu), 2009, 39(7):100-103. WANG Zhenyu, LI Hongpeng. Loading and unloading criteria of FRPconfined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103. (In Chinese)[15]ABBASNIA R,ZIAADIAN H.Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J].Engineering Structures, 2010, 32(3):648-655.[16]王震宇, 王代玉, 呂大剛,等.CFRP中等約束鋼筋混凝土方柱單軸受壓應(yīng)力應(yīng)變模型[J]. 建筑結(jié)構(gòu)學(xué)報, 2011, 32(4):101-109. WANG Zhenyu,WANG Daiyu,LV Dagang,et al.Stressstrain model for CFRP moderatelyconfined reinforced concrete square columns[J]. Journal of Building Structures, 2011, 32(4):101-109. (In Chinese)[17]WANG Z Y,WANG D Y,SMITH S T,et al.CFRPconfined square RC columns. I: experimental investigation [J]. Journal of Composites for Construction, ASCE, 2012, 16(2):150-160.endprint
參考文獻[2] ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. MI, USA:American Concrete Institute(ACI), Farmington Hills,2008.[3] 丁洪濤, 易偉建, 冼巧玲. 碳纖維布(CFRP)加固壓彎構(gòu)件全過程分析[J]. 湖南大學(xué)學(xué)報:自然科學(xué)版, 2003, 30(3):139-141.DING Hongtao, YI Weijian, XIAN Qiaoling. Nonlinear analysis of carbon fiber sheets (CFRP) strengthened members subjected to axial load and lateral shear[J]. Journal of Hunan University:Natural Sciences, 2003, 30(3):139-141.(In Chinese)[4] JIANG T,TENG J G.Analysisoriented stressstrain models for FRPconfined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.[5] TENG J G,JIANG T,LAM L,et al.Refinement of a designoriented stressstrain model for FRPconfined concrete[J]. Journal of Composites for Construction, 2009, 13(4):269-278.[6] HARAJLI M H. Axial stressstrain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10):938-948.[7] YOUSSEF M N,FENG M Q,MOSALLAM A S.Stressstrain model for concrete confined by FRP composites[J]. Composites: Part B, 2007, 38(5/6):614-628.[8] EID R,PAULTRE P.Analytical model for FRPconfined circular reinforced concrete columns[J]. Journal of Composites for Construction, 2008, 12(5):541-552.[9]TURGAY T,POLAT Z,KOKSAL H O,et al.Compressive behavior of largescale square reinforced concrete columns confined with carbon fiber reinforced polymer wraps[J]. Materials and Design, 2010, 31(1):357-364.[10]吳剛, 呂志濤. FRP約束混凝土圓柱無軟化段時的應(yīng)力應(yīng)變關(guān)系研究[J].建筑結(jié)構(gòu)學(xué)報, 2003, 24(5):1-9.WU Gang, LV Zhitao. Study on the stressstrain relationship of FRPconfined concrete circular column without a strainsoftening response[J].Journal of Building Structures,2003,24(5):1-9.(In Chinease)[11]SHAO Y,ZHU Z,MIRMIRAN A.Cyclic modeling of FRPconfined concrete with improved ductility[J].Cement & Concrete Composites, 2006, 28(10):959-968.[12]LAM L,TENG J G,CHEUNG C H,et al.FRPconfined concrete under axial cyclic compression[J].Cement & Concrete Composites, 2006, 28(10):949-958.[13]LAM L,TENG J G.Stressstrain model for FRPconfined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2):308-321.[14]王震宇, 李洪鵬. 重復(fù)荷載作用下碳纖維預(yù)設(shè)混凝土加卸載準(zhǔn)則 [J]. 建筑結(jié)構(gòu), 2009, 39(7):100-103. WANG Zhenyu, LI Hongpeng. Loading and unloading criteria of FRPconfined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103. (In Chinese)[15]ABBASNIA R,ZIAADIAN H.Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J].Engineering Structures, 2010, 32(3):648-655.[16]王震宇, 王代玉, 呂大剛,等.CFRP中等約束鋼筋混凝土方柱單軸受壓應(yīng)力應(yīng)變模型[J]. 建筑結(jié)構(gòu)學(xué)報, 2011, 32(4):101-109. WANG Zhenyu,WANG Daiyu,LV Dagang,et al.Stressstrain model for CFRP moderatelyconfined reinforced concrete square columns[J]. Journal of Building Structures, 2011, 32(4):101-109. (In Chinese)[17]WANG Z Y,WANG D Y,SMITH S T,et al.CFRPconfined square RC columns. I: experimental investigation [J]. Journal of Composites for Construction, ASCE, 2012, 16(2):150-160.endprint
參考文獻[2] ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. MI, USA:American Concrete Institute(ACI), Farmington Hills,2008.[3] 丁洪濤, 易偉建, 冼巧玲. 碳纖維布(CFRP)加固壓彎構(gòu)件全過程分析[J]. 湖南大學(xué)學(xué)報:自然科學(xué)版, 2003, 30(3):139-141.DING Hongtao, YI Weijian, XIAN Qiaoling. Nonlinear analysis of carbon fiber sheets (CFRP) strengthened members subjected to axial load and lateral shear[J]. Journal of Hunan University:Natural Sciences, 2003, 30(3):139-141.(In Chinese)[4] JIANG T,TENG J G.Analysisoriented stressstrain models for FRPconfined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986.[5] TENG J G,JIANG T,LAM L,et al.Refinement of a designoriented stressstrain model for FRPconfined concrete[J]. Journal of Composites for Construction, 2009, 13(4):269-278.[6] HARAJLI M H. Axial stressstrain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10):938-948.[7] YOUSSEF M N,FENG M Q,MOSALLAM A S.Stressstrain model for concrete confined by FRP composites[J]. Composites: Part B, 2007, 38(5/6):614-628.[8] EID R,PAULTRE P.Analytical model for FRPconfined circular reinforced concrete columns[J]. Journal of Composites for Construction, 2008, 12(5):541-552.[9]TURGAY T,POLAT Z,KOKSAL H O,et al.Compressive behavior of largescale square reinforced concrete columns confined with carbon fiber reinforced polymer wraps[J]. Materials and Design, 2010, 31(1):357-364.[10]吳剛, 呂志濤. FRP約束混凝土圓柱無軟化段時的應(yīng)力應(yīng)變關(guān)系研究[J].建筑結(jié)構(gòu)學(xué)報, 2003, 24(5):1-9.WU Gang, LV Zhitao. Study on the stressstrain relationship of FRPconfined concrete circular column without a strainsoftening response[J].Journal of Building Structures,2003,24(5):1-9.(In Chinease)[11]SHAO Y,ZHU Z,MIRMIRAN A.Cyclic modeling of FRPconfined concrete with improved ductility[J].Cement & Concrete Composites, 2006, 28(10):959-968.[12]LAM L,TENG J G,CHEUNG C H,et al.FRPconfined concrete under axial cyclic compression[J].Cement & Concrete Composites, 2006, 28(10):949-958.[13]LAM L,TENG J G.Stressstrain model for FRPconfined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2):308-321.[14]王震宇, 李洪鵬. 重復(fù)荷載作用下碳纖維預(yù)設(shè)混凝土加卸載準(zhǔn)則 [J]. 建筑結(jié)構(gòu), 2009, 39(7):100-103. WANG Zhenyu, LI Hongpeng. Loading and unloading criteria of FRPconfined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103. (In Chinese)[15]ABBASNIA R,ZIAADIAN H.Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J].Engineering Structures, 2010, 32(3):648-655.[16]王震宇, 王代玉, 呂大剛,等.CFRP中等約束鋼筋混凝土方柱單軸受壓應(yīng)力應(yīng)變模型[J]. 建筑結(jié)構(gòu)學(xué)報, 2011, 32(4):101-109. WANG Zhenyu,WANG Daiyu,LV Dagang,et al.Stressstrain model for CFRP moderatelyconfined reinforced concrete square columns[J]. Journal of Building Structures, 2011, 32(4):101-109. (In Chinese)[17]WANG Z Y,WANG D Y,SMITH S T,et al.CFRPconfined square RC columns. I: experimental investigation [J]. Journal of Composites for Construction, ASCE, 2012, 16(2):150-160.endprint