張成+王建科+史文悅+李遠
摘要
本文以中國各省份1995-2011年的面板數(shù)據(jù)為樣本,對碳生產(chǎn)率增長率進行了七重因素分解,分解時不僅考慮了能源結(jié)構(gòu)變動的影響,還充分利用了全要素框架下的生產(chǎn)率信息,重點探討資本、勞動和能源三要素之間的替代效應(yīng)對碳生產(chǎn)率波動的影響,研究結(jié)果表明:①碳生產(chǎn)率增長率的變化主要受技術(shù)進步(正效應(yīng))、資本能源替代效應(yīng)(正效應(yīng))和勞動能源替代效應(yīng)(負效應(yīng))三個分解變量的影響,而技術(shù)效率(負效應(yīng))、隨機偏差(負效應(yīng))、規(guī)模效率(正效應(yīng))和能源結(jié)構(gòu)效應(yīng)(正效應(yīng))的影響較為有限;②資本能源替代效應(yīng)和勞動能源替代效應(yīng)在樣本期間的波動幅度最為明顯,且兩者在影響力度上呈現(xiàn)了此消彼長的角力格局,但兩者在影響效果的變化方向上趨于一致;③技術(shù)進步和技術(shù)效率存在著區(qū)域負相關(guān)和年份正相關(guān)的共存現(xiàn)象,即從省份角度來看,技術(shù)進步較快的省份往往導(dǎo)致趨于惡化的技術(shù)效率;但從時間角度來看,省份內(nèi)部的技術(shù)進步率趨于降低,而相應(yīng)的技術(shù)效率亦趨于惡化。因此,要想有效提升我國的碳生產(chǎn)率水平,應(yīng)當(dāng)重點關(guān)注技術(shù)進步、資本能源替代效應(yīng)和勞動能源替代效應(yīng)的重要作用,一方面要均衡生產(chǎn)技術(shù)進步和節(jié)能減排技術(shù)進步的協(xié)調(diào)發(fā)展,另一方面應(yīng)叫停當(dāng)前能源過度深化的格局,不僅要注重發(fā)展低能源傾向的資本和技術(shù)密集型產(chǎn)業(yè),扭斷資本和能源高度相關(guān)的傾向,還應(yīng)該適度提升低能源傾向的勞動密集型產(chǎn)業(yè)。
關(guān)鍵詞 碳生產(chǎn)率;技術(shù)進步;技術(shù)效率;要素替代
中圖分類號 F062.9 文獻標(biāo)識碼 A 文章編號 1002-2104(2014)10-0041-07 doi:10.3969/j.issn.1002-2104.2014.10.007
隨著全球氣候的變暖和環(huán)保意識的增強,低碳經(jīng)濟開始取代傳統(tǒng)經(jīng)濟,成為世界經(jīng)濟的潮流。研究低碳經(jīng)濟的必要性、可能性和現(xiàn)實性已經(jīng)成為學(xué)術(shù)界和政界的焦點之一[1]。低碳經(jīng)濟的核心就是力圖實現(xiàn)“二氧化碳(CO2)減排和經(jīng)濟增長”的共贏,而“碳生產(chǎn)率”指標(biāo)則成為連接經(jīng)濟增長和環(huán)境保護的重要橋梁。雖然我國政府沒有直接提出應(yīng)該在碳生產(chǎn)率上達到何種水平,但根據(jù)中國政府在哥本哈根會議及國民經(jīng)濟“十二五”規(guī)劃中對單位國內(nèi)生產(chǎn)總值CO2排放量上的承諾與目標(biāo),可以間接求得我國在碳生產(chǎn)率指標(biāo)上的總體規(guī)劃,如在“十二五”期間,我國計劃讓碳生產(chǎn)率能夠提升20%左右。如何更為科學(xué)合理地將碳生產(chǎn)率目標(biāo)在地區(qū)間和行業(yè)間進行合理分解,首先需要對我國碳生產(chǎn)率的演變規(guī)律有深刻的認(rèn)識。
直接研究碳生產(chǎn)率演變規(guī)律的文獻并不多見,概括地看,可以將其分成以下三類:①考察碳生產(chǎn)率的變化趨勢。如潘家華、張麗峰[2]和張成[1]等使用收斂、Tapio脫鉤和追趕脫鉤指數(shù)方法研究了碳生產(chǎn)率的區(qū)域差距及動態(tài)演變軌跡。類似的研究只是從宏觀層面對碳生產(chǎn)率的變動趨勢進行了把握,未能對這些變動趨勢進行進一步分解;②通過數(shù)理方法對碳生產(chǎn)率變動做因素分解。如張永軍[3]使用拉氏分解法將碳生產(chǎn)率變動分解成技術(shù)進步、產(chǎn)業(yè)結(jié)構(gòu)變動和消費結(jié)構(gòu)變動三因素,而Meng M & Niu D[4]則使用對數(shù)平均迪氏指數(shù)法將碳生產(chǎn)率分解成各個產(chǎn)業(yè)的技術(shù)創(chuàng)新效應(yīng)和產(chǎn)業(yè)結(jié)構(gòu)調(diào)整效應(yīng)。拉氏和迪氏分解法可以對碳生產(chǎn)率的變動進行初步解釋,但忽略了全要素生產(chǎn)效率、投入要素之間的替代效應(yīng)和隨機因素的影響;③全要素碳生產(chǎn)率研究。通過數(shù)據(jù)包絡(luò)(DEA)和隨機前沿(SFA)方法,將CO2等污染物作為投入或壞產(chǎn)出引入全要素分析框架研究了全要素碳生產(chǎn)率的相關(guān)問題[5-8],但全要素框架下的碳效率與國際公約及我國政府報告中的單要素減排責(zé)任安排難以有效對接,從而在實踐中引致諸多不便[9]。
鑒于碳生產(chǎn)率演變規(guī)律的重要地位及已有研究的不足,本文嘗試構(gòu)建改進的隨機前沿模型,將中國各省份基于單要素的碳生產(chǎn)率波動做七因素分解,該研究的創(chuàng)新之處在于:分解時不僅考慮了能源結(jié)構(gòu)變動的影響,還充分利用了全要素框架下的生產(chǎn)率信息,重點探討資本、勞動和能源三要素之間的替代效應(yīng)對碳生產(chǎn)率波動的影響。本文在理論上有利于我們更全面和深刻地認(rèn)識碳生產(chǎn)率的演變規(guī)律,在實踐上則能為我國科學(xué)制定CO2減排政策提供參考價值。
和0.049 9降低至0.046 1和0.047 2,這種普遍的逐年降低現(xiàn)象,實際上也從另一個層面支撐了絕對β收斂現(xiàn)象的存在性。
正如Kander & Schn[15]指出的那樣,資本與能源之間的替代會體現(xiàn)產(chǎn)業(yè)結(jié)構(gòu)的變化,不同的產(chǎn)業(yè)結(jié)構(gòu)變化會對碳生產(chǎn)率帶來不同的影響,相對而言,某地區(qū)的資本能源比越低,說明該地區(qū)越傾向于能源密集型產(chǎn)業(yè),不可避免地會消耗更多的能源、排放更多的CO2??傮w而言,我們發(fā)現(xiàn)資本能源替代效應(yīng)對碳生產(chǎn)率引致了正向提升作用,這也和原始數(shù)據(jù)中資本能源比總體逐步提升的事實吻合。資本能源替代效應(yīng)在全國整體會對碳生產(chǎn)率帶來0.027 8的正向促進作用,且中部的促進作用最大,高達0.036 6,西部次之(0.026 1),東部反居末位(0.023 0),說明中部在資本密集型產(chǎn)業(yè)的推進速度上遠高于其他地區(qū)。進一步地考察各地區(qū)資本能源替代效應(yīng)在樣本年間的逐年變化,發(fā)現(xiàn)東部和西部除2003年呈現(xiàn)負向抑制作用(分別為-0.009和-0.023 3)以外均呈現(xiàn)了正向促進作用,且分別在1998和1999年的促進作用最為明顯,中部則全部呈現(xiàn)正向促進作用,峰值位于2009年的0.065 4。總體而言,東中西部的資本能源替代效應(yīng)在2002至2005年及2011年,普遍呈現(xiàn)了低位徘徊的格局。
勞動能源替代效應(yīng)的作用機理和資本能源替代效應(yīng)類似,亦可以通過產(chǎn)業(yè)結(jié)構(gòu)由能源密集型產(chǎn)業(yè)轉(zhuǎn)型至勞動密集型產(chǎn)業(yè)來提升碳生產(chǎn)率水平,但現(xiàn)實中的產(chǎn)業(yè)結(jié)構(gòu)總體未呈現(xiàn)這一趨勢,從而導(dǎo)致勞動能源替代效應(yīng)對碳生產(chǎn)率總體導(dǎo)致負向影響,在全國和東中西部分別取值-0.032 7,-0.031 0,-0.025 9和-0.040 0。雖然總體為負向影響,但東中西部均在個別年份呈現(xiàn)了正向影響,這和它們在這些年份的勞動能源比有所提高完全吻合。進一步考察東中西部勞動能源替代效應(yīng)的逐年演化軌跡,發(fā)現(xiàn)東部在年份間的波動相對較小,谷峰和谷底分別為2008年的0.001 1和2003年的-0.062 2,中部分別位于1997年的0.016 6和2005年的-0.069 2,西部則為1999年的0.009 5和2003年的-0.098 4。若結(jié)合資本能源替代效應(yīng),發(fā)現(xiàn)樣本期間資本能源替代效應(yīng)和勞動能源替代效應(yīng)的波動幅度最為明顯,且兩者具備兩個典型的特征:一是在影響力度上,兩者呈現(xiàn)了此消彼長的角力格局,即資本能源替代的正向效應(yīng)越大,勞動能源替代的負向效應(yīng)越小,若資本能源替代的正向效應(yīng)越小,勞動能源替代的負向效應(yīng)越大;二是在影響力度的變化方向上,兩者趨于一致,即資本能源替代效應(yīng)若趨于增強,則勞動能源替代效應(yīng)亦趨于改良(即勞動能源替代的負向效應(yīng)趨于減少)。這兩個特征說明:勞動密集型產(chǎn)業(yè)相對于資本密集型產(chǎn)業(yè)和能源密集型產(chǎn)業(yè)會使用更少的能源,因此,負向的勞動能源替代效應(yīng)告訴我們勞動密集型產(chǎn)業(yè)在逐步被資本密集型產(chǎn)業(yè)和能源密集型產(chǎn)業(yè)替代,而正向的資本能源替代效應(yīng)則進一步展示了資本密集型產(chǎn)業(yè)對能源密集型產(chǎn)業(yè)的替代趨勢。
技術(shù)效率、規(guī)模效率、隨機偏差和能源結(jié)構(gòu)效應(yīng)對碳生產(chǎn)率增長率的影響相對較小。其中,技術(shù)效率的變化對碳生產(chǎn)率增長率普遍帶來了阻礙作用,這可能是由于各省份普遍都呈現(xiàn)了較高的技術(shù)進步態(tài)勢,導(dǎo)致各省份在技術(shù)的利用效率上明顯滯后,呈現(xiàn)了一定的“落后效應(yīng)”,即離綜合能源技術(shù)前沿面的距離越來越大,且技術(shù)效率的退步程度和技術(shù)進步程度呈現(xiàn)負相關(guān)趨勢,即在技術(shù)進步上最快的西部,反而在技術(shù)效率的退步上亦相對最快。因此,如何進一步提高各地區(qū)的技術(shù)效率水平來更好地呈現(xiàn)技術(shù)進步的成果,應(yīng)是未來工作的重點之一。
全國規(guī)模效率的變化對碳生產(chǎn)率增長率的影響在樣本年間的均值為0.000 8,說明呈現(xiàn)了微弱的正向促進作用。在東中西分組考察中,東部和西部的均值分別為0.001 3和0.001 5,而中部的取值則為-0.000 6,意味著中部普遍存在著規(guī)模不經(jīng)濟現(xiàn)象。深入到東部內(nèi)部,發(fā)現(xiàn)北京、上海、廣東、天津和遼寧亦總體存在規(guī)模不經(jīng)濟現(xiàn)象,而其余6個省份特別是海南則呈現(xiàn)了一定規(guī)模經(jīng)濟現(xiàn)象。西部內(nèi)部,除甘肅外均整體處于規(guī)模經(jīng)濟階段,而中部內(nèi)部除安徽外整體處于規(guī)模不經(jīng)濟階段。
能源結(jié)構(gòu)效應(yīng)的變化展示了能源消費的偏好變化對碳生產(chǎn)率增長率的影響,相對而言,天然氣和汽油的生產(chǎn)效率最高,每萬億J熱值的CO2排放量分別僅為55.612 t和67.914 t,而煤炭和焦炭的生產(chǎn)效率則最低,對應(yīng)取值分別高達92.325 t和100.072 t。因此,各省份在消費能源時,低碳能源比例趨于升高能夠促進碳生產(chǎn)率增長率的提升。其中,東部除河北和山東外普遍獲得了正向的能源結(jié)構(gòu)效應(yīng),總體均值為0.002 1,西部除云南、寧夏和新疆外普遍取得能源結(jié)構(gòu)優(yōu)化,在總體呈現(xiàn)了0.001 3的正向促進作用,而中部雖僅有黑龍江為負影響,但其余省份的能源結(jié)構(gòu)優(yōu)化趨勢并不明顯,總體效果僅為0.000 5。
至于隨機偏差效應(yīng)對碳生產(chǎn)率增長率的總體影響相對最小,僅為-0.000 2,東中西則分別為-0.001 0、0.001 2和-0.000 5。說明運氣等隨機因素對碳生產(chǎn)率增長率的影響極為有限,但亦有例外,在陜西和湖南等省份的總體影響甚至超過了能源結(jié)構(gòu)效應(yīng)。因此,通過考慮隨機偏差效應(yīng)的影響,能夠更為準(zhǔn)確地對碳生產(chǎn)率增長率進行因素分解。
4 結(jié)論與政策建議
本文以中國29個省份1995-2011年的面板數(shù)據(jù)為基礎(chǔ),使用改進的隨機前沿生產(chǎn)函數(shù)模型將碳生產(chǎn)率增長率分解成技術(shù)進步變化率、技術(shù)效率變化率、隨機偏差變化率、規(guī)模效率變化率、資本能源替代效應(yīng)變化率、勞動能源替代效應(yīng)變化率和能源結(jié)構(gòu)效應(yīng)變化率七種效應(yīng),得到了如下結(jié)論:①碳生產(chǎn)率增長率的變化主要受技術(shù)進步(正影響)、資本能源替代效應(yīng)(正影響)和勞動能源替代效應(yīng)(負影響)三個分解變量的影響,技術(shù)效率(負影響)、隨機偏差(負影響)、規(guī)模效率(正影響)和能源結(jié)構(gòu)效應(yīng)(正影響)的影響較為有限;②資本能源替代效應(yīng)和勞動能源替代效應(yīng)在樣本期間的波動幅度最為明顯,且兩者在影響力度上呈現(xiàn)了此消彼長的角力格局,但兩者在影響效果的變化方向上趨于一致;③技術(shù)進步和技術(shù)效率存在著區(qū)域負相關(guān)和年份正相關(guān)的共存現(xiàn)象,即從省份角度來看,技術(shù)進步較快的省份往往導(dǎo)致趨于惡化的技術(shù)效率;但從時間角度來看,省份內(nèi)部的技術(shù)進步率趨于降低,而相應(yīng)的技術(shù)效率亦趨于惡化。
如何提高我國的碳生產(chǎn)率水平,在未來實現(xiàn)既要經(jīng)濟有增長又要環(huán)境有改善的綠色經(jīng)濟,需要做到:①均衡生產(chǎn)技術(shù)進步和節(jié)能減排技術(shù)進步的協(xié)調(diào)發(fā)展,保持總體技術(shù)進步在提升碳生產(chǎn)率水平上的中流砥柱作用;②加強對先進技術(shù)的利用水平,提高技術(shù)效率,扭轉(zhuǎn)當(dāng)前總體趨于惡化的技術(shù)效率貢獻率;③處理好壟斷和競爭的關(guān)系,有針對性地推進橫向、縱向一體化和打破壟斷、引入競爭,杜絕規(guī)模過小和規(guī)模過大引致的危害,實行規(guī)模經(jīng)濟;④不僅要注重發(fā)展低能源傾向的資本和技術(shù)密集型產(chǎn)業(yè),扭斷資本和能源高度相關(guān)的傾向,還應(yīng)該適度提升低能源傾向的勞動密集型產(chǎn)業(yè),叫停當(dāng)前能源過度深化的格局;⑤一方面要降低高碳能源的使用比重,大力發(fā)展新能源,另一方面要深化電力企業(yè)改革,實現(xiàn)輸配分離,從根本上解決新能源產(chǎn)業(yè)的階段性和瓶頸性產(chǎn)能過剩問題,力圖做到能從能源格局優(yōu)化中獲取更大效益,以此來不斷提升我國碳生產(chǎn)率的水平。
(編輯:常 勇)
參考文獻(References)
[1]張成, 蔡萬煥, 于同申. 區(qū)域經(jīng)濟增長與碳生產(chǎn)率 [J]. 中國工業(yè)經(jīng)濟, 2013, (5): 18-30. [Zhang Cheng, Cai Wanhuan, Yu Tongshen. Regional Economic Growth and Carbon Productivity [J]. China Industrial Economy, 2013, (5):18-30.]
[2]潘家華, 張麗峰. 我國碳生產(chǎn)率區(qū)域差異性研究[J]. 中國工業(yè)經(jīng)濟, 2011, (5): 47-57.[Pan Jiahua, Zhang Lifeng. Research on the Regional Variation of Carbon Productivity in China[J]. China Industrial Economy, 2011, (5):47-57.]
[3]張永軍. 技術(shù)進步, 結(jié)構(gòu)變動與碳生產(chǎn)率增長[J]. 中國科技論壇, 2011, (5): 114-120.[Zhang Yongjun. Technical Progress, Industrial Structure and Carbon Productivity Growth[J]. Forum on Science and Technology in China, 2011, (5):114-120.]
[4]Meng M, Niu D. Threedimensional Decomposition Models for Carbon Productivity[J]. Energy, 2012, 46(1): 179-187.
[5]Nakano M, Managi S. Productivity Analysis with CO2 Emissions in Japan[J]. Pacific Economic Review, 2010, 15(5): 708-718.
[6]匡遠鳳, 彭代彥. 中國環(huán)境生產(chǎn)效率與環(huán)境全要素生產(chǎn)率分析[J]. 經(jīng)濟研究, 2012, (7): 62-74.[Kuang Yuanfeng, Peng Daiyan. Analysis of Environmental Production Efficiency and Environmental Total Factor Productivity in China[J]. Economic Research Journal, 2012, (7):62-74.]
[7]劉瑞翔, 安同良. 資源環(huán)境約束下中國經(jīng)濟增長績效變化趨勢與因素分析 [J]. 經(jīng)濟研究, 2012, (11): 34-47.[Liu Ruixiang, An Tongliang. Trend and Factor Analysis of Chinese Economic Growth Performance under Restrictions of Resource and Environment [J]. Economic Research Journal, 2012, (11):34-47.]
[8]Marin G. Closing the Gap? Dynamic Analyses of Emission Efficiency and Sector Productivity in Europe[M]. Netherlands: Springer, 2013: 159-177.
[9]孫廣生, 黃祎, 田海峰, 等. 全要素生產(chǎn)率、投入替代與地區(qū)間的能源效率[J]. 經(jīng)濟研究, 2012, (9): 99-112. [Sun Guangsheng, Huang Yi, Tian Haifeng, et al. Total Factor Productivity, Inputs Substitution and Regional Energy Efficiency Disparity[J]. Economic Research Journal, 2012, (9):99-112.]
[10]Henderson D J, Russell R R. Human Capital and Convergence: A Productionfrontier Approach [J]. International Economic Review, 2005, 46(4): 1167-1205.
[11]Beinhocker, Oppenheim, Irons, et al. The Carbon Productivity Challenge: Curbing Climate Change and Sustaining Economic Growth[EB/OL].2008-7. http://www.mckinsey.com/mgi/publications/CarbonProductivity.
[12]Kumbhakar S C, Lovell C. Stochastic Frontier Analysis[M]. New York: Cambridge University Press, 2000:20-43.
[13]單豪杰. 中國資本存量 K 的再估算: 1952-2006年[J]. 數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究, 2008, 25(10): 17-31.[Shan Haojie. Reestimating the Capital Stock of China:1952-2006[J].The Journal of Quantitative & Technical Economics, 2008, 25(10):17-31.]
[14]杜立民. 我國二氧化碳排放的影響因素:基于省級面板數(shù)據(jù)的研究[J]. 南方經(jīng)濟, 2010, (11): 20-33.[Du Limin. Impact Factors of Chinas Carbon Dioxide Emissions: Provincial Panel Data Analysis[J]. South China Journal of Economics, 2010, (11):20-33.]
[15]Kander A, Schn L. The Energycapital Relation:Sweden 1870-2000[J]. Structural Change and Economic Dynamics, 2007, 18(3): 291-305.
Decomposition on the Fluctuation of Chinas Regional Carbon Productivity Growth
ZHANG Cheng1,2 WANG Jianke1 SHI Wenyue3 LI Yuan1
(1.School of Economics, Nanjing University of Finance and Economics, Nanjing Jiangsu 210023, China;
2.Institute of Industrial Economics of CASS, Beijing 100836, China;
3.School of Public Economics & Administration, Shanghai University of Finance & Economics, Shanghai 200433, China)
Abstract Taking statistics of Chinas provinces during 1995-2011 as samples, this paper disintegrates carbon productivity growth rate into seven factors. This paper mainly discusses the substitution effects between capital, labor and energy, not only considering the impact of changes in the energy structure, also making full use of the information under the framework of total factor productivity, and the results turn out to be as follows: ① The growth rate of carbon productivity is determined by variables as technological progress (positive effect), substitution effect between capital and energy (positive effect), and substitution effect between labor and energy (negative effect), and the effects of technical efficiency (negative effect), random difference (negative effect), scale efficiency (positive effect) and energy structure (positive effect) are limited. ② The fluctuation ranges of substitution effect between capital and energy and substitution effect between labor and energy are biggest than other variables in the sample period, and there are trading off between them in the angle of impact strength, however, the changing direction of impact effect of both are the same. ③ Theres the coexisting phenomenon of regional negative correlation and year positive correlation between technological progress and technological efficiencys effects to growth rate of carbon productivity, which means a quick technology progress would keep company with a worsen technical efficiency from the angle of provinces, and the falling rate of technological progress always keeps company with falling rate of technical efficiency.
Key words carbon productivity growth; technological progress; technical efficiency; substitution effect
Abstract Taking statistics of Chinas provinces during 1995-2011 as samples, this paper disintegrates carbon productivity growth rate into seven factors. This paper mainly discusses the substitution effects between capital, labor and energy, not only considering the impact of changes in the energy structure, also making full use of the information under the framework of total factor productivity, and the results turn out to be as follows: ① The growth rate of carbon productivity is determined by variables as technological progress (positive effect), substitution effect between capital and energy (positive effect), and substitution effect between labor and energy (negative effect), and the effects of technical efficiency (negative effect), random difference (negative effect), scale efficiency (positive effect) and energy structure (positive effect) are limited. ② The fluctuation ranges of substitution effect between capital and energy and substitution effect between labor and energy are biggest than other variables in the sample period, and there are trading off between them in the angle of impact strength, however, the changing direction of impact effect of both are the same. ③ Theres the coexisting phenomenon of regional negative correlation and year positive correlation between technological progress and technological efficiencys effects to growth rate of carbon productivity, which means a quick technology progress would keep company with a worsen technical efficiency from the angle of provinces, and the falling rate of technological progress always keeps company with falling rate of technical efficiency.
Key words carbon productivity growth; technological progress; technical efficiency; substitution effect
Abstract Taking statistics of Chinas provinces during 1995-2011 as samples, this paper disintegrates carbon productivity growth rate into seven factors. This paper mainly discusses the substitution effects between capital, labor and energy, not only considering the impact of changes in the energy structure, also making full use of the information under the framework of total factor productivity, and the results turn out to be as follows: ① The growth rate of carbon productivity is determined by variables as technological progress (positive effect), substitution effect between capital and energy (positive effect), and substitution effect between labor and energy (negative effect), and the effects of technical efficiency (negative effect), random difference (negative effect), scale efficiency (positive effect) and energy structure (positive effect) are limited. ② The fluctuation ranges of substitution effect between capital and energy and substitution effect between labor and energy are biggest than other variables in the sample period, and there are trading off between them in the angle of impact strength, however, the changing direction of impact effect of both are the same. ③ Theres the coexisting phenomenon of regional negative correlation and year positive correlation between technological progress and technological efficiencys effects to growth rate of carbon productivity, which means a quick technology progress would keep company with a worsen technical efficiency from the angle of provinces, and the falling rate of technological progress always keeps company with falling rate of technical efficiency.
Key words carbon productivity growth; technological progress; technical efficiency; substitution effect