馬春艷
摘 要:數(shù)列求和是高中數(shù)學知識中的重點和難點,它在高考中出現(xiàn)的頻率高,題型多種多樣,考查方式靈活。將數(shù)列求和的方法進行總結(jié)和歸納能夠幫助學生找到其中的解題規(guī)律,提高該類型題的成功率。
關(guān)鍵詞:高中數(shù)學;數(shù)列求和;方法;歸納
求數(shù)列的前n項和是數(shù)列題中的高頻考點。它的考查十分靈活,題型變化多樣,有以選擇題的方式出現(xiàn),有的則是填空題,甚至還會以一道綜合大題的方式進行考查。本文通過用列舉典型題的方式,總結(jié)歸納了6種常見的數(shù)列求和方法,供大家參考。
一、倒序相加法
如果一個數(shù)列{an},與首末項等距的兩項之和等于首末兩項之和,可采用把正著寫與倒著寫的兩個和式相加,就得到一個常數(shù)列的和,這一求和方法稱為倒序相加法。倒序相加法是數(shù)列求和當中應(yīng)用最廣的一種解題方法,它的基本類型可以用公式表示為:a1+an=a2+an-1=a3+an-2=a4+an-3…具體解法見下面的例題。
二、用公式法
三、裂項相消法
裂項相消法是數(shù)列求和中比較難的一類題型,因為它不好看出數(shù)列之間的規(guī)律。如果裂項不對,也不能將問題解出。裂項相消法的解題原理是:將數(shù)列的一項拆成兩項或多項,使得前后項相抵消,留下有限項,從而求出數(shù)列的前n項和。
四、錯位相減法
五、疊加法
六、分組求和法
分組求和法就是對一類既不是等差數(shù)列,也不是等比數(shù)列的數(shù)列,若將這類數(shù)列適當拆開,可分為幾個等差、等比或常見的數(shù)列,然后分別求和,最后將其合并的方法。記住了這一類題型的特點,就能準確找到解題思路。
總之,數(shù)列求和以其靈活多變的出題方式和較高的錯題率成為高中數(shù)學中的難點。這類題雖然難,但也并不是無規(guī)律可循的。萬變不離其宗,教師在講課當中應(yīng)該幫助學生多多總結(jié)歸納相關(guān)的解題技巧和解題方法,并配合適當?shù)脑囶}訓練;學生自身也要多思考,可以準備一個錯題記錄本時常翻看,有助于將這類問題消化吸收,最終將其完全掌握。