余 亮,蔡 川綜述,褚曉凡審校
一個(gè)多世紀(jì)以來,硫化氫(hydrogen sulfide,H2S)一直被認(rèn)為是一種有臭雞蛋氣味的毒性氣體。隨著研究深入,如今其作為繼一氧化氮(nitric oxide,NO)和一氧化碳(carbon monoxide,CO)后另一種具有重要生理和病理生理功能的新型氣體信號(hào)分子被醫(yī)學(xué)界所關(guān)注。近年來國內(nèi)外學(xué)者對(duì)H2S 的研究主要集中在心血管[1~4]、消化[5,6]及泌尿[7~9]等系統(tǒng),發(fā)現(xiàn)其能顯著減輕上述系統(tǒng)器官的缺血性損傷,而針對(duì)H2S 對(duì)缺血性腦血管病的防治研究也逐步深入。缺血性腦血管病是導(dǎo)致人類死亡的三大主要疾病之一,具有高發(fā)病率、高致殘率、高死亡率的特點(diǎn)。缺血性腦血管病的二級(jí)預(yù)防是目前臨床干預(yù)的主要策略,而在開發(fā)挽救急性期瀕死的腦組織細(xì)胞、增強(qiáng)其缺血耐受及減小腦損傷體積等方面的新藥目前尚未取得明顯突破。
1989 年Warenycia 等[10]已在大鼠和人腦組織中檢測到內(nèi)源性H2S 的存在,提示H2S 可能具有較重要的生理作用。1996 年Abe 和Kimura[11]報(bào)道了在大鼠海馬和小腦組織中胱硫醚-β-合酶(cystathionine-β-synthase,CBS)高表達(dá)和大鼠腦組織勻漿能產(chǎn)生H2S,通過實(shí)驗(yàn)證明內(nèi)源性H2S 極可能是一種神經(jīng)活性物質(zhì)。哺乳動(dòng)物腦內(nèi)的H2S 的生成跟其他器官一樣,主要通過含硫氨基酸的代謝產(chǎn)生。CBS 和胱硫醚-γ-裂解酶(cystathionine-γ-lyase,CSE)是兩個(gè)能分解L-半胱氨酸產(chǎn)生H2S 的酶,它們屬于磷酸吡多醛-5’-磷酸依賴性酶,通過它們的酶解催化是體內(nèi)產(chǎn)生H2S 的主要途徑。另外,L-半胱氨酸還可在天門冬氨酸氨基轉(zhuǎn)移酶(aspartate aminotransferase,AAT)作用下生成3-巰基丙酮酸,然后被3-巰基丙酮酸硫轉(zhuǎn)移酶(3-mercaptopyruvate sulfurtransferase,3MST)脫硫產(chǎn)生H2S。也有研究發(fā)現(xiàn)D-半胱氨酸能通過3MST 和D 型氨基酸氧化酶(D -amino acid oxidase,DAO)途徑產(chǎn)生H2S[12]。此外還有少量H2S 可通過非酶促反應(yīng)產(chǎn)生,在葡萄糖氧化過程中,糖酵解和還原型輔酶Ⅱ(triphosphopyridine nucleotide,NADPH)能使硫元素還原為H2S[13]。細(xì)胞內(nèi)合成的H2S 至少以兩種方式釋放:一是合成后立即釋放出來;二是合成后的H2S 以酸不穩(wěn)定性硫和結(jié)合硫烷硫原子兩種形式先儲(chǔ)備起來,在生理信號(hào)的刺激下釋放出來。
內(nèi)源性H2S 是體內(nèi)含硫氨基酸的代謝終產(chǎn)物,其以氣態(tài)形式和硫氫化鈉(sodium hydrosulfide,NaHS)存在。NaHS 在體內(nèi)能解離成Na+和HS-,后者能與體液中H+中結(jié)合生成H2S。H2S 與NaHS 在體內(nèi)維持著一個(gè)動(dòng)態(tài)平衡。NaHS 溶液中H2S 的濃度相對(duì)恒定,因此,NaHS 溶液常作為H2S 的供體[14]。
雖然CBS 和CSE 同為催化H2S 生成的關(guān)鍵酶,但在不同的組織中兩種酶的分布不同,Abe 和Kimura[11]研究發(fā)現(xiàn)CBS 是大腦中H2S 生成過程的最主要的一個(gè)酶,且腦中CBS的活性約是CSE 的30 倍[15],星形膠質(zhì)細(xì)胞是大腦內(nèi)生成H2S 的主要工廠[16]。Eto 等[17]亦報(bào)道腦組織中的H2S 生成能被CBS 阻滯劑中止,但是阻滯CSE 卻沒這個(gè)效果,同時(shí)在CBS 基因敲除的小鼠的腦組織中H2S 生成也是明顯減少的。然而最近Shibuya 等[18]又研究發(fā)現(xiàn)腦組織中約90%的H2S生成是由3MST 催化。
腦中H2S 潛在的生理功能包括:強(qiáng)化長時(shí)程增強(qiáng)作用(Long-term Potentiation,LTP)、維持Ca2+平衡、抑制氧化應(yīng)激和調(diào)節(jié)神經(jīng)傳導(dǎo)等。在原代培養(yǎng)的神經(jīng)元和膠質(zhì)細(xì)胞中,生理濃度的H2S 通過激活腺苷酸環(huán)化酶(adenylate cyclase,AC)促進(jìn)環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)的生成,cAMP 激活其依賴的蛋白激酶A(protein kinase A,PKA),激活的PKA 可通過磷酸化N-甲基-D-天冬氨酸受體(N-methyl-D-aspartic acid receptor,NMDA 受體)的NMDAR1、NMDAR2A、NMDAR2B 亞基的特異位點(diǎn)來增強(qiáng)NMDA 受體介導(dǎo)的興奮性突觸后電位,誘導(dǎo)增強(qiáng)LTP[19]。除此之外,H2S 也可以通過cAMP 途徑以劑量依賴方式降低NMDA 受體反應(yīng)時(shí)間(如增強(qiáng)NMDA 受體和配體親和力)。Han 等[20]研究發(fā)現(xiàn)H2S 能上調(diào)位于突觸前后膜上的一種G 蛋白耦聯(lián)受體—γ-氨基丁酸B 受體(GABABR)的表達(dá);突觸前膜的GABABR 能通過抑制電壓依賴型Ca2+通道來調(diào)控部分神經(jīng)遞質(zhì)如γ-氨基丁酸(γ-aminobutyric acid,GABA)、谷氨酸(glutamic acid,Glu)等的釋放。所以,這些都表明H2S 在維持大腦的興奮和抑制方面具有重要作用。
在細(xì)胞內(nèi)外的微環(huán)境中,H2S 表現(xiàn)出保護(hù)神經(jīng)元對(duì)抗氧化應(yīng)激的能力。還原型谷胱甘肽(glutathione,GSH)是大家熟知的腦內(nèi)重要的抗氧化劑和自由基清除劑。在體外試驗(yàn)中,H2S 表現(xiàn)出同還原型GSH 類似的神經(jīng)保護(hù)能力。Whiteman 等證實(shí)H2S 能抑制次氯酸介導(dǎo)的神經(jīng)細(xì)胞氧化損傷[21]和過氧亞硝酸鹽導(dǎo)致的蛋白硝化及細(xì)胞毒性[22]。H2S 亦可有效地清除機(jī)體內(nèi)過氧化氫(hydrogen peroxide,H2O2),可廣泛地抑制體內(nèi)活性氧[23]。雖然神經(jīng)元(和神經(jīng)膠質(zhì)細(xì)胞)中GSH 濃度約是5 mM,但是其細(xì)胞外濃度幾乎是零[21]。因此,細(xì)胞外環(huán)境中調(diào)控非GSH 抗氧化劑(如抗壞血酸)的生成來清除氧自由基就顯得相當(dāng)重要了[24]。H2S 與GSH 相比其在細(xì)胞內(nèi)高濃度、易彌散和強(qiáng)抗氧化的特性讓其作為另外一種重要的內(nèi)源性抗氧化劑受到重視。Kimura 等[25]發(fā)現(xiàn)H2S 能夠通過提高γ-谷氨酰半胱氨酸合成酶(γ-GCS)的活性從而增加神經(jīng)元中還原型GSH 的生成;NaHS 能通過增強(qiáng)γ-GCS 活性和上調(diào)L-半胱氨酸(L(+)-cysteine,Cys;Cys 是能影響腦GSH 合成速率的重要前體)的轉(zhuǎn)運(yùn)速度,從而增加GSH 的生成。增加的GSH 能夠保護(hù)神經(jīng)元免受由高濃度Glu 誘導(dǎo)的氧化應(yīng)激損傷導(dǎo)致的細(xì)胞程序化死亡[25]。細(xì)胞內(nèi)產(chǎn)生的H2S 釋放到細(xì)胞外后還原胱氨酸(Cystine)成Cys,而Cys 很容易通過半胱氨酸轉(zhuǎn)運(yùn)蛋白被運(yùn)送到細(xì)胞內(nèi),在細(xì)胞內(nèi)轉(zhuǎn)化成GSH[26,27]。由母體供血的缺血再灌注胎鼠模型因氧化應(yīng)激導(dǎo)致GSH 水平下降,H2S 通過恢復(fù)降低的GSH水平保護(hù)胎鼠大腦[26]。除去抑制神經(jīng)元線粒體中的氧化應(yīng)激、提高神經(jīng)元內(nèi)GSH 水平兩個(gè)途徑,H2S 也能通過穩(wěn)定神經(jīng)元膜電位來發(fā)揮神經(jīng)保護(hù)作用[28]。
H2S 不僅能調(diào)節(jié)神經(jīng)元的功能,也能調(diào)控星形膠質(zhì)細(xì)胞的功能。星形膠質(zhì)細(xì)胞的功能之一是將營養(yǎng)物質(zhì)從毛細(xì)血管運(yùn)送到神經(jīng)細(xì)胞內(nèi);另一個(gè)功能是通過部分地移去神經(jīng)元興奮時(shí)釋放的神經(jīng)遞質(zhì)和離子來維持神經(jīng)元周圍引發(fā)神經(jīng)沖動(dòng)所必需的陽離子環(huán)境。神經(jīng)元間通過產(chǎn)生動(dòng)作電位相互交流,星形膠質(zhì)細(xì)胞及其他膠質(zhì)細(xì)胞間的信息交流方式則是依賴于Ca2+信號(hào)介導(dǎo)[29]。NMDA 導(dǎo)致神經(jīng)元興奮,隨之在星形膠質(zhì)細(xì)胞間才能誘導(dǎo)出“鈣波”;當(dāng)沒有神經(jīng)元存在時(shí),NMDA 并不能誘導(dǎo)出星形膠質(zhì)細(xì)胞間的“鈣波”[30]。表明星形膠質(zhì)細(xì)胞能夠?qū)ι窠?jīng)元分泌的神經(jīng)遞質(zhì)直接做出反應(yīng),興奮的神經(jīng)元是誘導(dǎo)星形膠質(zhì)細(xì)胞間“鈣波”出現(xiàn)的必要條件。Smith 等[31]用鈣離子成像技術(shù)顯示,當(dāng)給培養(yǎng)的星形膠質(zhì)細(xì)胞加入神經(jīng)遞質(zhì)谷氨酸時(shí),其反應(yīng)就如同是通過神經(jīng)元釋放神經(jīng)遞質(zhì)對(duì)其影響一樣,它們之間通過相互信息交流模擬神經(jīng)元放電。當(dāng)星形膠質(zhì)細(xì)胞內(nèi)[Ca2+]i 增加到足夠大的程度時(shí)可在相鄰星形膠質(zhì)細(xì)胞間誘發(fā)鈣波傳播[32],而星形膠質(zhì)細(xì)胞間正是只能通過細(xì)胞外介質(zhì)而不是物理接觸來傳遞信號(hào)[33]。外源性H2S 能在原代培養(yǎng)的星形膠質(zhì)細(xì)胞和海馬腦片中誘導(dǎo)出在臨近星形膠質(zhì)細(xì)胞間傳播的“鈣波”[30],其能夠通過細(xì)胞膜上Ca2+通道跨膜轉(zhuǎn)運(yùn)和釋放細(xì)胞內(nèi)Ca2+儲(chǔ)備來增加細(xì)胞內(nèi)自由Ca2+濃度([Ca2+]i)。
在中樞神經(jīng)系統(tǒng)中,H2S 能增強(qiáng)海馬長時(shí)程記憶,調(diào)控大腦細(xì)胞內(nèi)Ca2+濃度和pH 水平。在缺血性卒中[34,35]、阿爾茲海默?。?6]、帕金森?。?7]和復(fù)發(fā)性熱性驚厥[38]中均有H2S的生成和代謝障礙。在一些病理狀態(tài)下,H2S 合成酶[量和(或)活性]發(fā)生改變,從而導(dǎo)致H2S 水平發(fā)生改變,這一因素可能參與相關(guān)的病理改變。
在缺血/缺氧等病理?xiàng)l件下,體內(nèi)增加的H2S 可能通過激活神經(jīng)細(xì)胞上Na+通道和NMDARs 引起大量Na+內(nèi)流而破壞其離子穩(wěn)態(tài)環(huán)境,從而損傷神經(jīng)功能[39]。而Tay 等[40]的研究結(jié)果卻與之相反,他們發(fā)現(xiàn)H2S 能通過調(diào)節(jié)腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)敏感的K+通道(KATP)/蛋白激酶C(protein kinase C,PKC)/胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)/熱休克蛋白90(heat shock proteins 90,Hsp90)通路在腦組織缺氧導(dǎo)致的神經(jīng)元死亡過程中保護(hù)神經(jīng)元抵抗缺氧損傷。Florian 等[41]利用大鼠局灶性腦缺血模型研究發(fā)現(xiàn)通過H2S 誘導(dǎo)的低體溫狀態(tài)(30.8 ±0.7 ℃)可以明顯縮小梗死面積。Qu 等[42]利用大鼠大腦中動(dòng)脈永久閉塞模型(MCAO),通過調(diào)控大鼠體內(nèi)H2S 水平發(fā)現(xiàn)增加體內(nèi)H2S 濃度可以擴(kuò)大腦組織梗死體積。Ren 等[43]研究發(fā)現(xiàn)大鼠全腦缺血再灌注后12h 時(shí)內(nèi)源性H2S 水平明顯提高。同樣,Shao 等[44]也報(bào)道過大鼠全腦缺血再灌注后6h 時(shí)H2S水平明顯提高,同時(shí)此變化可被CBS 抑制劑中止。以上改變可能是腦缺血性損傷產(chǎn)生了過多的超氧化物和谷氨酸鹽,從而在再灌注早期誘導(dǎo)H2S 水平增高。地佐環(huán)平(MK-801)可以非競爭性特異性拮抗NMDA 受體作用,減少谷氨酸鹽的毒性,Cys 與NaHS 擴(kuò)大梗死面積的效應(yīng)能被MK-801 終止,表明H2S 極大可能是通過激活NMDA 受體發(fā)揮此效應(yīng)[42]。Marutani 等[45]利用一種可釋放H2S 的NMDAR 受體拮抗劑(S-memantine)干預(yù)全腦缺血再灌注損傷,發(fā)現(xiàn)其減小梗死體積、提高模型生存率及改善神經(jīng)功能缺損的效果優(yōu)于美金剛(Memantine)和ACS48(一種緩慢釋放H2S 的供體)。如前述,生理濃度的H2S 能增強(qiáng)NMDA 受體功能[19]。因此,我們推測在缺血性卒中時(shí)H2S 亦能增強(qiáng)NMDA 受體介導(dǎo)的谷氨酸鹽的興奮性毒性。在大鼠MCAO 模型中,觀察到皮質(zhì)梗死灶中H2S 濃度升高和H2S 的合成增強(qiáng),進(jìn)一步證明了H2S 在缺血性卒中組織損傷中有重要作用,其病理生理學(xué)機(jī)制可能是增強(qiáng)了NMDA 受體介導(dǎo)的Ca2+超載[42]。另一種可能的說法是H2S 通過改變腦血流量來影響腦梗死的病理變化,因?yàn)镠2S 可引起血管舒張,而血管擴(kuò)張藥一般都具有一定的神經(jīng)保護(hù)作用,能減小梗死面積[46]。
H2S 對(duì)神經(jīng)元的保護(hù)作用主要通過抗炎、抗氧化和抗凋亡等方面來體現(xiàn)。Yin 等[47]研究發(fā)現(xiàn)大鼠全腦缺血再灌注損傷,內(nèi)源性H2S 可通過抗氧化應(yīng)激、抗炎和抗凋亡發(fā)揮腦保護(hù)作用。炎癥反應(yīng)在局灶性腦缺血神經(jīng)元死亡中扮演關(guān)鍵性角色,但是在短暫的全腦缺血后再灌注情況下也會(huì)出現(xiàn)炎癥反應(yīng)[48]。Koerner 等[49]報(bào)道海馬與大腦皮質(zhì)中炎性基因mRNA 表達(dá)水平在全腦缺血后24 h 明顯增高。星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的炎癥反應(yīng)產(chǎn)生的炎性因子,如腫瘤壞死因子α(tumor necrosis factor α,TNFα)、白細(xì)胞介素6(interleukin,IL-6))能抑制腦內(nèi)CBS 的活性和H2S 的生成,但對(duì)細(xì)胞進(jìn)行H2S 供體NaHS 的預(yù)處理能部分扭轉(zhuǎn)這一作用,表明H2S 具有抗炎作用[16]。因此,可以推測缺血再灌注后的炎癥應(yīng)答可抑制H2S 的生成,亦可部分解釋全腦缺血再灌注后24 h 時(shí)H2S 水平下降[43]。H2S 能夠抑制神經(jīng)炎性反應(yīng)的具體機(jī)制還不太清楚。有研究表明,H2S 能通過抑制一氧化氮合酶的誘導(dǎo)合成和P38 絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路在脂多糖(lipopolysaccharides,LPS)引起的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的炎性反應(yīng)中發(fā)揮抗炎作用[50]。而Zhou 等[51]發(fā)現(xiàn)H2S 能激活依賴于鈣調(diào)蛋白激酶激酶β(CaMKKβ)的AMP 依賴的蛋白激酶(AMPK),使小膠質(zhì)細(xì)胞轉(zhuǎn)變?yōu)镸2 抗炎表型,在小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎性反應(yīng)中發(fā)揮抑制作用。同時(shí),H2S 也能保護(hù)神經(jīng)元免受谷氨酸等誘導(dǎo)的氧化應(yīng)激損傷[25,26]。其抗氧化應(yīng)激的機(jī)制如前述。但是Li 等[52]報(bào)道在大鼠局灶性缺血性腦損傷模型中,體內(nèi)H2S 通過調(diào)控氧化應(yīng)激誘導(dǎo)的細(xì)胞凋亡來發(fā)揮其雙重效應(yīng):低濃度NaHS (2.8 mg/kg)組表現(xiàn)出通過抑制神經(jīng)細(xì)胞凋亡而縮小損傷體積,高濃度NaHS (11.2 mg/kg)組則可加重?fù)p傷。在抗凋亡方面,H2S 在魚藤酮誘導(dǎo)的神經(jīng)元凋亡的病理過程中發(fā)揮抗凋亡的作用,包括調(diào)節(jié)Bcl-2(一種抗凋亡的蛋白)和Bax(一種促凋亡的蛋白)的水平抑制細(xì)胞色素C 的釋放,開放線粒體ATP 敏感的K+通道(mitoKATP),抑制p38/JNK MAPK 通路的激活等[53]。Luo 等[54]通過建立體外模擬腦缺血-再灌注(I/R)誘導(dǎo)細(xì)胞凋亡的糖氧剝奪再灌注(OGD/R)模型,發(fā)現(xiàn)H2S 能抑制OGD/R 誘導(dǎo)產(chǎn)生的活性氧(reactive oxygen species,ROS)的增加、含半胱氨酸的天冬氨酸蛋白水解酶-3(caspase-3)的激活和線粒體膜電位(Mitochondrial membrane potential,MMP)的下降,起到抗凋亡的作用。
生理水平的H2S 表現(xiàn)出神經(jīng)保護(hù)作用[40],然而高濃度的H2S 可能通過激活NMDA 受體表現(xiàn)出神經(jīng)毒性[45,55]??赡芨邼舛萅aHS 過度提高了體內(nèi)H2S 水平而超過了生理范圍,使神經(jīng)元在缺血再灌注時(shí)更易損傷;相反部分學(xué)者利用低濃度的NaHS 使大腦缺血再灌注實(shí)驗(yàn)動(dòng)物模型體內(nèi)H2S水平恰好維持在生理范圍之內(nèi),從而起到保護(hù)神經(jīng)元的效果。這個(gè)推斷恰恰也可以解釋一些不同實(shí)驗(yàn)?zāi)P偷贸龅南嚆5慕Y(jié)論。
有研究表明H2S 的神經(jīng)保護(hù)效應(yīng)具有濃度依賴性[56]。目前研究發(fā)現(xiàn)H2S 在胎鼠大腦缺血再灌注損傷中抗氧化應(yīng)激有兩個(gè)機(jī)制[26]:一是通過增加胱氨酸/半胱氨酸轉(zhuǎn)運(yùn)蛋白而增加谷胱甘肽(GSH)的生成和促進(jìn)GSH 在線粒體內(nèi)再分布;二是線粒體中產(chǎn)生的H2S 能直接表現(xiàn)出抗氧化能力。此外,Minamishima 等[57]發(fā)現(xiàn)H2S 能減小小鼠心臟驟停/心肺復(fù)蘇術(shù)模型大腦神經(jīng)元的死亡率。外源性H2S 能提高缺血條件下海馬神經(jīng)元突觸可塑性,抑制錐體神經(jīng)元周圍水腫形成和由缺血引起的核固縮,促進(jìn)腦缺血后海馬CA1 區(qū)生長相關(guān)蛋白-43(growth-associated protein-43,GAP-43)的表達(dá),對(duì)海馬神經(jīng)元具有保護(hù)作用[58]。因此,進(jìn)一步的研究需要解決的是不同缺血性腦損傷模型得出結(jié)論的差異。
研究發(fā)現(xiàn)Cys 是體內(nèi)合成H2S 的前體[11],因此也有必要闡述Cys 在缺血性卒中的病理生理機(jī)制。Cys 能導(dǎo)致神經(jīng)元死亡[59],在缺血缺氧性腦損傷的病理過程中也有重要的調(diào)節(jié)作用[60],表明Cys 能在CBS 的催化作用下先轉(zhuǎn)化為H2S后發(fā)揮神經(jīng)毒性作用[42],其神經(jīng)毒性作用能被CBS 抑制劑減弱[61]。高同型半胱氨酸(hyperhomocysteine,HHcy)已經(jīng)是急性腦卒中的一個(gè)明顯的危險(xiǎn)因素[62,63]。有研究表明催化同型半胱氨酸(homocysteine,Hcy)變?yōu)镃ys 的兩個(gè)關(guān)鍵酶CBS 和CSE 恰好也是催化Cys 成為H2S 的關(guān)鍵酶[64]。血漿中高Cys 與急性卒中的不良后果密切相關(guān),同時(shí)動(dòng)物實(shí)驗(yàn)中運(yùn)用CBS 抑制劑能減輕Cys 的神經(jīng)毒性作用[61]。在CBS 的催化下,Hcy 可能被轉(zhuǎn)化為胱硫醚,然后在CSE 作用下轉(zhuǎn)化為Cys。因此暗示Hcy 和Cys 可能同時(shí)影響著卒中后的病理演變。也有報(bào)道血漿Cys 在高同型半胱氨酸卒中患者中保持不變[65]。Schurr 等[66]利用大鼠海馬腦片來評(píng)估Cys 的神經(jīng)毒性,發(fā)現(xiàn)其在正常環(huán)境下是無害的,但是在能量缺乏[葡萄糖和(或)氧氣剝奪]的環(huán)境下表現(xiàn)出神經(jīng)毒性。Slivka 等在利用蒙古沙鼠頸動(dòng)脈結(jié)扎造成卒中的體外實(shí)驗(yàn)中,細(xì)胞外Cys 水平明顯升高[67]。Cys 雖不是NMDA 受體激動(dòng)劑,但其神經(jīng)毒性作用能被NMDA 拮抗劑阻止[68]。由此可以推測Cys 可能通過興奮性氨基酸或者Cys 衍生物(S-亞硝基半胱氨酸/Cys 亞磺酸鹽)對(duì)NMDA 受體發(fā)揮間接的興奮作用[69]。生理濃度的H2S 能部分通過調(diào)整MMP/TIMP(基質(zhì)金屬蛋白酶抑制劑)的比例對(duì)抗由HHcy 誘發(fā)的高微血管通透性[70]。
綜上所述,H2S 在缺血性腦血管病中的作用及其機(jī)制非常復(fù)雜,其作用是有利還是有害既與組織和細(xì)胞中H2S 的濃度高低有關(guān),也與組織與細(xì)胞處于不同的病理狀態(tài)和(或)在一個(gè)病理過程的不同時(shí)期有關(guān)。H2S 的生理和(或)病理作用有多種有利和有害的因子和通路參與進(jìn)來,這些因素各自發(fā)揮不同的作用,再通過機(jī)體綜合的表現(xiàn)出來。雖然H2S 作為第三個(gè)氣體信號(hào)分子和對(duì)神經(jīng)系統(tǒng)有調(diào)節(jié)作用得到了多數(shù)人的一致認(rèn)同,但是其作用方式以及涉及到的分子機(jī)制依舊需要更多的研究去發(fā)掘和探索,揭示其臨床應(yīng)用價(jià)值,以期對(duì)缺血性腦血管病的治療起到更大的積極作用。
[1]Emerson B,Batchen E,Mylongas K,et al.221 Myocardial ischemic injury is unexpectedly increased in mice lacking the h2s metabolising enzyme thiosulfate sulfurtransferase[J].Heart (British Cardiac Society),2014,100(3):A120 -121.
[2]Nicholson CK,Lambert JP,Molkentin JD,et al.Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2013.
[3]Huang YE,Tang ZH,Xie W,et al.Endogenous hydrogen sulfide mediates the cardioprotection induced by ischemic postconditioning in the early reperfusion phase[J].Experimental and Therapeutic Medicine,2012,4(6):1117.
[4]Li H,Ran K,Tang Z,et al.Effects of hydrogen sulfide preconditioning on myocardial ischemia reperfusion injury in rats][J].Journal of Zhejiang University Medical Sciences,2012,41(5):559.
[5]Cui J,Liu L,Zou J,et al.Protective effect of endogenous hydrogen sulfide against oxidative stress in gastric ischemia-reperfusion injury[J].Experimental and Therapeutic Medicine,2013,5(3):689.
[6]Du J,Wang Q,Li Q,et al.Alternation of thioredoxin system in postconditioning with hydrogen sulfide against hepatic ischemia-reperfusion injury in rats][J].Zhonghua Yi Xue Za Zhi,2012,92(37):2607.
[7]Hunter JP,Hosgood SA,Patel M,et al.Hydrogen sulphide treatment reduces the effects of remote renal ischaemia-reperfusion injury in a model of aortic cross clamping[J].British Journal of Surgery,2013,100:50 -51.
[8]Lobb I,Mok A,Lan Z,et al.Supplemental hydrogen sulphide protects transplant kidney function and prolongs recipient survival after prolonged cold ischaemia -reperfusion injury by mitigating renal graft apoptosis and inflammation[J].BJU International,2012,110(11):1187 -1195.
[9]Hunter J,Hosgood S,Patel M,et al.Effects of hydrogen sulphide in an experimental model of renal ischaemia-reperfusion injury[J].British Journal of Surgery,2012,99(12):1665 -1671.
[10]Warenycia MW,Goodwin LR,Benishin CG,et al.Acute hydrogen sulfide poisoning.Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels[J].Biochem Pharmacol,1989,38(6):973 -981.
[11]Abe K,Kimura H.The possible role of hydrogen sulfide as an endogenous neuromodulator[J].The Journal of Neuroscience,1996,16(3):1066 -1071.
[12]Shibuya N,Koike S,Tanaka M,et al.A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells[J].Nature Communications,2013,4.
[13]Tang C,Li X,Du J.Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system[J].Current Vascular Pharmacology,2006,4(1):17 -22.
[14]Wang R.The gasotransmitter role of hydrogen sulfide[J].Antioxidants and Redox Signaling,2003,5(4):493 -501.
[15]Awata S,Nakayama K,Suzuki I,et al.Changes in cystathionine gamma-lyase in various regions of rat brain during development[J].Biochemistry and Molecular Biology International,1995,35(6):1331.
[16]Lee M,Schwab C,Yu S,et al.Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide[J].Neurobiology of Aging,2009,30(10):1523 -1534.
[17]Eto K,Kimura H.A novel enhancing mechanism for hydrogen sulfide-producing activity of cystathionine β-synthase[J].Journal of Biological Chemistry,2002,277(45):42680 -42685.
[18]Shibuya N,Tanaka M,Yoshida M,et al.3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain[J].Antioxidants & Redox Signaling,2009,11(4):703 -714.
[19]Kimura H.Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor[J].Biochemical and Biophysical Research Communications,2000,267(1):129 -133.
[20]Han Y,Qin J,Chang X,et al.Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats[J].Neuroscience Research,2005,53(2):216 -219.
[21]Whiteman M,Cheung NS,Zhu YZ,et al.Hydrogen sulphide:a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain[J].Biochemical and Biophysical Research Communications,2005,326(4):794 -798.
[22]Whiteman M,Armstrong J S,Chu S H,et al.The novel neuromodulator hydrogen sulfide:an endogenous peroxynitrite’scavenger’[J].Journal of Neurochemistry,2004,90(3):765 -768.
[23]Devai I,Delaune R.Effectiveness of selected chemicals for controlling emission of malodorous sulfur gases in sewage sludge[J].Environmental Technology,2002,23(3):319 -329.
[24]Rice ME.Ascorbate regulation and its neuroprotective role in the brain[J].Trends in Neurosciences,2000,23(5):209 -216.
[25]Kimura Y,Kimura H.Hydrogen sulfide protects neurons from oxidative stress[J].The FASEB Journal,2004,18(10):1165 -1167.
[26]Kimura Y,Goto Y I,Kimura H.Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria[J].Antioxidants & Redox Signaling,2010,12(1):1 -13.
[27]Mathai J C,Missner A,K Gler P,et al.No facilitator required for membrane transport of hydrogen sulfide[J].Proceedings of the National Academy of Sciences,2009,106(39):16633 -16638.
[28]Kimura Y,Dargusch R,Schubert D,et al.Hydrogen sulfide protects HT22 neuronal cells from oxidative stress[J].Antioxidants&Redox Signaling,2006,8(3 -4):661 -670.
[29]Braet K,Cabooter L,Paemeleire K,et al.Calcium signal communication in the central nervous system[J].Biology of the Cell,2004,96(1):79 -91.
[30]Nagai Y,Tsugane M,Oka JI,et al.Hydrogen sulfide induces calcium waves in astrocytes[J].The FASEB Journal,2004,18(3):557-559.
[31]Cornell-Bell AH,F(xiàn)inkbeiner SM,Cooper MS,et al.Glutamate induces calcium waves in cultured astrocytes:long-range glial signaling[J].Science (New York,NY),1990,247(4941):470.
[32]Dani JW,Chernjavsky A,Smith SJ.Neuronal activity triggers calcium waves in hippocampal astrocyte networks[J].Neuron,1992,8(3):429 -440.
[33]Hassinger T,Guthrie P,Atkinson P,et al.An extracellular signaling component in propagation of astrocytic calcium waves[J].Proceedings of the National Academy of Sciences,1996,93(23):13268 -13273.
[34]Wong PT,Qu K,Chimon GN,et al.High plasma cyst (e)ine level may indicate poor clinical outcome in patients with acute stroke:possible involvement of hydrogen sulfide[J].Journal of Neuropathology& Experimental Neurology,2006,65(2):109 -115.
[35]Qu K,Chen CP,Halliwell B,et al.Hydrogen sulfide is a mediator of cerebral ischemic damage[J].Stroke,2006,37(3):889 -893.
[36]Eto K,Ogasawara M,Umemura K,et al.Hydrogen sulfide is produced in response to neuronal excitation[J].The Journal of Neuroscience,2002,22(9):3386 -3391.
[37]Hu LF,Lu M,Tiong CX,et al.Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models[J].Aging Cell,2010,9(2):135 -146.
[38]Han Y,Qin J,Chang X,et al.Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats[J].Biochemical and Biophysical Research Communications,2005,327(2):431 -436.
[39]Chao D,He X,Yang Y,et al.Hydrogen sulfide induced disruption of Na+homeostasis in the cortex[J].Toxicological Sciences,2012,128(1):198 -208.
[40]Tay A,Hu L,Lu M,et al.Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein90 pathway[J].Neuroscience,2010,167(2):277 -286.
[41]Florian B,Vintilescu R,Balseanu AT,et al.Long-term hypothermia reduces infarct volume in aged rats after focal ischemia[J].Neuroscience Letters,2008,438(2):180 -185.
[42]Qu K,Chen CPLH,Halliwell B,et al.Hydrogen sulfide is a mediator of cerebral ischemic damage[J].Stroke,2006,37(3):889 -893.
[43]Ren C,Du A,Li D,et al.Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats[J].Brain Research,2010,1345:197 -205.
[44]Shao J,Zhu J,Wang J,et al.The role of endogenous cystathionine beta synthase/hydrogen sulfide and heme oxygenase-1/carbon monoxide in a rat model of global cerebral ischemia -reperfusion[J].Chinese Journal of Anesthesiology,2006,5:017.
[45]Marutani E,Kosugi S,Tokuda K,et al.A Novel Hydrogen Sulfidereleasing N-Methyl-d-Aspartate Receptor Antagonist Prevents Ischemic Neuronal Death[J].Journal of Biological Chemistry,2012,287(38):32124 -32135.
[46]Fournier A,Achard JM,Boutitie F,et al.Is the angiotensin II type 2 receptor cerebroprotective[J].Current Hypertension Reports,2004,6(3):182 -189.
[47]Yin J,Tu C,Zhao J,et al.Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative,anti-inflammatory and anti-apoptotic effects in rats[J].Brain Research,2012.
[48]Stoll G,Jander S,Schroeter M.Inflammation and glial responses in ischemic brain lesions[J].Progress in Neurobiology,1998,56(2):149 -171.
[49]Koerner IP,Gatting M,Noppens R,et al.Induction of cerebral ischemic tolerance by erythromycin preconditioning reprograms the transcriptional response to ischemia and suppresses inflammation[J].Anesthesiology,2007,106(3):538 -547.
[50]Hu LF,Wong PTH,Moore PK,et al.Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogenactivated protein kinase in microglia[J].Journal of Neurochemistry,2007,100(4):1121 -1128.
[51]Zhou XM,Cao YJ,Ao GZ,et al.CaMKK beta-Dependent Activation of AMP-Activated Protein Kinase Is Critical to Suppressive Effects of Hydrogen Sulfide on Neuroinflammation[J].Antioxidants & Redox Signaling,2014,21(12):1741 -1758.
[52]Li GF,Luo HK,Li LF,et al.Dual effects of hydrogen sulphide on focal cerebral ischaemic injury via modulation of oxidative stress ‐induced apoptosis[J].Clinical and Experimental Pharmacology and Physiology,2012,39(9):765 -771.
[53]Hu LF,Lu M,Wu ZY,et al.Hydrogen Sulfide Inhibits Rotenone-Induced Apoptosis via Preservation of Mitochondrial Function[J].Molecular Pharmacology,2009,75(1):27 -34.
[54]Luo YG,Yang XF,Zhao ST,et al.Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons[J].Neurochemistry International,2013,63(8):826 -831.
[55]Bhatia M,Sidhapuriwala J,Moochhala SM,et al.Hydrogen sulphide is a mediator of carrageenan ‐ induced hindpaw oedema in the rat[J].British Journal of Pharmacology,2009,145(2):141 -144.
[56]Ren G,Bardwell JCA.Engineered pathways for correct disulfide bond oxidation[J].Antioxidants & Redox Signaling,2011,14(12):2399 -2412.
[57]Minamishima S,Bougaki M,Sips PY,et al.Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3 -dependent mechanism in mice[J].Circulation,2009,120(10):888 -896.
[58]Li Z,Wang Y,Xie Y,et al.Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia[J].Neurochemical Research,2011,36(10):1840 -1849.
[59]Olney JW,Hoo L,Rhee V.Cytotoxic effects of acidic and sulphurcontaining amino acids on the infant mouse central nervous system[J].Experimental Brain Research,1971,14(1):61.
[60]Barks JDE,Silverstein FS.Excitatory amino acids contribute to the pathogenesis of perinatal hypoxic-ischaemic brain injury[J].Brain Pathology,1992,2(3):235 -243.
[61]Wong PTH,Qu K,Chimon GN,et al.High plasma cyst (e)ine level may indicate poor clinical outcome in patients with acute stroke:possible involvement of hydrogen sulfide[J].Journal of Neuropathology & Experimental Neurology,2006,65(2):109 -115.
[62]Clarke R,Daly L,Robinson K,et al.Hyperhomocysteinemia:an independent risk factor for vascular disease[J].New England Journal of Medicine,1991,324(17):1149 -1155.
[63]Boysen G,Brander T,Christensen H,et al.Homocysteine and risk of recurrent stroke[J].Stroke,2003,34(5):1258 -1261.
[64]Stipanuk MH,Beck PW.Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat[J].Biochemical Journal,1982,206(2):267.
[65]Andersson A,Hultberg B,Lindgren A.Redox status of plasma homocysteine and other plasma thiols in stroke patients[J].Atherosclerosis,2000,151(2):535 -540.
[66]Schurr A,West CA,Heine MF,et al.The neurotoxicity of sulfurcontaining amino acids in energy-deprived rat hippocampal slices[J].Brain Research,1993,601(1):317 -320.
[67]Slivka A,Cohen G.Brain ischemia markedly elevates levels of the neurotoxic amino acid,cysteine[J].Brain Research,1993,608(1):33 -37.
[68]Mathisen GA,F(xiàn)onnum F,Paulsen RE.Contributing mechanisms for cysteine excitotoxicity in cultured cerebellar granule cells[J].Neurochemical Research,1996,21(3):293 -298.
[69]Janaky R,Varga V,Hermann A,et al.Mechanisms of L-cysteine neurotoxicity[J].Neurochemical Research,2000,25(9):1397 -1405.
[70]Tyagi N,Givvimani S,Qipshidze N,et al.Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice[J].Neurochemistry International,2010,56(2):301 -307.