王麗麗,張翠麗(綜述),富 路(審校)
(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院心內(nèi)科,哈爾濱 150001)
JAK-STAT信號(hào)通路和心肌葡萄糖代謝
王麗麗△,張翠麗※(綜述),富路(審校)
(哈爾濱醫(yī)科大學(xué)附屬第一醫(yī)院心內(nèi)科,哈爾濱 150001)
摘要:葡萄糖是心肌的重要能源物質(zhì)之一,葡萄糖轉(zhuǎn)運(yùn)及代謝是心臟進(jìn)行各項(xiàng)生物學(xué)活動(dòng)的基礎(chǔ)。Janus激酶-信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄通路(JAK-STAT)是一條由多種細(xì)胞因子參與的信號(hào)轉(zhuǎn)導(dǎo)通路,幾乎存在于機(jī)體的所有組織中。該文總結(jié)關(guān)于心肌葡萄糖代謝與JAK-STAT信號(hào)通路關(guān)系的文獻(xiàn)發(fā)現(xiàn),JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路通過(guò)多種方式參與胰島素誘導(dǎo)的心肌葡萄糖代謝。
關(guān)鍵詞:心??;葡萄糖代謝;Janus激酶;信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄;胰島素
Insulin
細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)是細(xì)胞對(duì)胞外調(diào)節(jié)信號(hào)做出的特異性應(yīng)答,目前已知大部分細(xì)胞中存在腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)-絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路和Janus激酶(Janus kinase,JAK)-信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子(signal transducer and activator of transcription,STAT)通路兩條基本通路。JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路是近年來(lái)發(fā)現(xiàn)的一條由細(xì)胞因子刺激的信號(hào)轉(zhuǎn)導(dǎo)通路,其參與了細(xì)胞的增殖、分化、凋亡及免疫調(diào)節(jié)等生物學(xué)過(guò)程,其在幾乎所有細(xì)胞因子信號(hào)的傳遞中都發(fā)揮著重要作用。目前JAK-STAT信號(hào)通路的調(diào)控及其與其他細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)通路的聯(lián)系尚不清楚?,F(xiàn)對(duì)心肌葡萄糖代謝與JAK-STAT信號(hào)通路中關(guān)于葡萄糖代謝方面現(xiàn)有的研究結(jié)果予以綜述。
1心肌葡萄糖代謝
心臟是耗氧率最高、對(duì)缺氧反應(yīng)最強(qiáng)烈的有氧代謝器官。心肌活動(dòng)的全部能量來(lái)源于ATP水解為二磷酸腺苷釋放的能量。心肌最基本的能量來(lái)源是脂肪酸、葡萄糖和乳酸[1]。在無(wú)氧情況下葡萄糖在胞質(zhì)中進(jìn)行糖酵解,每份葡萄糖產(chǎn)生2份ATP。糖酵解產(chǎn)生的丙酮酸在有氧的情況下進(jìn)入線粒體,在葡萄糖氧化限速酶丙酮酸脫氫酶復(fù)合體的作用下轉(zhuǎn)化為乙酰輔酶A,乙酰輔酶A進(jìn)入三羧酸循環(huán)被氧化為二氧化碳,通過(guò)電子傳遞鏈每份葡萄糖產(chǎn)生34份ATP。
1.1心肌葡萄糖代謝的重要性 脂肪酸和葡萄糖是心肌的兩大主要能源物質(zhì)。在灌注良好的正常心臟,雖然脂肪酸的代謝比例可達(dá)到60%~80%,而葡萄糖的代謝比例不足25%,但脂肪酸代謝比例增加并不會(huì)給心臟帶來(lái)更多益處;相反,脂肪酸代謝被阻斷后,心肌依然可以滿足高負(fù)荷工作的能量需求[2]。一項(xiàng)對(duì)伴或不伴有冠狀動(dòng)脈粥樣硬化性心臟病(冠心病)的2型糖尿病患者的研究發(fā)現(xiàn),局部心肌組織葡萄糖攝取率與冠狀動(dòng)脈血流量呈負(fù)相關(guān),與胰島素抵抗無(wú)關(guān)[3],提示糖尿病患者心肌缺血時(shí),心肌對(duì)葡萄糖代謝的依賴現(xiàn)象依然存在。這與人鍛煉時(shí)以及大型動(dòng)物心臟工作負(fù)荷增加時(shí)觀察到的葡萄糖攝取率的改變一致[4],說(shuō)明心臟收縮的儲(chǔ)備和代償能力依賴于心肌對(duì)葡萄糖代謝的儲(chǔ)備。葡萄糖對(duì)心肌來(lái)說(shuō)或許是更好的能量物質(zhì)。即使在缺氧和(或)缺血的情況下,心肌仍可通過(guò)糖酵解的方式獲得能量,盡管從糖酵解獲得的ATP很少,但其對(duì)于維護(hù)體內(nèi)離子動(dòng)態(tài)平衡是非常重要的。事實(shí)上,在心肌ATP的產(chǎn)生和使用是分開(kāi)的,糖酵解產(chǎn)生的ATP優(yōu)先供能于心肌細(xì)胞膜和肌質(zhì)網(wǎng)離子泵[3]。
1.2葡萄糖代謝的調(diào)節(jié) 心肌葡萄糖代謝的2個(gè)階段共有3個(gè)主要限速步驟:①細(xì)胞外葡萄糖的轉(zhuǎn)運(yùn);②磷酸果糖激酶反應(yīng);③丙酮酸氧化。
1.2.1細(xì)胞外葡萄糖的轉(zhuǎn)運(yùn)盡管葡萄糖在細(xì)胞內(nèi)要經(jīng)過(guò)多個(gè)步驟并進(jìn)入線粒體才能最終轉(zhuǎn)化成ATP,但真正決定細(xì)胞葡萄糖氧化水平的限速步驟是細(xì)胞表面的葡萄糖轉(zhuǎn)運(yùn)體(glucose transporter,GLUT)的數(shù)量以及細(xì)胞對(duì)胰島素的敏感性。GLUT1和GLUT4是心肌細(xì)胞主要的葡萄糖轉(zhuǎn)運(yùn)異構(gòu)體。GLUT1主要位于基底的肌纖維膜,在胎兒和出生后早期階段占主導(dǎo)地位[5]。GLUT4是存在于完全分化的心肌細(xì)胞的異構(gòu)體,主要分布在細(xì)胞內(nèi)的貯存囊泡內(nèi),其可被轉(zhuǎn)運(yùn)到細(xì)胞表面以應(yīng)答各種刺激。在葡萄糖的生理水平下,葡萄糖進(jìn)入心肌細(xì)胞的決定因素是細(xì)胞表面GLUT4的數(shù)量。然而,研究顯示,在小鼠心臟發(fā)現(xiàn)地轉(zhuǎn)運(yùn)蛋白鈉-葡萄糖共轉(zhuǎn)運(yùn)載體除協(xié)同轉(zhuǎn)運(yùn)鈉和葡萄糖外,還可應(yīng)答胰島素和瘦素的刺激[6]。
1.2.2磷酸果糖激酶反應(yīng)在磷酸果糖激酶反應(yīng)中,6-磷酸果糖激酶1催化糖酵解6-磷酸果糖生成1,6-二磷酸果糖,這是糖酵解的第1個(gè)關(guān)鍵步驟,其決定了糖酵解的速率。ATP和檸檬酸是6-磷酸果糖激酶-1的變構(gòu)抑制劑。2,6-二磷酸果糖由6-磷酸果糖激酶-2催化6-磷酸果糖磷酸化而成,是6-磷酸果糖激酶-1最強(qiáng)的變構(gòu)激活劑[7]。6-磷酸果糖激酶-2是基因和功能均不同于肝臟和肌肉的心肌同工酶,心臟6磷酸果糖激酶-2可應(yīng)答胰島素、缺血和超負(fù)荷的刺激。渥曼青霉素敏感蛋白激酶、局部缺血激活單磷酸腺苷依賴蛋白激酶[adenosine 5′-monophosphate (AMP)-activated protein kinase,AMPK]及超負(fù)荷激活蛋白激酶B等3種激酶磷酸化并激活6-磷酸果糖激酶-2,從而加速糖酵解。
1.2.3丙酮酸的氧化丙酮酸脫氫酶復(fù)合體是線粒體內(nèi)的一種多酶復(fù)合物。糖酵解產(chǎn)生的丙酮酸進(jìn)入線粒體內(nèi)由丙酮酸脫氫酶復(fù)合體催化,氧化脫羧生成的乙酰輔酶A進(jìn)入三羧酸循環(huán)。第一限速反應(yīng)是丙酮酸通過(guò)丙酮酸脫氫酶的脫羧反應(yīng)。丙酮酸激酶存在4個(gè)亞型,丙酮酸激酶的絲氨酸殘基上α亞基的磷酸化可抑制第一限速反應(yīng)[8]。相反,丙酮酸脫氫酶磷酸酶1(pyruvate dehydrogenase phosphatase 1,PDPC1)和PDPC2去磷酸化可通過(guò)丙酮酸脫氫酶激活丙酮酸,PDPC由胰島素激活[9]。
2JAK-STAT信號(hào)通路
2.1概述 心肌中存在多種信號(hào)通路,包括JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路。研究證實(shí),在哺乳動(dòng)物中存在JAK家族的4個(gè)成員(JAK1、JAK2、JAK3和TYK2)和7個(gè)STAT蛋白(STAT1、STAT2、STAT3、STAT4、STAT5A、STAT5B和STAT6)[10]。JAK是胞質(zhì)中的一種非受體性的酪氨酸蛋白激酶。STAT是有信號(hào)傳遞和轉(zhuǎn)錄因子雙重功效的DNA結(jié)合蛋白,雖然不同的STAT蛋白在結(jié)構(gòu)上相似,但其活化和效應(yīng)具有高度特異性。JAK-STAT通路可以被干擾素、白細(xì)胞介素、多種生長(zhǎng)因子、某些激素等激活。
JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路的激活是一個(gè)復(fù)雜的、可被包括脫磷酸化、核輸出及負(fù)調(diào)節(jié)劑如細(xì)胞因子信號(hào)抑制物(suppressors of cytokine signaling,SOCS)和STAT激活蛋白抑制劑等多種通路終止或負(fù)調(diào)控的過(guò)程[11]。
2.2心肌中JAK-STAT的作用 JAK1、JAK2、TYK2以及STAT家族所有成員均在心臟表達(dá)[12]。在這些蛋白質(zhì)中,對(duì)STAT3和STAT1研究得最多。多項(xiàng)動(dòng)物實(shí)驗(yàn)證明了STAT3對(duì)心臟的保護(hù)作用。使用特異性心肌細(xì)胞STAT3基因敲除(STAT3-KO)小鼠和JAK2特異性抑制劑證明了STAT3對(duì)缺血/再灌注損傷的心肌細(xì)胞具有抗細(xì)胞凋亡和保護(hù)作用[13-14]。缺血后再灌注的STAT3-KO小鼠心肌梗死面積顯著增加[15],而在缺血前后使用STAT3處理能顯著減少梗死面積并改善心功能[16]。在STAT3-KO小鼠中或使用JAK特異性抑制劑,以上保護(hù)作用降低[12]。在藥物模擬心肌缺血的實(shí)驗(yàn)中,STAT3的耗損影響心肌對(duì)缺血損傷耐受作用的調(diào)節(jié)[17]。此外,腫瘤壞死因子α、胰島素、褪黑激素、神經(jīng)鞘氨醇-1-磷酸及高密度脂蛋白參與了心臟疾病的發(fā)生、發(fā)展,在其作用的心肌中,STAT3均發(fā)揮重要的作用[18-21]。動(dòng)物實(shí)驗(yàn)證明,過(guò)度表達(dá)STAT3的小鼠較野生型和阿霉素處理小鼠對(duì)缺血/再灌注損傷不敏感,對(duì)心肌有保護(hù)作用[22]。
另外,STAT3通過(guò)參與適應(yīng)性肥大促進(jìn)機(jī)體存活。早期肥大有助于減少超負(fù)荷心室壁應(yīng)力和氧消耗,以維持正常的心排血量。過(guò)表達(dá)STAT3的轉(zhuǎn)基因小鼠12周齡時(shí)出現(xiàn)心肌肥大,心臟表現(xiàn)為左心室擴(kuò)大,肥厚基因(β肌球重鏈蛋白、心房利鈉肽)高表達(dá)[23]。白細(xì)胞介素6家族的成員(白血病抑制因子、心肌營(yíng)養(yǎng)素1以及白細(xì)胞介素6)通過(guò)活化心肌肥大強(qiáng)效介質(zhì)gp130受體,激活JAK-STAT3通路。與gp130受體結(jié)合可活化STAT3抑制細(xì)胞凋亡,并誘導(dǎo)代償性肥大,從而抑制心力衰竭[12]。
與STAT3的保護(hù)作用相比,STAT1的作用是有害的。體外心肌細(xì)胞實(shí)驗(yàn)證實(shí),STAT1在缺血/再灌注誘導(dǎo)的心肌細(xì)胞凋亡的調(diào)節(jié)中發(fā)揮關(guān)鍵作用,促凋亡因子胱天蛋白酶(caspase) 1、Fas和FasL等的激活可使STAT1的促凋亡作用增強(qiáng),抑制STAT1能夠保護(hù)缺血/再灌注誘導(dǎo)的心肌細(xì)胞損傷[24]。在動(dòng)物實(shí)驗(yàn)中,缺血/再灌注損傷可激活STAT1的表達(dá),STAT1-KO型小鼠較野生型小鼠具有更小的心肌梗死面積[25]。STAT1可通過(guò)減少自噬,保護(hù)心肌梗死后的心臟[25]。有趣的是,STAT1的促凋亡作用可以通過(guò)STAT3的相對(duì)表達(dá)來(lái)抵消[24,26]。STAT1與STAT3間的平衡可能對(duì)決定細(xì)胞的命運(yùn)起一定作用。
3JAK-STAT信號(hào)通路與心肌葡萄糖代謝
3.1JAK-STAT參與胰島素和AMPK的信號(hào)轉(zhuǎn)導(dǎo) 在心臟,JAK-STAT信號(hào)通路對(duì)葡萄糖代謝的調(diào)控作用值得深入探究。實(shí)際上,胰島素可激活培養(yǎng)細(xì)胞的JAK1,并能激活包括大鼠心臟在內(nèi)的所有胰島素敏感組織中的JAK2[27]。研究發(fā)現(xiàn),JAK激活的或獨(dú)立的STAT5酪氨酸磷酸化均能應(yīng)答胰島素[28]。胰島素能激活心臟中的STAT3,后者對(duì)心臟有保護(hù)作用。在經(jīng)典通路中,JAK2被生長(zhǎng)激素或瘦蛋白激活后,磷酸化胰島素受體底物1和胰島素受體底物2上的酪氨酸殘基,進(jìn)而招募并激活胞內(nèi)磷脂酰肌醇激酶[29]。但其不足以刺激葡萄糖代謝。
有研究報(bào)道,在缺血心肌或缺血模型心肌細(xì)胞中,STAT1、STAT3、STAT5、STAT6的激活需要AMPK的活化[24],但是AMPK參與了STAT的活化,還是活化的AMPK誘導(dǎo)了下游STAT的激活還需要進(jìn)一步探討。實(shí)驗(yàn)發(fā)現(xiàn),ATP合成酶抑制劑寡霉素能激活心肌細(xì)胞中的STAT5,并隨著AMPK活化高度激活,但其因果關(guān)系尚未被證實(shí)[30]。
3.2JAK-STAT參與葡萄糖代謝的調(diào)節(jié) 增加葡萄糖的代謝能激活JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路。在JAK2基因沉默的骨骼肌肌管,胰島素刺激的GLUT4轉(zhuǎn)運(yùn)和葡萄糖攝取不受影響,但胰島素的促增殖作用被減弱[31]。JAK2特異抑制劑不能阻斷瘦素對(duì)肌管中葡萄糖轉(zhuǎn)運(yùn)的刺激作用[31]。另一方面,瘦素通過(guò)增加JAK2的活性驅(qū)動(dòng)轉(zhuǎn)運(yùn)蛋白鈉-葡萄糖共轉(zhuǎn)運(yùn)載體1和9表達(dá)以增加心肌中鈉-葡萄糖的協(xié)同轉(zhuǎn)運(yùn)[29]。但在心肌中JAK-STAT信號(hào)通路是否確實(shí)有助于糖代謝的激活目前尚無(wú)報(bào)道。相反,JAK-STAT信號(hào)通路可能抑制心肌葡萄糖的代謝。已經(jīng)證實(shí)包括血管緊張素Ⅱ[32]、低水平的心肌營(yíng)養(yǎng)素1[30]、生長(zhǎng)激素[33]以及白血病抑制因子[34]等在內(nèi)的因子能激活心肌中JAK-STAT信號(hào)通路,抑制葡萄糖的代謝。目前證實(shí),這些因子的共同作用是使細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制物3(suppressor of cytokinesignaling 3,SOCS3)表達(dá)上調(diào)[30,34-35]。SOCS3對(duì)心肌中的JAK-STAT信號(hào)通路有負(fù)反饋調(diào)節(jié)作用[36],能通過(guò)抑制胰島素受體的自身磷酸化[37],降低胰島素的信號(hào)轉(zhuǎn)導(dǎo),還能通過(guò)促進(jìn)胰島素受體底物蛋白酶體的降解降低胰島素抵抗以及胞內(nèi)磷脂酰肌醇激酶與胰島素受體底物的相互作用[38]。已經(jīng)證實(shí),在SOCS3過(guò)表達(dá)的心肌細(xì)胞中,過(guò)氧化物酶體增殖劑激活受體α、過(guò)氧化物酶體增殖劑激活受體δ激動(dòng)劑引起的胰島素抵抗與低水平心肌營(yíng)養(yǎng)素1有關(guān)[30,37]。心肌細(xì)胞中,SOCS3的表達(dá)與STAT3活化密切相關(guān),但JAK-STAT信號(hào)是否參與SOCS3表達(dá)的上調(diào)目前還未有關(guān)于這方面的研究[36,38]。在其他組織和細(xì)胞類型中,SOCS3轉(zhuǎn)錄由STAT3和STAT5的活化驅(qū)動(dòng)[36]。暴露于低水平心肌營(yíng)養(yǎng)素1的心肌細(xì)胞,STAT5特異性抑制劑能抑制SOCS3的過(guò)表達(dá),并可恢復(fù)胰島素信號(hào)的轉(zhuǎn)導(dǎo)和胰島素刺激的葡萄糖轉(zhuǎn)運(yùn)[30]。JAK2抑制劑能從STATs的上游降低SOCS3的表達(dá),考慮SOCS3的表達(dá)部分依賴于JAK2的活性[39]。
葡萄糖代謝的降低也可導(dǎo)致GLUT4表達(dá)的下調(diào)。白血病抑制因子和低水平的心肌營(yíng)養(yǎng)素1均可下調(diào)心肌細(xì)胞中GLUT4的表達(dá)[30,35]。盡管尚無(wú)證據(jù)顯示JAK-STAT軸參與了白血病抑制因子效應(yīng),但STAT5特異性抑制劑確實(shí)恢復(fù)了低水平心肌營(yíng)養(yǎng)素1引起的GLUT4表達(dá)的降低[30]。
一些獨(dú)立基因的表達(dá)可降低JAK-STAT軸激活的胰島素信號(hào)轉(zhuǎn)導(dǎo)。在血管緊張素Ⅱ和胰島素激活的心肌細(xì)胞,葡萄糖刺激的胰島素信號(hào)轉(zhuǎn)導(dǎo)通路下游的分支減少,即胰島素受體底物磷酸化的胞內(nèi)磷脂酰肌醇激酶活化和隨后的蛋白激酶B的募集和活化降低[40]。這種現(xiàn)象在胰島素受體底物與JAK2關(guān)聯(lián)時(shí)增強(qiáng),表明JAK2通過(guò)抑制胰島素受體底物,減少胰島素信號(hào)轉(zhuǎn)導(dǎo)的葡萄糖轉(zhuǎn)運(yùn)[41]。與此相反,血管緊張素Ⅱ可增強(qiáng)胰島素誘導(dǎo)的細(xì)胞外調(diào)節(jié)蛋白激酶1/2活化?,F(xiàn)已證實(shí),細(xì)胞外調(diào)節(jié)蛋白激酶1/2的活化對(duì)心肌細(xì)胞葡萄糖轉(zhuǎn)運(yùn)的刺激是有害的[40]。
研究發(fā)現(xiàn),表現(xiàn)為胰島素抵抗的肌管在JAK2基因沉默的作用下,蛋白激酶B的活化和胰島素刺激的葡萄糖轉(zhuǎn)運(yùn)得到恢復(fù)[42]。研究結(jié)果表明,在胰島素抵抗的狀態(tài)下,JAK2可選擇性抑制葡萄糖攝取信號(hào)軸的蛋白激酶B。
JAK-STAT信號(hào)激活降低葡萄糖代謝的另一個(gè)機(jī)制是驅(qū)動(dòng)丙酮酸激酶的表達(dá)。研究發(fā)現(xiàn),脂肪細(xì)胞中催乳素介導(dǎo)STAT5調(diào)節(jié)丙酮酸激酶4的表達(dá)[43],血管緊張素Ⅱ能激活STAT5并誘導(dǎo)心肌細(xì)胞丙酮酸激酶4表達(dá)[32]。以往研究發(fā)現(xiàn),暴露于心肌營(yíng)養(yǎng)素-1和STAT5磷酸化的心肌細(xì)胞的丙酮酸脫氫酶磷酸化減少[30]。
4結(jié)語(yǔ)
JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路在心臟疾病的發(fā)病機(jī)制中發(fā)揮重要作用,STAT蛋白介導(dǎo)心肌細(xì)胞的生長(zhǎng)、存活及凋亡等生物學(xué)過(guò)程。骨骼肌或脂肪細(xì)胞的實(shí)驗(yàn)結(jié)果證實(shí),JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路參與葡萄糖的轉(zhuǎn)運(yùn)及代謝[31,42]。雖然關(guān)于JAK-STAT 信號(hào)轉(zhuǎn)導(dǎo)通路直接參與心肌葡萄糖代謝的數(shù)據(jù)很少,其是否參與由胰島素或代謝誘導(dǎo)的心臟葡萄糖代謝尚不明確,但可以從稀少的心臟相關(guān)實(shí)驗(yàn)研究中得知,JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路有可能介導(dǎo)各種細(xì)胞因子引起的心肌胰島素抵抗的發(fā)展[38,40-41]。但該結(jié)論部分來(lái)源于骨骼肌或脂肪細(xì)胞的實(shí)驗(yàn)結(jié)果,因此應(yīng)謹(jǐn)慎對(duì)待。
參考文獻(xiàn)
[1]Guyton AC,Hall JE.Textbook of Medical Physiology[M].11th edition.Philadelphia:Saunders,2006:103-106.
[2]Ledee D,Portman MA,Kajimoto M,etal.Thyroid hormone reverses aging-induced myocardial fatty acid oxidation defects and improves the response to acutely increased afterload[J].PLoS One,2013,8(6):e65532.
[3]Saks V,Kuznetsov AV,Gonzalez-Granillo M,etal.Intracellular Energetic Units regulate metabolism in cardiac cells[J].J Mol Cell Cardiol,2012,52(2):419-436.
[4]Zhou L,Huang H,Yuan CL,etal.Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA,mechanical efficiency,and fatty acid oxidation[J].Am J Physiol Heart Circ Physiol,2008,294(2):H954-960.
[5]Ramasamy R,Hwang YC,Whang J,etal.Protection of ischemic hearts by high glucose is mediated,in part,by GLUT-4[J].Am J Physiol Heart Circ Physiol,2001,281(1):H290-297.
[6]Banerjee SK,McGaffin KR,Pastor-Soler NM,etal.SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states[J].Cardiovasc Res,2009,84(1):111-118.
[7]Langer S,Kaminski MT,Lenzen S,etal.Endogenous activation of glucokinase by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is glucose dependent[J].Mol Endocrinol,2010,24(10):1988-1997.
[8]Jeong JY,Jeoung NH,Park KG,etal.Transcriptional regulation of pyruvate dehydrogenase kinase[J] Diabetes Metab J,2012,36(5):328-335.
[9]Constantin-Teodosiu D.Regulation of muscle pyruvate dehydrogenase complex in insulin resistance: effects of exercise and dichloroacetate[J].Diabetes Metab J,2013,37(5):301-314.
[10]Darnell JE Jr.STATs and gene regulation[J].Science,1997,277(5332):1630-1635.
[11]Lin Y,Wang F,Zhang GL.Natural products and their derivatives regulating the janus kinase/signal transducer and activator of transcription pathway[J].J Asian Nat Prod Res,2014,16(7):800-812.
[12]Zhang S,Liu X,Goldstein S,etal.Role of the JAK/STAT signaling pathway in the pathogenesis of acute myocardial infarction in rats and its effect on NF-κB expression[J].Mol Med Rep,2013,7(1):939-938.
[13]Takeda K,Noguchi K,Shi W,etal.Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality[J].Proc Natl Acad Sci U S A,1997,94(8):3801-3804.
[14]Hilfiker-Kleiner D,Hilfiker A,Fuchs M,etal.Signal transducer and activator of transcription 3 is required for myocardial capillary growth,control of interstitial matrix deposition,and heart protection from ischemic injury[J].Circ Res,2004,95(2):187-195.
[15]Hilfiker-Kleiner D,Limbourg A,Drexler H.STAT3-mediated activation of myocardial capillary growth[J].Trends Cardiovasc Med,2005,15(4):152-157.
[16]Boengler K,Buechert A,Heinen Y,etal.Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice[J].Circ Res,2008,102(1):131-135.
[17]Smith RM,Suleman N,Lacerda L,etal.Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning[J].Cardiovasc Res,2004,63(4):611-616.
[18]Lecour S,Smith RM,Woodward B,etal.Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection[J].J Mol Cell Cardiol,2002,34(5):509-518.
[19]Fuglesteg BN,Suleman N,Tiron C,etal.Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion[J].Basic Res Cardiol,2008,103(5):444-453.
[20]Lamont KT,Somers S,Lacerda L,etal.Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol and melatonin-induced cardioprotection[J].J Pineal Res,2011,50(4):374-380.
[21]Somers SJ,Frias M,Lacerda L,etal.Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection[J].Cardiovasc Drugs Ther,2012,26(3):227-237.
[22]Karliner JS.Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress[J].Biochim Biophys Acta,2013,1831(1):203-212.
[23]Kunisada K,Negoro S,Tone E,etal.Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy[J].Proc Natl Acad Sci U S A,2000,97(1):315-319.
[24]Stephanou A.Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury[J].J Cell Mol Med,2004,8(4):519-525.
[25]McCormick J,Suleman N,Scarabelli TM,etal.STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy[J].J Cell Mol Med,2012,16(2):386-393.
[26]Shen Y,Devgan G,Darnell JE Jr,etal.Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1[J].Proc Natl Acad Sci U S A,2001,98(4):1543-1548.
[27]Babon JJ,Lucet IS,Murphy JM,etal.The molecular regulation of Janus kinase (JAK) activation[J].Biochem J,2014,462(1):1-13.
[28]Le MN,Kohanski RA,Wang LH,etal.Dual mechanism of signal transducer and activator of transcription 5 activation by the insulin receptor[J].Mol Endocrinol,2002,16(12):2764-2779.
[29]Ahima RS,Osei SY.Leptin signaling[J].Physiol Behav,2004,81(2):2232-2241.
[30]Asrih M,Gardier S,Papageorgiou I,etal.Dual effect of the heart-targeting cytokine cardiotrophin-1 on glucose transport in cardiomyocytes[J].J Mol Cell Cardiol,2013,56:106-115.
[31]Thirone AC,JeBailey L,Bilan PJ,etal.Opposite effect of JAK2 on insulin-dependent activation of mitogen-activated protein kinases and Akt in muscle cells: possible target to ameliorate insulin resistance[J].Diabetes,2006,55(4):942-951.
[32]Cambi GE,Lucchese G,Djeokeng MM,etal.Impaired JAK2-induced activation of STAT3 in failing human myocytes[J].Mol Biosyst,2012,8(9):2351-2359.
[33]Xu J,Keeton AB,Franklin JL,etal.Insulin enhances growth hormone induction of the MEK/ERK signaling pathway[J].J Biol Chem,2006,281(2):982-992.
[34]Florholmen G,Thoresen GH,Rustan AC,etal.Leukaemia inhibitory factor stimulates glucose transport in isolated cardiomyocytes and induces insulin resistance after chronic exposure[J].Diabetologia,2006,49(4):724-731.
[35]Zhao Y,Xiao X,Frank SJ,etal.Distinct mechanisms of induction of hepatic growth hormone resistance by endogenous IL-6,TNF-α,and IL-1β[J].Am J Physiol Endocrinol Metab,2014,307(2):E186-198.
[36]Yasukawa H,Nagata T,Oba T,etal.SOCS3: A novel therapeutic target for cardioprotection[J].JAKSTAT,2012,1(4):234-240.
[37]Asrih M,Lerch R,Papageorgiou I,etal.Differential regulation of stimulated glucose transport by free fatty acids and PPARα or -δ agonists in cardiac myocytes[J].Am J Physiol Endocrinol Metab,2012,302(7):E872-884.
[38]Lebrun P,Van Obberghen E.SOCS proteins causing trouble in insulin action[J].Acta Physiol (Oxf),2008,192(1):29-36.
[ 39]Fasshauer M,Kralisch S,Klier M,etal.Insulin resistance-inducing cytokines differentially regulate SOCS mRNA expression via growth factor- and Jak/Stat-signaling pathways in 3T3-L1 adipocytes[J].J Endocrinol,2004,181(1):129-138.
[40]Asrih M,Pellieux C,Papageorgiou I,etal.Role of ERK1/2 activation in microtubule stabilization and glucose transport in cardiomyocytes[J].Am J Physiol Endocrinol Metab,2011,301(5):E836-843.
[41]Zhou MS,Schulman IH,Zeng Q.Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease[J].Vasc Med,2012,17(5):330-341.
[42]Richard AJ,Stephens JM.The role of JAK-STAT signaling in adipose tissue function[J].Biochim Biophys Acta,2014,1842(3):431-439.
[43]White UA,Coulter AA,Miles TK,etal.The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in adipocytes[J].Diabetes,2007,56(6):1623-1629.
JAK-STAT Signaling Pathway and Myocardial Glucose Metabolism
WANGLi-li,ZHANGCui-li,FULu.
(DepartmentofCardiology,theFirstAffiliatedHospitalofHarbinMedicalUniversity,Harbin150001,China)
Abstract:Glucose is one of the most important energy sources of myocardium,and glucose transport and metabolism are the basic biological activities in heart.Janus kinase-signal transducer and activator of transcription(JAK-STAT) is a signal transduction pathway involving a variety of cytokines,which has been found in almost every tissue of body.Here is to make a review of the existing discoveries on myocardial glucose metabolism and JAK-STAT,and it′s found that JAK-STAT is involved in insulin induced myocardial glucose metabolism through multiple manners.
Key words:Myocardium; Glucose metabolism; Janus kinase; Signal transduction and transcription;
收稿日期:2015-02-03修回日期:2015-06-13編輯:辛欣
doi:10.3969/j.issn.1006-2084.2015.23.014
中圖分類號(hào):R541.8
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)23-4263-04