張雪利(綜述),李全民(審校)
(1.山西醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院,太原 030000; 2.第二炮兵總醫(yī)院內(nèi)分泌科,北京 100088)
TNF-α、PARP及施萬細(xì)胞凋亡在糖尿病痛性周圍神經(jīng)病變中的作用
張雪利1△(綜述),李全民2※(審校)
(1.山西醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院,太原 030000; 2.第二炮兵總醫(yī)院內(nèi)分泌科,北京 100088)
摘要:糖尿病周圍神經(jīng)病變的發(fā)病機(jī)制復(fù)雜,為多種綜合性因素參與。近年來,氧化應(yīng)激導(dǎo)致的周圍神經(jīng)病變一直是大家關(guān)注的熱點,而施萬細(xì)胞凋亡導(dǎo)致的糖尿病周圍神經(jīng)病變研究甚少。腫瘤壞死因子α(TNF-α)及多聚腺苷二磷酸核糖合成酶(PARP)參與了血旺細(xì)胞凋亡的發(fā)生,均在糖尿病周圍神經(jīng)病變中發(fā)揮了重要作用。現(xiàn)就TNF-α、PARP與施萬細(xì)胞凋亡的相關(guān)性及在糖尿病周圍神經(jīng)病變中的作用予以綜述。
關(guān)鍵詞:糖尿病周圍神經(jīng)病變;糖尿病痛性神經(jīng)病變;腫瘤壞死因子α;多聚腺苷二磷酸核糖合成酶;施萬細(xì)胞凋亡
目前糖尿病已成為一種發(fā)病率高且呈逐年上升的常見病,并迅速發(fā)展成為全球性常見病,它可累及心臟、腎臟、神經(jīng)等,其中糖尿病痛性神經(jīng)病變被認(rèn)為是最常見的微血管并發(fā)癥之一。施萬細(xì)胞是周圍神經(jīng)系統(tǒng)特有的膠質(zhì)細(xì)胞,能分泌神經(jīng)營養(yǎng)因子,促進(jìn)受損神經(jīng)元的存活及其軸突的再生。一旦神經(jīng)受損,它會分泌神經(jīng)營養(yǎng)因子,營養(yǎng)和修復(fù)神經(jīng)元和軸突。因此,推斷施萬細(xì)胞凋亡可能參與了糖尿病周圍神經(jīng)病變的發(fā)生。現(xiàn)有研究表明,施萬細(xì)胞凋亡可使腫瘤壞死因子α(tumor necrosis factor-alpha,TNF-α)表達(dá)上升,而TNF-α作為一種促炎細(xì)胞因子在疼痛的產(chǎn)生與維持中起到了重要的作用[1],提示施萬細(xì)胞凋亡可能是通過上調(diào)炎性細(xì)胞因子的表達(dá)參與了糖尿病痛性神經(jīng)病變的發(fā)展。現(xiàn)對TNF-α、PARP及施萬細(xì)胞凋亡在糖尿病痛性周圍神經(jīng)病變中的作用進(jìn)行綜述。
1TNF-α與施萬細(xì)胞凋亡在糖尿病痛性神經(jīng)病變中的作用
1.1TNF-α的結(jié)構(gòu)及功能TNF-α主要由于T細(xì)胞、單核細(xì)胞、巨噬細(xì)胞等免疫細(xì)胞被激活而大量表達(dá),并參與多種生物調(diào)節(jié)作用。TNF-α主要有兩種細(xì)胞膜表面受體,分別是TNF-αⅠ型受體(TNFR-Ⅰ;p55)和TNF-αⅡ型受體(TNFR-Ⅱ;p75),其中TNFR-Ⅱ可對多種組織中的胰島素信號通路發(fā)生作用,可能與糖尿病及相關(guān)并發(fā)癥尤其是慢性并發(fā)癥的發(fā)生、發(fā)展有關(guān)[2]。TNF-α作為一種炎性細(xì)胞因子,不僅在細(xì)胞免疫和炎癥反應(yīng)中發(fā)揮重要作用,同樣也參與細(xì)胞增殖、分化和凋亡。TNF-α長期或高水平表達(dá)可導(dǎo)致炎癥反應(yīng)和凋亡的發(fā)生[3-5]。
1.2TNF-α及施萬細(xì)胞凋亡與痛性神經(jīng)病變細(xì)胞因子可通過與施萬細(xì)胞相互作用在糖尿病周圍神經(jīng)病變的發(fā)展中發(fā)揮重要作用,而TNF-α作為突出的一個細(xì)胞因子可能參與其中。近幾年隨著研究的不斷深入,逐漸認(rèn)識到TNF-α確實參與了神經(jīng)痛的發(fā)生、發(fā)展,但其具體機(jī)制尚不清楚。一方面,TNF-α可能通過對中樞神經(jīng)系統(tǒng)的表觀改變,導(dǎo)致中樞水平的β2腎上腺素能受體表達(dá)及功能發(fā)生變化,從而使中樞敏感化導(dǎo)致神經(jīng)痛的發(fā)生;另一方面,TNF-α可能是以間接調(diào)節(jié)神經(jīng)細(xì)胞合成的疼痛介質(zhì)神經(jīng)生長因子的方式參與了神經(jīng)病理性疼痛的發(fā)生[6]。在一些糖尿病神經(jīng)病變的試驗中發(fā)現(xiàn),TNF-α基因產(chǎn)物的表達(dá)上調(diào)[7]。目前,施萬細(xì)胞對細(xì)胞因子的反應(yīng)大多集中于受體水平的研究,而且施萬細(xì)胞凋亡主要通過TNFR-Ⅰ 和p75TNFR兩種分子機(jī)制發(fā)揮作用。Tanigawa等[8]通過免疫組織化學(xué)方法證實,施萬細(xì)胞表面同時表達(dá)TNFR-Ⅰ 和p75TNFR,而主要在傳導(dǎo)痛溫覺信號發(fā)揮作用的中小神經(jīng)元發(fā)現(xiàn)TNF-α受體的表達(dá),且TNFR-Ⅱ、TNFR-Ⅰ主要表達(dá)在中小神經(jīng)元上。Tsimokha等[9]研究發(fā)現(xiàn),TNF-α培養(yǎng)施萬細(xì)胞主要通過增加p75導(dǎo)致施萬細(xì)胞凋亡,進(jìn)一步研究還發(fā)現(xiàn),TNF-α培養(yǎng)施萬細(xì)胞使其劑量依賴性減少;且體內(nèi)研究的證據(jù)明確p75調(diào)節(jié)施萬細(xì)胞凋亡獨立于Bcl-2蛋白,然而p75促發(fā)施萬細(xì)胞凋亡依賴于許多細(xì)胞內(nèi)外因子,這些因子主要對施萬細(xì)胞的生存起作用。Jung等[10]通過對成人施萬細(xì)胞的研究證明,外源性TNF-α培養(yǎng)施萬細(xì)胞,可使施萬細(xì)胞逆轉(zhuǎn)至不成熟的表型,可通過表達(dá)p75TNFR評估,同時發(fā)現(xiàn),這個通路的表達(dá)激活了前凋亡分子,即胱天蛋白酶(caspase)3。caspase-3是大家公認(rèn)的早期細(xì)胞凋亡的一個生物學(xué)指標(biāo),主要參與細(xì)胞凋亡的形態(tài)學(xué)變化。以上資料直接表明,TNF-α可能通過逆轉(zhuǎn)施萬細(xì)胞的表型,使得施萬細(xì)胞對凋亡易感,繼而導(dǎo)致施萬細(xì)胞凋亡。實驗表明,神經(jīng)疼痛情況下,在慢性縮窄性損傷大鼠的坐骨神經(jīng)中,可檢測到TNF-α瞬時上調(diào)[11-13]。TNF-α主要分布于巨噬細(xì)胞和施萬細(xì)胞,同樣,神經(jīng)元發(fā)生華勒變性時,在局部損傷的神經(jīng)元可發(fā)現(xiàn)TNFR-Ⅰ上調(diào),類似的結(jié)果在人類中主要來自痛性神經(jīng)病變神經(jīng)活檢時表現(xiàn)出高水平的TNF-α,尤其是在施萬細(xì)胞中[14-16]。有研究報道,向坐骨神經(jīng)內(nèi)注射TNF-α的大鼠,可產(chǎn)生高敏性疼痛,類似于在人類中的神經(jīng)痛[17]。此外,也有人用離體周圍神經(jīng)實驗證實,在體外注射TNF-α可產(chǎn)生機(jī)械及熱痛覺過敏,同時發(fā)現(xiàn)神經(jīng)生長因子的表達(dá)上調(diào),而神經(jīng)生長因子是產(chǎn)生神經(jīng)痛的一個公認(rèn)的細(xì)胞因子;進(jìn)一步TNFR-Ⅰ和p75TNFR剔除的小鼠研究發(fā)現(xiàn),TNFR-Ⅰ表現(xiàn)為神經(jīng)保護(hù)作用,而p75TNFR表現(xiàn)為神經(jīng)毒性作用[18-19]。然而,關(guān)于TNFR-Ⅰ 和p75TNFR在慢性痛性神經(jīng)病變中的相關(guān)作用仍存在爭議。眾所周知,caspase-3信號通路激活,可導(dǎo)致施萬細(xì)胞凋亡,研究表明,應(yīng)用caspase-3抑制劑治療痛性神經(jīng)病變可減輕外周神經(jīng)痛[20],提示施萬細(xì)胞凋亡可能參與了痛性神經(jīng)病變的發(fā)生。
2多聚腺苷二磷酸核糖合成酶與施萬細(xì)胞凋亡在糖尿病痛性神經(jīng)病變中的作用
2.1多聚腺苷二磷酸核糖合成酶[poly(ADP-ribose)poly-merase,PARP]的結(jié)構(gòu)與功能在生物細(xì)胞內(nèi)存在著一系列修飾蛋白的物質(zhì),PARP家族充當(dāng)了重要角色且成為近年關(guān)注的熱點。PARP-1在真核細(xì)胞內(nèi)大量表達(dá),在整個PARP家族中其活性表達(dá)最高達(dá)90%,不僅在染色體穩(wěn)定、DNA修復(fù)及細(xì)胞凋亡中發(fā)揮重要作用,也參與調(diào)控基因轉(zhuǎn)錄[21]。PARP-1主要通過兩種方式發(fā)揮作用:一種是通過多聚腺苷二磷酸核糖化修飾促進(jìn)基因轉(zhuǎn)錄,另一種則介導(dǎo)參與基因轉(zhuǎn)錄的增強(qiáng)子/啟動子的組成發(fā)揮作用[22]。目前關(guān)于PARP-1對基因表達(dá)調(diào)控方面的研究是非常復(fù)雜的,因為它可與多種轉(zhuǎn)錄因子相互作用,同時也可通過不同轉(zhuǎn)錄因子間反向調(diào)節(jié),甚至對同一種轉(zhuǎn)錄因子還可能發(fā)揮多重作用[23-26]。其機(jī)制可能與改變酶的作用進(jìn)而使轉(zhuǎn)錄因子活性發(fā)生變化有關(guān),另一方面,PARP-1也可不依賴其酶活性來發(fā)揮轉(zhuǎn)錄調(diào)節(jié)功能[27]。
2.2PARP與施萬細(xì)胞凋亡病理條件下,DNA大量損傷,激活過多PARP,會耗盡煙酰胺腺嘌呤二核苷酸的儲備、PARP的底物及大量腺苷三磷酸,最終導(dǎo)致細(xì)胞凋亡[28]。Lupachyk等[29]的實驗表明,PARP的裂解提示施萬細(xì)胞凋亡,因為在施萬細(xì)胞凋亡的早期階段,可發(fā)現(xiàn)Mr24 KD和Mr89 000片段的裂解,其具體作用過程可能是阻止了對DNA鏈的修復(fù),從而導(dǎo)致細(xì)胞凋亡,提示對PARP片段進(jìn)行檢測,可能是施萬細(xì)胞早期凋亡的一個可用性指標(biāo)。Caspase-3活化被認(rèn)為是細(xì)胞發(fā)生凋亡的一個公認(rèn)的介導(dǎo)機(jī)制,因而,PARP也不可避免地需要通過激活caspase-3而促發(fā)施萬細(xì)胞凋亡。但最近的研究表明,PARP過度激活可觸發(fā)非caspase-3途徑依賴的施萬細(xì)胞凋亡機(jī)制,主要通過誘導(dǎo)線粒體釋放凋亡誘導(dǎo)因子,引起細(xì)胞核DNA大量片段化及細(xì)胞凋亡的發(fā)生[30]。但令人失望的是,也有研究認(rèn)為,PARP的活化和裂解與細(xì)胞凋亡均無因果關(guān)系,這可能是實驗條件不同,得出的結(jié)果不一致[31],但大部分實驗支持PARP的活化與施萬細(xì)胞凋亡有關(guān)。
3PARP及TNF-α與痛性神經(jīng)病變
TNF-α是體內(nèi)一個重要的炎性因子,施萬細(xì)胞是TNF-α的敏感靶點,TNF-α以時間依賴性的特點導(dǎo)致施萬細(xì)胞凋亡。TNF-α培養(yǎng)施萬細(xì)胞后,PARP活性在開始階段呈現(xiàn)上升趨勢,但隨著細(xì)胞損傷時間延長,其活性可能被抑制。Velez等[32]研究表明,在TNF-α干預(yù)施萬細(xì)胞后可導(dǎo)致DNA的破壞,進(jìn)而啟動PARP修復(fù)機(jī)制,在實驗早期PARP活性持續(xù)增高,但隨著時間的推移其活性逐漸降低。以上研究實驗表明,施萬細(xì)胞凋亡與TNF-α的表達(dá)上調(diào)及PARP活性相關(guān)。進(jìn)一步實驗表明,PARP-1的活性和表達(dá)水平與患者TNF-α的表達(dá)水平呈顯著正相關(guān),PARP抑制劑能夠顯著抑制核因子κB的激活和炎性細(xì)胞因子TNF-α的表達(dá)[32]。研究表明,PARP-1參與了核因子κB與DNA的結(jié)合[33-34]。由于PARP誘導(dǎo)細(xì)胞凋亡的機(jī)制并不單一,因此PARP活性下降可能有其他途徑介導(dǎo),具體機(jī)制有待進(jìn)一步研究。PARP過度激活可修飾甘油醛-3-磷酸脫氫酶使其活性下降,繼發(fā)下游4條經(jīng)典途徑,導(dǎo)致痛性神經(jīng)病變的發(fā)生[35]。這從理論上支持PARP可通過上調(diào)INF的表達(dá),引起糖尿病周圍神經(jīng)痛和感覺異常。Purwata等[36]發(fā)現(xiàn),鏈脲佐菌素誘導(dǎo)成膜4周的糖尿病大鼠即存在熱痛覺和機(jī)械痛覺過敏,如果在成膜2周后給予PARP抑制劑治療2周,大鼠熱痛閾和機(jī)械痛閾可得到改善。最新的實驗報道,鏈脲佐菌素誘導(dǎo)的糖尿病大鼠,在12周時表現(xiàn)出明顯的熱痛覺、機(jī)械痛覺過敏及自發(fā)性疼痛,如果在成膜2周給予PARP抑制劑治療10周,可部分改善痛覺過敏,減輕自發(fā)性疼痛[37]。這表明PARP過度活化誘導(dǎo)施萬細(xì)胞凋亡最終導(dǎo)致了糖尿病痛性神經(jīng)病變的發(fā)生,提示抑制PARP的活性,可能是預(yù)防或治療痛性神經(jīng)病變的一個新作用點。
4小結(jié)
TNF-α及PARP引起施萬細(xì)胞凋亡可能是糖尿病痛性神經(jīng)病變的一個原因,因此,了解施萬細(xì)胞凋亡機(jī)制,并及時應(yīng)用TNF抑制劑等進(jìn)行臨床干預(yù),抑制施萬細(xì)胞凋亡,可能是一個有效的新方法。雖不能使癥狀完全緩解,亦不可阻止糖尿病痛性神經(jīng)病變的進(jìn)展,但為進(jìn)一步探討糖尿病周圍神經(jīng)病變的發(fā)病機(jī)制提供了新的方向,并可深入了解糖尿病痛性神經(jīng)病變的新靶點。
參考文獻(xiàn)
[1]Leung L,Cahill CM.TNF-αand neuropathic pain-a review[J].J Neuroinflammation,2010,7:27.
[2]Tyan PI,Radwan AH,Eid A,etal.Novel approach to reactive oxygen species in nontransfusion-dependent thalassemia[J].Biomed Res Int,2014,2014:350432.
[3]Lee J,Lee J.Hypoxia-inducible Factor-1 (HIF-1)-independent hypoxia response of the small heat shock protein hsp-16.1 gene regulated by chromatin-remodeling factors in the nematode Caenorhabditis elegans[J].J Biol Chem,2013,288(3):1582-1589.
[4]Park JH,Seo JH,Wee HJ,etal.Nuclear translocation of hARD1 contributes to proper cell cycle progression[J].PLoS One,2014,9(8):e105185.
[5]Hanschmann EM,Godoy JR,Berndt C,etal.Thioredoxins,glutaredoxins,and peroxiredoxins--molecular mechanisms and health significance:from cofactors to antioxidants to redox signaling[J].Antioxid Redox Signal,2013,19(13):1539-1605.
[6]Yagihashi S,Mizukami H,Sugimoto K.Mechanism of diabetic neuropathy:Where are we now and where to go[J].J Diabetes Investig,2011,2(1):18-32.
[7]Andrade P,Veerle-Vandewalle V,Hoffmann C,etal.Role of TNF-alpha during central sensitization in preclinical studies[J].Neurol Sci,2011,32(5):757-771.
[8]Tanigawa K,Degang Y,Kawashima A,etal.Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages[J].Microb Pathog,2012,52(5):285-291.
[9]Tsimokha AS,Kulichkova VA,Karpova EV,etal.DNA damage modulates interactions between microRNAs and the 26S proteasome[J].Oncotarget,2014,5(11):3555-3567.
[10]Jung J,Cai W,Jang SY,etal.Transient lysosomal activation is essential for p75 nerve growth factor receptor expression in myelinated Schwann cells during Wallerian degeneration[J].Anat Cell Biol,2011,44(1):41-49.
[11]Dvoriantchikova G,Barakat D,Brambilla R,etal.Inactivation of astroglial NF-kappa B promotes survival of retinal neurons following ischemic injury[J].Eur J Neurosci,2009,30(2):175-185.
[12]Dubovy P.Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction[J].Ann Anat,2011,193(4):267-275.
[13]Gibbons CR,Liu S,Zhang Y,etal.Involvement of brain opioid receptors in the anti-allodynic effect of hyperbaric oxygen in rats with sciatic nerve crush-induced neuropathic pain[J].Brain Res,2013,1537:111-116.
[14]Sharma M,Deekshith V,Semwal A,etal.Discovery of Fused Triazolo-thiadiazoles as Inhibitors of TNF-alpha:Pharmacophore Hybridization for Treatment of Neuropathic Pain[J].Pain Ther,2012,1(1):3.
[15]Cummins EP,Berra E,Comerford KM,etal.Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta,giving insight into hypoxia-induced NFkappaB activity[J].Proc Natl Acad Sci U S A,2006,103(48):18154-18159.
[16]Gaudet AD,Popovich PG,Ramer MS.Wallerian degeneration:gaining perspective on inflammatory events after peripheral nerve injury[J].J Neuroinflammation,2011,8:110.
[17]Iwatsuki K,Arai T,Ota H,etal.Targeting anti-inflammatory treatment can ameliorate injury-induced neuropathic pain[J].PLoS One,2013,8(2):e57721.
[18]Dubovy P,Jancalek R,Kubek T.Role of inflammation and cytokines in peripheral nerve regeneration[J].Int Rev Neurobiol,2013,108:173-206.
[19]Kim JK,Lee HJ,Park HT.Two faces of Schwann cell dedifferentiation in peripheral neurodegenerative diseases:pro-demyelinating and axon-preservative functions[J].Neural Regen Res,2014,9(22):1952-1954.
[20]Ogawa N,Kawai H,Terashima T,etal.Gene therapy for neuropathic pain by silencing of TNF-α expression with lentiviral vectors targeting the dorsal root ganglion in mice[J].PLoS One,2014,9(3):e92073.
[21]Langelier MF,Riccio AA,Pascal JM,etal.PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1[J].Nucleic Acids Res,2014,42(12):7762-7775.
[22]Leung L,Cahill CM.TNF-alpha and neuropathic pain--a review[J].J Neuroinflammation,2010,7:27.
[23]Voigt S,Philipp S,Davarnia P,etal.TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells[J].BMC Cancer,2014,14:74.
[24]Parameswaran N,Patial S.Tumor necrosis factor-α signaling in macrophages[J].Crit Rev Eukaryot Gene Expr,2010,20(2):87-103.
[25]Zhang L,Berta T,Xu ZZ,etal.TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain:distinct role of TNF receptor subtypes 1 and 2[J].Pain,2011,152(2):419-427.
[26]Ji Y,Tulin AV.Post-transcriptional regulation by poly(ADP-ribosyl)ation of the RNA-binding proteins[J].Int J Mol Sci,2013,14(8):16168-16183.
[27]Fouquerel E,Goellner EM,Yu Z,etal.ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion[J].Cell Rep,2014,8(6):1819-1831.
[28]Ko HL,Ren EC.Functional Aspects of PARP1 in DNA Repair and Transcription[J].Biomolecules,2012,2(4):524-548.
[29]Lupachyk S,Shevalye H,Maksimchyk Y,etal.PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation:correlation with peripheral nerve function[J].Free Radic Biol Med,2011,50(10):1400-1409.
[30]Castri P,Lee YJ,Ponzio T,etal.Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling[J].Biochim Biophys Acta,2014,1843(3):640-651.
[31]Yang DP,Kim J,Syed N,etal.p38 MAPK activation promotes denervated Schwann cell phenotype and functions as a negative regulator of Schwann cell differentiation and myelination[J].J Neurosci,2012,32(21):7158-7168.
[32]Velez J,Hail N Jr,Konopleva M,etal.Mitochondrial uncoupling and the reprograming of intermediary metabolism in leukemia cells[J].Front Oncol,2013,3:67.
[33]Pion P,Vouldoukis I,Dukas N,etal.Redox-dependent apoptosis in human endothelial cells after adhesion of Plasmodium falciform-infected erythrocytes[J].Ann N Y Acad Sci,2003,1010:582-
586.
[34]Empl M,Renaud S,Erne B,etal.TNF-alpha expression in painful and non-painful neuropathies[J].Neurology,2001,56(10):1371-
1377.
[35]Morton PD,Johnstone JT,RamosAY,etal.Nuclear factor-κB activation in schwann cells regulates regeneration and remyelination[J].Glia,2012,60(4):639-650.
[36]Purwata TE.High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy[J].J Pain Res,2011,4:169-175.
[37]Ta LE,Schemlzer JD,Bieber AJ,etal.A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy[J].PLoS One,2013,8(1):e54161.
The Effect of TNF-α,PARP and Schwann Cell Apoptosis in Diabetic Painful Neuropathy
ZHANGXue-li1,LIQuan-min2.
(1.ShanxiMedicalUniversityoftheSecondClinicalMedicalCollege,Taiyuan030000,China; 2.DepartmentofEndocrinology,theSecondArtilleryGeneralHospitalofPeople′sLiberationArmy,Beijing100088,China)
Abstract:The pathogenesis of diabetic peripheral neuropathy is complex,which involves a variety of factors.In recent years,oxidative stress caused peripheral neuropathy has been the focus of attention,but the research on Schwann cells apoptosis resulted peripheral neuropathy in diabetes is rarely seen.Tumor necrosis factor α(TNF-α) and poly(ADP-ribose)polymerase(PARP) are involved in the pathogenesis of Schwann cell apoptosis,playing an important role in diabetic peripheral neuropathy.Here is to make a review of the correlation between TNF-α,PARP and Schwann cell apoptosis in diabetic peripheral neuropathy.
Key words:Diabetic peripheral neuropathy; Diabetic painful neuropathy; Tumor necrosis factor-α; Poly(ADP-ribose)polymerase; Schwann cell apoptosis
收稿日期:2015-02-26修回日期:2015-04-13編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.23.034
中圖分類號:R58
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-2084(2015)23-4317-03