段王平,苑偉,孫振偉,李琦,趙昱,衛(wèi)小春
(山西醫(yī)科大學(xué)第二醫(yī)院骨科,山西 太原 030001)
實(shí)驗(yàn)研究
力學(xué)刺激對(duì)體外立體培養(yǎng)軟骨細(xì)胞基質(zhì)代謝的影響
段王平,苑偉,孫振偉,李琦,趙昱,衛(wèi)小春*
(山西醫(yī)科大學(xué)第二醫(yī)院骨科,山西 太原 030001)
目的 分析周期性動(dòng)態(tài)壓縮刺激對(duì)體外海藻酸鈉立體培養(yǎng)關(guān)節(jié)軟骨細(xì)胞基質(zhì)合成代謝的影響。方法 取2月齡新西蘭白兔10只,酶解消化獲取膝關(guān)節(jié)全層軟骨細(xì)胞,以海藻酸鈉凝膠立體培養(yǎng),分為實(shí)驗(yàn)組和對(duì)照組兩組,對(duì)照組行靜態(tài)培養(yǎng),未施加任何壓力;實(shí)驗(yàn)組利用Flexcell-5000力學(xué)加載系統(tǒng)對(duì)體外培養(yǎng)軟骨細(xì)胞進(jìn)行周期性壓縮應(yīng)力加載,1 h/d。于加載第7、14、21天留取軟骨細(xì)胞,采用實(shí)時(shí)定量聚合酶聯(lián)反應(yīng)對(duì)軟骨細(xì)胞蛋白聚糖(aggrecan,AGG)、Ⅱ型膠原、Ⅹ型膠原及基質(zhì)金屬蛋白酶-13(matrix metalloproteinase-13,MMP-13)mRNA進(jìn)行定量分析。結(jié)果 實(shí)驗(yàn)組在第7天AGG及Ⅱ型膠原mRNA的表達(dá)明顯增高(P<0.05),隨加載時(shí)間延長(zhǎng),其表達(dá)量逐漸下降,在第14、21天兩組比較均無(wú)明顯差異。同時(shí),實(shí)驗(yàn)組在第7天時(shí),Ⅹ型膠原及MMP-13的表達(dá)無(wú)明顯差異。第14天,實(shí)驗(yàn)組Ⅹ型膠原及MMP-13 mRNA的表達(dá)與對(duì)照組比較明顯增高(P<0.05)。結(jié)論 立體培養(yǎng)軟骨細(xì)胞在生理力學(xué)刺激7 d時(shí)可明顯促進(jìn)其基質(zhì)合成能力,但隨刺激時(shí)間的延長(zhǎng),其基質(zhì)合成能力逐漸減弱,軟骨細(xì)胞趨于肥大分化。
軟骨細(xì)胞;海藻酸鈉;周期性動(dòng)態(tài)壓縮;代謝
目前,關(guān)節(jié)軟骨損傷患者越來(lái)越多。尤其各種創(chuàng)傷引起青壯年患者關(guān)節(jié)軟骨的局部損傷,治療較為困難,嚴(yán)重影響患者的生活質(zhì)量。組織工程技術(shù)為促進(jìn)軟骨損傷修復(fù)帶來(lái)了福音,但軟骨細(xì)胞在體外培養(yǎng)軟骨構(gòu)建過(guò)程中極易發(fā)生失分化[1-2],從而導(dǎo)致軟骨損傷修復(fù)效果欠佳,修復(fù)組織力學(xué)性能不能恢復(fù)到正常軟骨的水平,且隨體內(nèi)修復(fù)時(shí)間的延長(zhǎng),修復(fù)組織的快速退變[3-4]成為制約其發(fā)展的主要問(wèn)題。大量相關(guān)研究證實(shí),力學(xué)刺激在關(guān)節(jié)軟骨形態(tài)、細(xì)胞外基質(zhì)新陳代謝及軟骨修復(fù)方面發(fā)揮著重要作用[5-6]。但力學(xué)刺激在組織工程軟骨構(gòu)建中對(duì)軟骨細(xì)胞基質(zhì)合成能力的影響,尚不完全明了。本課題在建立Flexcell-5000軟骨細(xì)胞力學(xué)加載系統(tǒng)的基礎(chǔ)上,通過(guò)實(shí)時(shí)定量聚合酶聯(lián)反應(yīng)(real-time PCR,RT-PCR)技術(shù)分析精確控制的動(dòng)態(tài)壓縮應(yīng)力對(duì)體外海藻酸鈉凝膠立體培養(yǎng)軟骨細(xì)胞基質(zhì)合成代謝能力的影響,進(jìn)一步完善明確力學(xué)刺激在軟骨細(xì)胞組織工程軟骨構(gòu)建中的作用。
1.1 實(shí)驗(yàn)動(dòng)物 2月齡新西蘭大白兔10只,均單獨(dú)籠養(yǎng),正常飲水、飲食。無(wú)菌條件剖取兔雙膝關(guān)節(jié),于超凈工作臺(tái)削取全層軟骨,絞碎,于37℃ CO2培養(yǎng)箱采用0.4%鏈霉蛋白酶和0.025% Ⅱ型膠原酶依次酶解消化獲取膝關(guān)節(jié)全層軟骨細(xì)胞。
1.2 海藻酸鈉凝膠立體培養(yǎng) 按每毫升生理鹽水加入12 mg海藻酸鈉干粉攪拌制備海藻酸鈉凝膠,0.22 μm濾網(wǎng)除菌。將上述細(xì)胞懸液與海藻酸鈉凝膠充分混勻吹打,保持細(xì)胞濃度為4×106/mL。制備海藻酸鈉凝膠盤(pán),體積50 μL,圓柱狀,高度3 mm、直徑4.5 mm,10%氯化鈣溶液浸泡5 min膠化定形,移入力學(xué)加載細(xì)胞培養(yǎng)板,每孔加原代培養(yǎng)基3 mL,培養(yǎng)條件:37℃,5% CO2,每3天換液1次。
1.3 力學(xué)加載及分組 采用Flexcell-5000基底壓縮加載系統(tǒng)(美國(guó),F(xiàn)lexcell公司)對(duì)海藻酸鈉凝膠盤(pán)立體培養(yǎng)軟骨細(xì)胞實(shí)現(xiàn)精確的周期性壓縮應(yīng)力。本實(shí)驗(yàn)分為兩組,即實(shí)驗(yàn)組和對(duì)照組。對(duì)照組行靜態(tài)培養(yǎng),未施加任何壓力;實(shí)驗(yàn)組:對(duì)海藻酸鈉凝膠盤(pán)進(jìn)行周期性壓縮應(yīng)力加載,加載條件:正弦波,0.5Hz,20kPa,1 h/d。于加載第7、14、21天進(jìn)行相關(guān)分析。
1.4 RT-PCR檢測(cè) 于加載第7、14、21天收集凝膠盤(pán),,加入10%乙二胺四乙酸二鈉溶液,輕微震蕩分離獲取軟骨細(xì)胞。Trizol法提取總RNA,使用PrimeScriptTM RT試劑盒將RNA反轉(zhuǎn)錄為cDNA,采用PCR儀將cDNA進(jìn)行相應(yīng)引物擴(kuò)增。引物設(shè)計(jì)如下:蛋白聚糖(aggrecan,AGG):5′-TCTACCGCTGTGAGGTGATGC-3′和5′-TTCACCACGACCTCCAAGG-3′;Ⅱ型膠原:5′-ACACTGCCAACGTCCAGATG-3′和5′-GTGATGTTCTGGGAGCCCTC-3′;Ⅹ型膠原:5′-AGCCAGGGTTGCCAGGACC-3′和5′-CCAGGAGCACCATATCCTGT-3′;基質(zhì)金屬蛋白酶-13(matrix metalloproteinase-13,MMP-13):5′-CACCGGATCTGCCAAGAGA-3′和5′-CTGGAGAACGTGATTGGAGTCA-3′;GAPDH:5′-GAGCCCTTCCACAATGCCAAA-3′和5′-GTCGTGGAGTCTACTGGTGTC-3′。通過(guò)計(jì)算機(jī)軟件測(cè)量和計(jì)算Ct值,計(jì)算目的基因相對(duì)轉(zhuǎn)錄水平[7]。
與對(duì)照組比較,實(shí)驗(yàn)組在第7天AGG及Ⅱ型膠原mRNA的表達(dá)明顯增高(P<0.05),隨加載時(shí)間延長(zhǎng),其表達(dá)量逐漸下降,在第14、21天兩組比較均無(wú)明顯差異(見(jiàn)圖1)。與對(duì)照組比較,實(shí)驗(yàn)組在早期第7天時(shí),Ⅹ型膠原及MMP-13的表達(dá)無(wú)明顯差異。在第14天時(shí),實(shí)驗(yàn)組Ⅹ型膠原及MMP-13 mRNA的表達(dá)與對(duì)照組比較明顯增高(P<0.05)。而在第21天時(shí)兩組之間Ⅹ型膠原及MMP-13 mRNA的表達(dá)無(wú)明顯差異(見(jiàn)圖2)
a AGG b Ⅱ型膠原
圖1 AGG及Ⅱ型膠原mRNA表達(dá)柱狀圖
軟骨細(xì)胞作為成體組織來(lái)源的組織工程軟骨種子細(xì)胞,由于軟骨組織來(lái)源缺乏,體外大量的擴(kuò)增培養(yǎng)是目前常用的方法之一[8]。但軟骨細(xì)胞在體外單層擴(kuò)增培養(yǎng)的方式極易喪失其分化成熟的表型,基質(zhì)合成能力降低,退變轉(zhuǎn)化為纖維細(xì)胞表型[9]。本課題組前期通過(guò)微管吸吮力學(xué)分析進(jìn)一步證實(shí),老年和骨關(guān)節(jié)炎軟骨細(xì)胞黏彈性力學(xué)特性明顯降低[10]。且在體外培養(yǎng)擴(kuò)增過(guò)程中,隨著傳代次數(shù)增加,軟骨細(xì)胞逐漸失去黏彈性蠕變特性,表現(xiàn)為彈性固體特征,且隨傳代次數(shù)增加,軟骨細(xì)胞楊氏模量和表面張力逐漸增高,細(xì)胞質(zhì)內(nèi)細(xì)胞骨架(cytoskeleton,CSK)的空間分布、成分及含量發(fā)生明顯變化,提示CSK在軟骨細(xì)胞體外培養(yǎng)失分化過(guò)程中的作用[11-12]。
a X型膠原 b MMP-13
圖2 X型膠原及MMP-13 mRNA表達(dá)柱狀圖
大量研究證實(shí),藻酸鈉微球等體外三維立體培養(yǎng)可維持軟骨細(xì)胞的表型,增強(qiáng)軟骨細(xì)胞特異性Ⅱ型膠原和糖胺聚糖類(lèi)的表達(dá)[13]。同時(shí),有研究發(fā)現(xiàn),體外立體培養(yǎng)可明顯促進(jìn)骨髓間充質(zhì)干細(xì)胞(bone mesenchymal stem cells,BMSCs)向軟骨細(xì)胞的分化[14]。且立體三維培養(yǎng)能使已經(jīng)去分化的軟骨細(xì)胞發(fā)生重分化,穩(wěn)定其表型,恢復(fù)去分化軟骨細(xì)胞表達(dá)特異性標(biāo)志物的表達(dá),恢復(fù)其超微結(jié)構(gòu)和維持Ⅰ、Ⅱ膠原表達(dá)的作用[15-16]。
在日?;顒?dòng)中,人體關(guān)節(jié)軟骨承受著壓力、剪切力等多種力學(xué)刺激。大量研究證實(shí),力學(xué)環(huán)境對(duì)軟骨細(xì)胞生長(zhǎng)、分化、表型的維持,對(duì)組織工程軟骨的修復(fù)及重建有非常重要的作用[17-18]。本實(shí)驗(yàn)對(duì)體外海藻酸鈉凝膠立體培養(yǎng)軟骨細(xì)胞施加0.5Hz、20kPa的周期性動(dòng)態(tài)壓縮應(yīng)力,根據(jù)力學(xué)計(jì)算,這種壓力更加接近于關(guān)節(jié)軟骨正常狀態(tài)下的生理壓力。通過(guò)實(shí)驗(yàn)進(jìn)一步證實(shí),壓縮刺激7天后軟骨細(xì)胞AGG和Ⅱ型膠原基因表達(dá)水平明顯上調(diào),這說(shuō)明了適當(dāng)力學(xué)刺激促進(jìn)提高了軟骨細(xì)胞基質(zhì)合成能力。但隨著力學(xué)刺激時(shí)間的延長(zhǎng),軟骨細(xì)胞趨于肥大方向分化,主要表現(xiàn)為X型膠原及MMP-13基因表達(dá)的提高。有研究表明,軟骨細(xì)胞可通過(guò)細(xì)胞骨架肌動(dòng)蛋白的解聚,使細(xì)胞本身力學(xué)和機(jī)械敏感性適應(yīng)周?chē)牧W(xué)環(huán)境的變化[19]。長(zhǎng)時(shí)間超負(fù)荷的力學(xué)加載,導(dǎo)致細(xì)胞骨架的改變,致使軟骨細(xì)胞肥大適應(yīng)力學(xué)刺激基質(zhì)合成能力的退變[20]。
本實(shí)驗(yàn)通過(guò)精確的周期性壓縮應(yīng)力加載定量分析發(fā)現(xiàn),海藻酸鈉立體培養(yǎng)軟骨細(xì)胞在生理壓力刺激7天d時(shí)可明顯促進(jìn)其基質(zhì)合成能力。但隨力學(xué)刺激時(shí)間的延長(zhǎng),其基質(zhì)合成能力逐漸減弱,軟骨細(xì)胞趨于肥大分化,完善了力學(xué)刺激在軟骨細(xì)胞組織工程軟骨構(gòu)建中的作用。
[1]Danisovic L,Varga I,Zamborsky R,etal.The tissue engineering of articular cartilage:cells,scaffolds and stimulating factors[J].Exp Biol Med (Maywood),2012,237(1):10-17.
[2]Goepfert C,Slobodianski A,Sch illing AF,etal.Cartilage engineering from mesenchymal stem cells[J].Adv Biochem Engin/Biotechnol,2010(123):163-200.
[3]Henson FM,Getgood AM,Caborn DM,etal.Effect of a solution of hyaluronic acid-chondroitin sulfate-N- acetyl glucosamine on the repair response of cartilage to single-impact load damage[J].Am J Vet Res,2012,73(2):306-312.
[4]Buckley CT,Meyer EG,Kelly DJ.The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells[J].Tissue Eng Part A,2012,18(3-4):382-396.
[5]Croos JA,Dhaliwal SS,Grynpas MD,etal.Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic.gene changes in chomdrocytes resulting in increased extracellular matrix accumulation[J].Matrix Biology,2006,25(6):323-331.
[6]Trickey WR,Vail TP,Guilak F.The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes[J].J Orthop Res,2004,22(1):131-139.
[7]Wei L,Kanbe K,Lee M,etal.Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation[J].Developmental Biology,2010,341(1):236-245.
[8]Binette F,McQuaid DP,Haudenschild DR,etal.Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro[J].J Orthop Res,1998,16(2):207-216.
[9]Bonaventure J,Kadhom N,Cohen-solal L,etal.Reexpression of cartilage-specific genes by dedifferentialted human articular chondrocytes cultures in alginate beads[J].Exp Cell Res,1993,212(1):97-104.
[10]Duan WP,Sun ZW,Li Q,etal.Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee[J].Chin Med J,2012,125(14):2574-2581.
[11]Duan W,Wei L,Zhang J,etal.Alteration of viscoelastic properties is associated with a change in cytoskeleton components of ageingchondrocytes from rabbit knee articular cartilage[J].Mol Cell Biomech,2011,8(4):253-274.
[12]段王平.不同年齡兔膝關(guān)節(jié)軟骨單位生物學(xué)特性分析[D].太原:山西醫(yī)科大學(xué)博士論文,2011.
[13]Takayama K,Ishida K,Matsushita T,etal.SIRT1 regulation of apoptosis of human chondrocytes[J].Arthritis Rheum,2009,60(9):2731-2740.
[14]Cheng NC,Estes BT,Awad HA,etal.Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix[J].Tissue Eng Part A,2009,15(2):231-241.
[15]Schuurman W,Gawlitta D,Klein TJ,etal.Zonal chondrocyte subpopulations reacquire zone-specific characteristics during in vitro rediffer-entiation[J].Am J Sports Med,2009,37(1):97-104.
[16]Carossino AM,Recenti R,Carossino R,etal.Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients[J].Biogerontology,2007,8(5):483-498.
[17]Hoenig E,Winkler T,Gabriela M,etal.High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue engineered cartilage[J].Tissue Eng Part A,2011,17(9-10):1401-1411.
[18]Huang AH,F(xiàn)arrell MJ,Kim M,etal.Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stemcell-laden hydrogel[J].Eur Cell Mater,2010,26(19):72-85.
[19]Guilak F,Erickson GR,Ting-Beall PH.The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes[J].Biophys J,2002,82(2):720-727.
[20]Campbell JJ,Blain EJ,Chowdhury TT,etal.Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes[J].Biochem Biophys Res Commun.2007,361(2):329-334.
Metabolize Analysis of Chondrocytes Cultured in Alginate in Response to Cyclical Dynamic Compression
Duan Wangping,Yuan Wei,Sun Zhenwei,etal
(Department of Orthopaedics,the Second Hospital of Shanxi Medical University,Taiyuan 030001,China)
Objective To analyze the matrix metabolite of isolated chondrocytes cultured in alginate in response to cyclical dynamic compression.Methods The chondrocytes were isolated from the 2-months rabbit knees cartilage,and the chondrocytes were cultured in alginate.The cells were treated with cyclical dynamic compression by using Flexcell-5000 compression system kept under an uncompressed condition as a control.The mRNA gene expression of aggrecan (AGG),type Ⅱcollagen,type X collagen and matrix metalloproteinases 13 (MMP-13) were determined by reverse transcription polymerase chain reaction (RT-PCR) at 7,14 and 21 day after under loading.Results A significant up-regulation was observed in the gene expression of AGG and type Ⅱcollagen on 7 day in the experimental group compared to control group,but showed no significant difference on 14 and 21 days.The type X collagen and MMP-13 mRNA gene expression were significantly increased on 14 days in the experimental group compared to control group.There were no significant difference on 7 and 21 days.Conclusion Chondrocytes cultured in alginate can keep their matrix synthetic ability under the physiological compression early,but the cells degenerate and hypertrophy over loading time.
chondrocytes;alginate;cyclical dynamic compression;metabolize
國(guó)家自然科學(xué)基金項(xiàng)目(31340010、31271033);教育部高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金聯(lián)合資助課題(20121417120004);山西省基礎(chǔ)研究計(jì)劃項(xiàng)目青年科技研究基金項(xiàng)目(2013021036-3);高等學(xué)??萍紕?chuàng)新項(xiàng)目(20131105);山西醫(yī)科大學(xué)博士啟動(dòng)基金項(xiàng)目(03201114);*本文通訊作者:衛(wèi)小春
1008-5572(2015)05-0428-04
R318.01
A
2014-04-10
段王平(1981- ),男,講師,山西醫(yī)科大學(xué)第二醫(yī)院骨科,030001。