鄭宗林,朱成科,Delbert M. GATLIN III
(1.西南大學(xué)榮昌校區(qū)水產(chǎn)系,水產(chǎn)動物繁育和健康養(yǎng)殖研究中心,重慶 402460;2.美國德州農(nóng)工大學(xué)野生動物和魚類科學(xué)及營養(yǎng)系,美國 德克薩斯 77840-2258)
飼料中添加牛至精油對紅羅非魚貨架期的影響
鄭宗林1,2,朱成科1,Delbert M. GATLIN III2
(1.西南大學(xué)榮昌校區(qū)水產(chǎn)系,水產(chǎn)動物繁育和健康養(yǎng)殖研究中心,重慶 402460;2.美國德州農(nóng)工大學(xué)野生動物和魚類科學(xué)及營養(yǎng)系,美國 德克薩斯 77840-2258)
研究牛至精油對紅羅非魚品質(zhì)和貨架期的影響。以空白添加組為對照,分別在對照組飼料中添加250、500、1 000、2 000 mg/kg牛至精油,經(jīng)過20 周養(yǎng)殖實(shí)驗(yàn),紅羅非魚在4 ℃條件下冷藏0、7、14、21 d,在每個(gè)冷藏時(shí)間點(diǎn)檢測紅羅非魚物理化學(xué)特性、微生物定性定量分析和感官分析評估,以判定其腐敗程度。結(jié)果表明,牛至精油添加對紅羅非魚體色、硫代巴比妥酸反應(yīng)值和總揮發(fā)性鹽基氮含量有顯著的影響。1 000、2 000 mg/kg牛至精油可有效降低冷藏魚片的腸桿菌和大腸菌群數(shù)量。感官分析表明,紅羅非魚體的質(zhì)量指數(shù)與牛至精油的添加量沒有顯著相關(guān),對照組的貨架期為16 d,牛至精油組的貨架期為18 d,但與添加量無顯著相關(guān)。
牛至精油;日糧補(bǔ)充;紅羅非魚;貨架期
食品脂質(zhì)過氧化指標(biāo)是食物質(zhì)量安全和品質(zhì)的重要評判標(biāo)準(zhǔn)之一。脂質(zhì)氧化后的產(chǎn)物會產(chǎn)生難聞的氣味,降低產(chǎn)品的感官質(zhì)量。水產(chǎn)品因其較高含量的不飽和脂肪酸而易導(dǎo)致脂肪氧化。由于目前人們對食品安全的關(guān)注程度日益增強(qiáng),使用化學(xué)合成抗氧化劑逐漸被限制。因此,從食品安全的角度出發(fā),選擇一些天然植物和香料作為天然抗氧化劑顯得至關(guān)重要[1]。
牛至精油是從天然植物牛至(O. heracleoticum L.)的葉片和花朵中提取,主要成分為酚類化合物,其中香芹酚和麝香草酚含量可達(dá)78.27%[2],在所有天然原料中抗氧化性能首屈一指[3]。純的精油比其任意單一成分的抗氧化性能都要強(qiáng),其主要成分抗氧化活性比較如下:麝香草酚>香芹>γ-松油烯>月桂烯>芳樟醇>p-對傘花烴>苧>1,8-桉樹腦>α-蒎烯[4]。這種活性的差異與芳香環(huán)和羥基的數(shù)目和位置相關(guān)[5]。
同時(shí),牛至精油的抗菌活性也是其促進(jìn)動物生長、抑制病原微生物增殖從而控制冷藏食物的腐敗變質(zhì)的重要作用機(jī)理[2]。麝香草酚的抗菌活性超過其他含芳香類化合物的植物,如迷迭香和鼠尾草[6]。牛至精油對革蘭氏陽性菌的效果略優(yōu)于革蘭氏陰性菌,而且在低pH值、低溫和低溶氧的情況下效果更好[7]。牛至精油主要含疏水性化合物,對細(xì)菌細(xì)胞質(zhì)膜具有較高的親和性,降低細(xì)菌細(xì)胞膜的穩(wěn)定性,通過破壞細(xì)胞膜而導(dǎo)致細(xì)菌細(xì)胞內(nèi)容物流出、膜電位改變等方式逐步抑制和殺滅細(xì)菌[8]。
目前已有關(guān)于牛至精油或其主要成分在食品加工或貯藏保護(hù)方面的研究[9-11],也有在飼料中添加精油后對養(yǎng)殖動物活體及加工產(chǎn)品的抗氧化、抗菌等方面的研究[12-13],但缺乏對牛至精油深入全面的研究和探討。本研究通過在紅羅非魚(Oreochromis niloticus× O. mossambicus)飼料中加入不同劑量的牛至精油后,養(yǎng)殖20 周后,對冷藏的全魚及肌肉進(jìn)行質(zhì)量評估,以期為探討牛至精油對水產(chǎn)品的品質(zhì)保障提供參考資料。
1.1 材料
1.1.1 魚和養(yǎng)殖條件
實(shí)驗(yàn)魚來自重慶市銅梁熱帶魚繁殖場。生長實(shí)驗(yàn)在15 個(gè)長方形水泥池(1.5 m×0.8 m×0.7 m,每缸水體積為600 L)組成的循環(huán)水養(yǎng)殖系統(tǒng)進(jìn)行,水流速率0 L/h。每天測一次水溫,每3 d檢測水體溶氧和氨氮。實(shí)驗(yàn)期間水溫范圍為25~28 ℃;飼養(yǎng)用水為經(jīng)曝氣過的自來水,水體中溶氧保持在6 mg/L以上,氨氮在0.4 mg/L以下,pH 7.5。
1.1.2 實(shí)驗(yàn)飼料
實(shí)驗(yàn)設(shè)計(jì)5 種等氮等能(34.5%蛋白質(zhì)、2.98 kcal/g能量)飼料,以動植物混合蛋白為飼料蛋白源?;A(chǔ)飼料配方見表1,添加牛至精油配制成5 種水平梯度的實(shí)驗(yàn)飼料,飼料干物質(zhì)中牛至精油添加量分別為0、250、500、1 000、2 000 mg/kg,記為OEO250、OEO500、OEO1000和OEO2000。由于牛至精油的疏水性,將牛至精油先溶在菜油中,然后再與其他組分混合。飼料原料過40 目篩混勻,壓粒制成直徑4 mm 顆粒40 ℃烘干后置于冰箱備用。
表1 飼料配方組成和營養(yǎng)成分分析Table1 Formulation and proximate composition of the diets %
1.2 方法
1.2.1 實(shí)驗(yàn)分組
將初質(zhì)量(230±13.5) g共300 尾魚隨機(jī)安排在15 個(gè)水泥池中,每個(gè)水泥池20 尾,每組3 個(gè)重復(fù)。飽食投喂,每天投喂2 次。每月每組取6 尾魚進(jìn)行取樣稱質(zhì)量。養(yǎng)殖實(shí)驗(yàn)進(jìn)行140 d,直到達(dá)商品規(guī)格(485±35.5)g。實(shí)驗(yàn)結(jié)束后,所有魚都進(jìn)行稱質(zhì)量,每池選擇6 尾魚低溫致死后解剖取樣。全魚冷藏(4±1)℃貯藏0、7、14、 21 d,每組18 尾魚平均放在2 個(gè)封閉的聚苯乙烯盒(帶排水孔)中,盒中冰和魚的比重保持在1∶1。
1.2.2 指標(biāo)測定
1.2.2.1 色差的測定
采用WSC-100型色差儀對魚片進(jìn)行L*、a*、b*值的測定。根據(jù)測得的a*、b*的值計(jì)算色彩飽和度C*ab值[14]。
C*ab=(a*2+b*2)1/2
每個(gè)樣品對3 個(gè)部位進(jìn)行顏色檢測,第1個(gè)部位是尾鰭靠背部附近,第2個(gè)部位是尾鰭靠泄殖孔附近,第3個(gè)部位是腹部。這3 個(gè)部位測定結(jié)果的平均值即為該樣品的最后色度計(jì)算值。
1.2.2.2 細(xì)菌總數(shù)的測定
取10 g肌肉樣品加入90 mL含1%蛋白胨的培養(yǎng)基中,旋渦混合器振蕩5 min 后,按10 倍稀釋法稀釋成102、103、104等稀釋液,再接種到合適的培養(yǎng)基上。根據(jù)GB 4789.1—2010《食品衛(wèi)生微生物學(xué)檢驗(yàn)總則》測定方法進(jìn)行。采用稀釋倒平板法,并用平板計(jì)數(shù)瓊脂計(jì)算可培養(yǎng)的需氧菌數(shù)量。將接種后的平皿置于30 ℃培養(yǎng)箱中培養(yǎng)72 h,測定總的可培養(yǎng)嗜溫菌數(shù)量;將接種后的平皿置于15 ℃培養(yǎng)箱中培養(yǎng)120 h,測定總的可培養(yǎng)嗜冷菌數(shù)量;將稀釋樣品加入10 mL經(jīng)45 ℃融化的紫紅膽鹽葡糖糖瓊脂中,37 ℃培養(yǎng)24 h,具有紫色環(huán)的較大克隆即為腸桿菌。樣品稀釋液涂布于顯色培養(yǎng)基(Oxoid code CM 956),并在37 ℃培養(yǎng)24 h,計(jì)數(shù)大腸菌群和大腸桿菌(Escherichia coli);選擇性培養(yǎng)基加入頭孢噻啶,20 ℃培養(yǎng)48 h,計(jì)數(shù)假單胞菌。所有的菌落形成單位(CFU/g)以對數(shù)形式表示。
1.2.2.3 硫代巴比妥酸反應(yīng)(thiobarbituric acid reactive substances,TBARS)值和揮發(fā)性鹽基氮(total volatile base nitrogen,TVB-N)值的檢測
按照Botsoglou等[15]的方法測定TBARS值,以丙二醛(malondialdehyde,MDA)含量表示。MDA通過酸溶液提取,再與硫代巴比妥酸孵育后進(jìn)行紫外檢檢測。TVB-N值的測定方法參考?xì)W盟規(guī)范[16]進(jìn)行。
1.2.2.4 感官評定
表2 冷藏紅羅非魚的感官評判標(biāo)準(zhǔn)Table2 Criteria for sensory evaluation of O. niloticus × O. mossambiiccuuss during ice storage
采用感官評定中的選擇檢驗(yàn)法,同時(shí)參考?xì)W盟水產(chǎn)品質(zhì)量檢驗(yàn)規(guī)程[16]進(jìn)行。由6 位實(shí)驗(yàn)小組成員對實(shí)驗(yàn)樣品進(jìn)行11 個(gè)參數(shù)按照表2的評判標(biāo)準(zhǔn),對質(zhì)量、感官的好壞進(jìn)行評分(1~5 分)。每組取4 尾魚進(jìn)行評估,1 分表示魚體新鮮,分?jǐn)?shù)增加表示魚體腐敗程度增加。每個(gè)參數(shù)的得分總和平均數(shù)即為最后的質(zhì)量參數(shù)。
1.3 數(shù)據(jù)分析
2.1 牛至精油對紅羅非魚貯藏期間理化性質(zhì)的影響
表3 牛至精油對冷藏紅羅非魚片肌肉顏色的影響Table3 Color measurements taken on fi llets during storage on ice for O. niloticus × O. mossambicus fed different doses of oregano essential oil
由表3可知,紅羅非魚片顏色的變化很好地體現(xiàn)了其質(zhì)量變化的趨勢,Pavlidi等[18]認(rèn)為,L*值隨冷藏時(shí)間延長的可能原因是系水力、自溶及肌肉蛋白質(zhì)降解導(dǎo)致的光折射率的變化所致。蛋白質(zhì)的腐敗對亮度值都有同向影響,均有同一冷藏時(shí)間內(nèi)隨牛至精油的添加而逐漸減小的趨勢。a*值的變化均不顯著,這可能是由于羅非魚片的冷藏過程中氧化程度不嚴(yán)重,這與Harmre等[19]的研究結(jié)果一致。L*值在冷藏期間有緩慢增加趨勢。a*值在冷藏期間均沒有顯著變化,b*值在冷藏期內(nèi)逐漸降低,C*ab值的變化趨勢與b*值基本一致。牛至精油對a*值也沒有顯著影響,但有增加b*值和C*ab值的趨勢。在冷藏的第7天,隨著牛至精油添加量的增加,b*值和C*ab值呈顯著提高趨勢,其中OEO2000組達(dá)到最大值。
表4 牛至精油對冷藏紅羅非魚片的TBARS、TVB-N值的影響Table4 Color measurements taken on fi llets during storage on ice for O. nilotiiccuuss × O. mossambicus fed different doses of oregano essential oil
由表4可知,脂質(zhì)過氧化參數(shù)TBARS值或過氧化值是判定食品氧化程度的重要參數(shù)[20-22]。所以,正常情況下在冷藏過程中過氧化值逐漸增加,這在本實(shí)驗(yàn)中也得到驗(yàn)證。同時(shí)發(fā)現(xiàn),牛至精油的添加具有明顯地抑制羅非魚片肌肉過氧化的進(jìn)程,TBARS值證實(shí)了這一特點(diǎn),而類似的研究結(jié)果也在金頭鯛(Sparus aurata)中發(fā)現(xiàn)[23-24]。Alarcon-Rojo等[25]發(fā)現(xiàn)添加1 g/kg的牛至精油,豬屠宰后經(jīng)過16 d的冷藏觀察發(fā)現(xiàn),肉品質(zhì)和脂質(zhì)抗過氧化能力都得到明顯提高。TVB-N值也是判定魚片品質(zhì)的一個(gè)重要參數(shù),歐盟委員會根據(jù)不同的水產(chǎn)品種類,確定了魚片的TVB-N限值范圍(25、30、35 mg N/100 g)[26]。但這個(gè)跟多個(gè)因素有關(guān),如養(yǎng)殖類型、飼料、魚齡,是全魚還是去除內(nèi)臟冷藏等[27-28],因?yàn)閮?nèi)源性酶也會參與這些物質(zhì)的形成[29],直接與魚片內(nèi)的微生物活動相關(guān)[27]。麝香草提取物也發(fā)現(xiàn)可以降低煙熏或真空保存的藍(lán)魚[29]和虹鱒[30]魚片的TVB-N值,并提出麝香草提取物具有抑菌機(jī)能。表4的結(jié)果提示,TBARS值介于0.12~1.00 mg MDA/kg之間,MDA值隨冷藏時(shí)間的延長,呈現(xiàn)顯著上升趨勢。冷藏0 d時(shí),牛至精油的TBARS值還比對照組顯著提高;冷藏7 d時(shí),各組間沒有顯著差異,而到第14、21天時(shí),隨牛至精油的添加量逐漸加大,羅非魚肌肉中TBARS值呈現(xiàn)顯著下降趨勢,以O(shè)EO2000組最低。TVB-N值隨冷藏時(shí)間延長顯著提高,到第21天各組均達(dá)最大值。第14、21天,牛至精油有顯著降低TVB-N值的趨勢。
2.2 牛至精油對紅羅非魚貯藏期間微生物菌群分析
由表5可知,在本實(shí)驗(yàn)中,也發(fā)現(xiàn)使用牛至精油后,嗜熱菌和嗜冷菌都有降低的趨勢。牛至具有很好的抗菌活性的原因是有高含量的酚類化合物,特別是香芹酚[31-33]。而牛至精油具有更強(qiáng)的抗菌活性,主要化學(xué)組分為香芹酚和百里香酚[7,34]。Abdel-Latif等[35]將牛至精油直接添加于飼料中,結(jié)果發(fā)現(xiàn)牛至精油可以促生長、增強(qiáng)抗氧化活性,以及提高抗感染能力,類似實(shí)驗(yàn)Zheng等[2]在斑點(diǎn)叉尾鮰、Gracia-Valenzuela等[36]在對蝦的研究中也有發(fā)現(xiàn)。Wu等[37]發(fā)現(xiàn)在白鰱皮明膠-殼聚糖膜中添加牛至精油后,其抗菌活性明顯提高。在本實(shí)驗(yàn)中發(fā)現(xiàn),牛至精油對腸桿菌和大腸菌群在冷藏期的數(shù)量變化影響非常顯著,冷藏14~21 d后,均發(fā)現(xiàn)1 000、2 000 g/kg組的腸桿菌和大腸菌群數(shù)量較其他組明顯下降,但假單胞菌卻有比較明顯的上升趨勢。這種相反的效果可能是因?yàn)閺聂~體分離的多株假單胞菌具有高黏合性的鐵載體,相比其他細(xì)菌,會利用大部分的鐵離子,而對其他細(xì)菌,如腸桿菌、大腸菌群和乳酸菌的生長造成抑制[38]。國際食品微生物分類委員會規(guī)定冷藏水產(chǎn)品的最高微生物檢出量不能超過7 (lg(CFU/g)),在本實(shí)驗(yàn)中直到第21天,冷藏羅非魚片的細(xì)菌含量也未超過這個(gè)標(biāo)準(zhǔn)。但感官分析卻沒有這么長的貨架期,而消費(fèi)者的感官質(zhì)量評判是產(chǎn)品貨架期的一個(gè)重要依據(jù)之一。冷藏期間,所有實(shí)驗(yàn)組各被檢細(xì)菌均顯著增加。從第7~21天細(xì)菌的增速明顯加快,而0~7 d各組的幾種測定細(xì)菌基本沒有顯著變化。在冷藏期結(jié)束時(shí),耗氧嗜溫菌總數(shù)和耗氧嗜冷菌總數(shù)都在7 (lg(CFU/g))左右,假單胞菌數(shù)都在5 (lg(CFU/g))左右,而腸桿菌及大腸菌群數(shù)都在1~2 (lg(CFU/g))左右。冷藏期14 d時(shí),牛至精油對魚片細(xì)菌都有顯著影響,腸桿菌和大腸菌群數(shù)量都有顯著下降,其中以O(shè)EO1000和OEO2000組最低;與此同時(shí),嗜冷菌總數(shù)和假單胞菌數(shù)則隨牛至精油的增加而呈快速增加趨勢;冷藏期21 d時(shí),牛至精油對魚片各組被檢細(xì)菌無顯著影響。
2.3 牛至精油對紅羅非魚貯藏期間感官品質(zhì)的影響
表6 牛至精油對紅羅非魚冷藏后感官評估結(jié)果Table6 Sensory evaluation off tilapia during storage on ice for O. niloticcuuss × O. mossambicus fed different doses of oregano essential oil
續(xù)表6
牛至精油對紅羅非魚冷藏后感官評估結(jié)果見表6。Hernández等[39]在飼料中加入不同劑量的麝香草提取物后,發(fā)現(xiàn)金頭鯛的感官質(zhì)量有明顯提升;Al?i?ek等[30]也發(fā)現(xiàn)了類似的效果。Kostaki等[11]發(fā)現(xiàn)麝香草提取物還會影響海鱸的氣味和味道,同時(shí)延長貨架期3 d。但值得注意的是,以上案例都是直接將提取物外用在魚體上判定的,而本實(shí)驗(yàn)時(shí)直接加入飼料投喂魚所獲得的結(jié)果。牛至精油對水產(chǎn)品感官質(zhì)量的提高(感官指數(shù)下降)可能的機(jī)理不僅是其抑制病原微生物生長,Zheng等[2]發(fā)現(xiàn)其還有提高水產(chǎn)動物抗氧化、增強(qiáng)水產(chǎn)動物非特異性免疫機(jī)能,Abdel-Latif等[35]在尼羅羅非魚中也得到了驗(yàn)證。本實(shí)驗(yàn)發(fā)現(xiàn)牛至精油能保護(hù)黏液的脫離,而黏液也是提高魚類免受細(xì)菌感染的重要屏障[40],但對于如何保持魚片黏液的機(jī)制還需要進(jìn)一步研究。
牛至精油還能改善魚體的氣味。在第0、7天時(shí),各組之間沒有顯著差異,這表明牛至精油不改變魚體的天然氣味;但第14、21天時(shí),OEO1000和OEO2000組跟對照組相比,可以顯著降低魚體氣味的感官評分,表明牛至精油可能是通過降低導(dǎo)致魚體惡臭的物質(zhì)而其作用。本實(shí)驗(yàn)已經(jīng)發(fā)現(xiàn)牛至精油可降低魚體脂肪產(chǎn)生腐臭味的產(chǎn)生。實(shí)際上,魚體氣味在冷藏后期快速變差主要與假單胞菌的形成有密切關(guān)系,該過程包括了特定的一些魚體腐敗細(xì)菌,而這是產(chǎn)生惡臭味道的基礎(chǔ)。
Mexis等[41]將虹鱒魚片涂布牛至精油(0.4%)后發(fā)現(xiàn),對照組的感官貨架期為4 d,而牛至精油組為7~8 d。álvarez等[24]根據(jù)金頭鯛的冷藏的感官標(biāo)準(zhǔn)制定其貨架期,貨架期結(jié)束時(shí)的質(zhì)量指數(shù)是根據(jù)38 個(gè)質(zhì)量控制點(diǎn)計(jì)算而來,本實(shí)驗(yàn)采用了同一標(biāo)準(zhǔn)。根據(jù)此標(biāo)準(zhǔn),利用線性回歸所獲得的數(shù)據(jù),對照組的貨架期為16 d,而實(shí)驗(yàn)組的貨架期為18 d。這個(gè)數(shù)據(jù)聯(lián)合質(zhì)量指數(shù)可以得出牛至精油對提高紅羅非肉冷藏期肉品質(zhì)有一定幫助,但各添加量度組未體現(xiàn)顯著差異。各實(shí)驗(yàn)組冷藏羅非魚片感官評估的分值都隨時(shí)間的延長而顯著增加(表6)。高劑量牛至精油添加組的紅羅非魚體表黏液評分顯著高于對照組,但到第7天,低劑量組和對照組的黏液評分快速上升,且對照組與高劑量組差異已達(dá)顯著。冷藏前7 d,牛至精油對魚體氣味沒有顯著影響,但第14、21天的感官評估結(jié)果發(fā)現(xiàn),魚體氣味評分隨牛至精油的添加而顯著降低,表示其新鮮度保持更好。對鰓顏色的評估結(jié)果也發(fā)現(xiàn),冷藏開始時(shí)(0 d),牛至精油添加組的鰓顏色明顯比對照組羅非魚鰓要鮮紅,到第14天評估時(shí),仍然保持與第0天時(shí)一致的結(jié)果。而對于鰓的氣味指標(biāo)評估中,雖然各組沒有顯著差異,但能看到實(shí)驗(yàn)組鰓的新鮮度還是要高于對照組。從其他指標(biāo)如體表、肌肉彈性、眼睛明晰度等都可以看出,對照組的評估分基本都高于牛至精油添加組。第7、14天,冷藏羅非魚質(zhì)量參數(shù)隨牛至精油的添加量增加呈顯著下降趨勢。
本實(shí)驗(yàn)表明牛至精油加入飼料后對紅羅非魚具有較好的保護(hù)作用。牛至精油的添加對魚片的物理化學(xué)參數(shù)和微生物數(shù)量等的影響并未反映到質(zhì)量指數(shù)上,但諸如魚體氣味、鰓的顏色等,而這些特征卻是提高消費(fèi)者購買欲的幾個(gè)重要指標(biāo)。從前述實(shí)驗(yàn)數(shù)據(jù)總體分析表明,飼料中添加1 000 mg/kg的牛至精油,可以獲得較好的魚體感官品質(zhì),并延長紅羅非魚的貨架期。
[1] YANISHLIEVA N V, MARINOVA E, POKORN J. Natural antioxidants from herbs and spices[J]. European Journal of Lipid Science and Technology, 2006, 108(9): 776-793.
[2] ZHENG Z, TAN J Y, LIU H, et al. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfi sh (Ictalurus punctatus)[J]. Aquaculture, 2009, 292(3): 214-218.
[3] BOTSOGLOU N, FLOROU-PANERI P, BOTSOGLOU E, et al. The effect of feeding rosemary, oregano, saffron and a-tocopheryl acetate on hen performance and oxidative stability of eggs[J]. South African Journal of Animal Science, 2005, 35(3): 143-151.
[4] YOUDIM K, DEANS S, FINLAYSON H. The antioxidant properties of thyme (Thymus zygis L.) essential oil: an inhibitor of lipid peroxidation and a free radical scavenger[J]. Journal of Essential Oil Research, 2002, 14(3): 210-215.
[5] BREWER M. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(4): 221-247.
[6] IVANOVIC J, MISIC D, ZIZOVIC I, et al. In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates[J]. Food Control, 2012, 25(1): 110-116.
[7] BURT S. Essential oils: their antibacterial properties and potential applications in foods: a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253.
[8] SHAPIRO S, GUGGENHEIM B. The action of thymol on oral bacteria[J]. Oral Microbiology and Immunology, 1995, 10(4): 241-246.
[9] MAHMOUD B S, YAMAZAKI K, MIYASHITA K, et al. Bacterial microflora of carp (Cyprinus carpio) and its shelf-life extension by essential oil compounds[J]. Food Microbiology, 2004, 21(6): 657-666. [10] GOULAS A E, KONTOMINAS M G. Combined effect of light salting, modifi ed atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): biochemical and Sensory Attributes[J]. Food Chemistry, 2007, 100(1): 287-296.
[11] KOSTAKI M, GIATRAKOU V, SAVVAIDIS I N, et al. Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets[J]. Food Microbiology, 2009, 26(5): 475-482.
[12] AHMADIFAR E, FALAHATKAR B, AKRAMI R. Effects of dietary thymol-carvacrol on growth performance, hematological parameters and tissue composition of juvenile rainbow trout, Oncorhynchus mykiss[J]. Journal of Applied Ichthyology, 2011, 27(4): 1057-1060.
[13] GIANNENAS I, TRIANTAFILLOU E, STAVRAKAKIS S, et al. Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2012, 350: 26-32.
[14] CORZO O, BRACHO N, MARVAL J. Effects of brine concentration and temperature on color of vacuum pulse osmotically dehydrated sardine sheets[J]. LWT-Food Science and Technology, 2006, 39(6): 665-670.
[15] BOTSOGLOU N A, FLETOURIS D J, PAPAGEORGIOU G E, et al. Rapid, sensitive, and specifi c thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples[J]. Journal of Agricultural and Food Chemistry, 1994, 42(9): 1931-1937.
[16] REGULATION E. Council Regulation (EC) N 2406/96 of 26 November 1996 laying down common marketing standards for certain fishery products[J]. Official Journal of the European Union, 1996, 334(23): 1996.
[17] CHOW G C. Tests of equality between sets of coefficients in two linear regressions[J]. Econometrica: Journal of the Econometric Society, 1960, 28(3): 591-605.
[18] PAVLIDIS M, PAPANDROULAKIS N, DIVANACH P. A method for the comparison of chromaticity parameters in fi sh skin: preliminary results for coloration pattern of red skin Sparidae[J]. Aquaculture, 2006, 258(1): 211-219.
[19] HAMRE K, LIE ?, SANDNES K. Development of lipid oxidation and fl esh colour in frozen stored fi llets of Norwegian spring-spawning herring (Clupea harengus L.). Effects of treatment with ascorbic acid[J]. Food Chemistry, 2003, 82(3): 447-453.
[20] RUFF N, FITZGERALD R, CROSS T, et al. The effect of dietary vitamin E and C level on market-size turbot (Scophthalmus maximus)fi llet quality[J]. Aquaculture Nutrition, 2003, 9(2): 91-103.
[21] HERN N M, PEZ M L, ALVAREZ A, et al. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage[J]. Food Chemistry, 2009, 114(1): 237-245.
[22] TUCKEY N P, FORGAN L G, JERRETT A R. Fillet colour correlates with biochemical status in Australasian snapper (Pagrus auratus) during storage in refrigerated seawater[J]. Aquaculture, 2012, 356: 256-263.
[23] CAKLI S, KILINC B, CADUN A, et al. Quality differences of whole ungutted sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) while stored in ice[J]. Food Control, 2007, 18(5): 391-397.
[24] áLVAREZ A, GARC A G B, GARRIDO M, et al. The infl uence of starvation time prior to slaughter on the quality of commercial-sized gilthead seabream (Sparus aurata) during ice storage[J]. Aquaculture, 2008, 284(1): 106-114.
[25] ALARCON-ROJO A D, PEA-GONZALEZ E, JANACUA-VIDALES H, et al. Meat quality and lipid oxidation of pork after dietary supplementation with oregano essential oil[J]. World Applycation Science Journal, 2013, 21(5): 665-673.
[26] COUTRELIS N. European Union food law update[J]. Journal of Food Science and Technology, 2006, 42: 121-143.
[27] KYRANA V R, LOUGOVOIS V P, VALSAMIS D S. Assessment of shelf-life of maricultured gilthead sea bream (Sparus aurata) stored in ice[J]. International Journal of Food Science and Technology, 1997, 32(4): 339-347.
[28] TEJADA M, HUIDOBRO A. Quality of farmed gilthead seabream (Sparus aurata) during ice storage related to the slaughter method and gutting[J]. European Food Research and Technology, 2002, 215(1): 1-7.
[29] TOSUN ? Y, ULUSOY ?, üRETENER G. The use of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice[J]. Journal für Verbraucherschutz and Lebensmittelsicherheit, 2011, 6(1): 39-48.
[30] AL?I?EK Z. The effects of thyme (Thymus vulgaris L.) oil concentration on liquid-smoked vacuum-packed rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fillets during chilled storage[J]. Food Chemistry, 2011, 128(3): 683-688.
[31] 鄭宗林, 金立志. 專利植物提取物對斑點(diǎn)叉尾鮰生長性能的研究[J].飼料研究, 2009(5): 63-66.
[32] HAMMER K A, CARSON C, RILEY T. Antimicrobial activity of essential oils and other plant extracts[J]. Journal of Applied Microbiology, 1999, 86(6): 985-990.
[33] DORMAN H, DEANS S. Antimicrobial agents from plants: antibacterial activity of plant volatile oils[J]. Journal of Applied Microbiology, 2000, 88(2): 308-316.
[34] PECARSKI D M, KNE?EVΙ?-JUGOVΙ? Z D, DΙMΙTRΙJEVΙ?BRANKOVΙ? S I, et al. Comparative analysis of the chemical composition and antimicrobal activities of some of Lamiaceae family species and Eucaliptus (Eucaliptus globules M.)[J]. Acta Periodica Technologica, 2014, 45: 201-213.
[35] ABDEL-LATIF H M, KHALIL R H. Evaluation of two phytobiotics, Spirulina platensis and origanum vulgare extract on growth, serum antioxidant activities and resistance of Nile tilapia (Oreochromis niloticus) to pathogenic Vibrio alginolyticus[J]. Aquaculture, 2013, 371(15): 99-117.
[36] GRACIA-VALENZUELA M, VERGARA-JIM N M, BAEZ-FLORES M, et al. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps[J]. Archives of Biological Sciences, 2014, 66(4): 1367-1370.
[37] WU J, GE S, LIU H, et al. Properties and antimicrobial activity of silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan fi lms incorporated with oregano essential oil for fi sh preservation[J]. Food Packaging and Shelf Life, 2014, 83(2): 1513-1519.
[38] GRAM L, RAVN L, RASCH M, et al. Food spoilage-interactions between food spoilage bacteria[J]. International Journal of Food Microbiology, 2002, 78(1): 79-97.
[39] HERNáNDEZ B A, GARCíA M J, JORDáN M D, et al. Study of the dose of thyme essential oil in feed to prolong the shelf life of gilthead seabream (Sparus aurata)[J]. Aquaculture Nutrition, 2014, 65(7): 68-81.
[40] 鄢慶枇, 陳強(qiáng), 鄒文政, 等. 不同環(huán)境條件對溶藻弧菌黏附大黃魚腸黏液的影響[J]. 水產(chǎn)學(xué)報(bào), 2006, 30(2): 254-259.
[41] MEXIS S, CHOULIARA E, KONTOMINAS M. Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fi llets stored at 4 ℃[J]. Food Microbiology, 2009, 26(6): 598-605.
Evaluation of the Dose of Oregano Essential Oil in the Feed to Prolong the Shelf Life of Oreochromis niloticus × O. mossambicus
ZHENG Zonglin1,2, ZHU Chengke1, Delbert M. GATLIN III2
(1. Fisheries Breeding and Healthy Cultivation Research Centre, Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, China; 2. Department of Wildlife and Fisheries Sciences and Faculty of Nutrition, College Station, Texas A&M University, Texas 77840-2258, USA)
The effect of oregano essential oil (OEO) from Origanum heracleoticum L. on the quality and shelf life of Oreochromis niloticus × O. mossambicus was studied. Five treatments were included in this trial, a control diet (OEO0) and four other diets (OEO250, OEO500, OEO1000and OEO2000) with 250, 500, 1 000 and 2 000 mg/kg of oregano essential oil, respectively. After 20 weeks of experimentation, the fi sh were stored on ice at 4 ℃ for 0, 7, 14 and 21 days, respectively. Physicochemical, microbiological and sensory analyses were carried out at each sampling point to determine the degree of deterioration. A dose-dependent effect was observed on the color, TBARS and TVB-N during the storage. Microbiological counts were lower for Enterobacteriaceae and coliforms at higher doses of oregano essential oil. The sensory analysis showed no signifi cant correlation between overall sensory quality of fi sh and oregano essential oil dose. The experimental diets extended the shelf life of Oreochromis niloticus× O. mossambicus from 16 to 18 days compared with the control diet, without signifi cant correlation with dose.
Origanum heracleoticum L.; dietary supplements; Oreochromis niloticus × O. mossambicus; shelf life
S984.1
A
1002-6630(2015)22-0203-07
10.7506/spkx1002-6630-201522039
2015-02-16
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(DJK2014C056);中國長江三峽集團(tuán)公司科研項(xiàng)目(CT-12-08-01)
鄭宗林(1978—),男,副教授,博士,研究方向?yàn)樗a(chǎn)動物營養(yǎng)與疾病控制。E-mail:zhengzonglin@126.com