国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

天胡荽的解剖和屏障結(jié)構(gòu)特征研究

2016-01-27 07:06楊朝東李守峰姚蘭艾訓儒蔡小東張霞
草業(yè)學報 2015年7期
關(guān)鍵詞:組織化學

楊朝東,李守峰,姚蘭,艾訓儒,蔡小東,張霞*

(1.長江大學園藝園林學院, 湖北 荊州 434025;2.湖北省??悼h林業(yè)局, 湖北 ???41600;

3.湖北民族學院林學園藝學院,湖北 恩施445000)

天胡荽的解剖和屏障結(jié)構(gòu)特征研究

楊朝東1,李守峰2,姚蘭3,艾訓儒3,蔡小東1,張霞1*

(1.長江大學園藝園林學院, 湖北 荊州 434025;2.湖北省保康縣林業(yè)局, 湖北 ???41600;

3.湖北民族學院林學園藝學院,湖北 恩施445000)

摘要:利用光學顯微鏡和熒光顯微鏡對天胡荽進行了解剖學和組織化學研究,結(jié)果表明,1)天胡荽不定根為初生結(jié)構(gòu),具二原型維管柱、內(nèi)皮層、皮層、外皮層和表皮。2)莖、花柄和葉主要為初生結(jié)構(gòu),除了莖和花柄維管束具次生結(jié)構(gòu),具表皮、厚角組織、皮層、內(nèi)皮層、維管束和髓;莖具誘導型通氣組織。3)天胡荽不定根的屏障結(jié)構(gòu)包括內(nèi)側(cè)的有凱氏帶且栓質(zhì)化的內(nèi)皮層,外側(cè)的有凱氏帶且栓質(zhì)化的外皮層和緊鄰外側(cè)具擴散狀栓質(zhì)層的表皮細胞;匍匐莖、花柄和葉柄具相似的質(zhì)外體屏障結(jié)構(gòu),一是內(nèi)側(cè)的有凱氏帶且栓質(zhì)化的內(nèi)皮層,二是外側(cè)的表皮外角質(zhì)層,但花柄和葉柄有凱氏帶的細胞,并不栓質(zhì)化;葉片的僅為表皮外角質(zhì)層。4)天胡荽的解剖和屏障結(jié)構(gòu)特征是其適應多種水濕環(huán)境的結(jié)構(gòu)基礎。該研究為今后選擇濕地生態(tài)修復植物提供線索。

關(guān)鍵詞:天胡荽;解剖結(jié)構(gòu);質(zhì)外體屏障結(jié)構(gòu);組織化學;初生結(jié)構(gòu)

DOI:10.11686/cyxb2014246

Yang C D, Li S F, Yao L, Ai X R, Cai X D, Zhang X. A study of anatomical structure and apoplastic barrier characteristics ofHydrocotylesibthorpioides. Acta Prataculturae Sinica, 2015, 24(7): 139-145.

楊朝東, 李守峰, 姚蘭, 艾訓儒, 蔡小東, 張霞. 天胡荽的解剖和屏障結(jié)構(gòu)特征研究. 草業(yè)學報, 2015, 24(7): 139-145.

http://cyxb.lzu.edu.cn

收稿日期:2014-05-16;改回日期:2014-06-10

基金項目:湖北省教育廳項目(Q2014310)資助。

作者簡介:楊朝東(1971-),男,湖北巴東人,副教授,博士。E-mail:chaodongyang@aliyun.com

通訊作者*Corresponding author. E-mail:zhang.yang07@aliyun.com

Abstract:The anatomy and histochemistry of Hydrocotyle sibthorpioides were investigated under light and fluorescence microscopy in this research. The findings were: 1) The adventitious root of H. sibthorpioides consisted of proto-xylem and proto-phloem, superceded by diarch primary vasculature of metaxymlem and metaphloem, surrounded by endodermis, then cortex, exodermis and epidermis. 2) Stolon, pedicel and leaf were primary structures with epidermis, collenchyma, cortex, endodermis, vascular bundle and pith, except that vasculature of the stolon and pedicel had secondary structures, and stolon had induced aerenchyma. 3) The apoplastic barriers in adventitious roots of H. sibthorpioides included the inner layers of endodermis with Casparian bands and suberin, the outer layers of exodermis with Casparian bands and suberin and the epidermis with suberin. The stolons, pedicels and petioles had similar apoplastic barriers, including the inner layer of endodermis with Casparian bands and suberin, and the outer layer of the cuticle, but the endodermis had no suberin in pedicels and petioles; leaf blades had only a cuticular apoplastic barrier. 4) The anatomical structure and apoplastic barrier characters are important structural determinants of adaptation of H. sibthorpioides to variably-moist environments. The implications of this research for selection of plant species to restore degraded wetlands are discussed.

A study of anatomical structure and apoplastic barrier characteristics ofHydrocotylesibthorpioides

YANG Chao-Dong1, LI Shou-Feng2, YAO Lan3, AI Xun-Ru3, CAI Xiao-Dong1, ZHANG Xia1*

1.TheCollegeofGardeningandHorticulture,YangtzeUniversity,Jingzhou434025,China; 2.BaokangCountryForestryBureau,Baokang441600,China; 3.TheCollegeofForestryandHorticulture,HubeiMinzuUniversity,Enshi445000,China

Key words:Hydrocotylesibthorpioides; anatomy; apoplastic barriers; histochemistry; primary structure

天胡荽(Hydrocotylesibthorpioides)為傘形科天胡荽屬植物,廣泛分布于我國南方。天胡荽為較細小的多年生雙子葉植物,能在干旱、濕地和完全水淹條件下正常生活,對水濕具很強的適應能力,既作為新型草坪,也有很高的藥用價值[1-2],但其適應各種水濕條件的解剖結(jié)構(gòu)和質(zhì)外體屏障結(jié)構(gòu)尚無研究報道。

濕地植物適應濕地缺氧環(huán)境必須具備兩類重要結(jié)構(gòu),即通氣組織和質(zhì)外體屏障結(jié)構(gòu)[3-7]。屏障結(jié)構(gòu)是由植物體各器官內(nèi)、外皮層初生壁的凱氏帶,或次生壁栓質(zhì)化和木質(zhì)化,以及植物體表角質(zhì)層組成的保護組織[3,8-16]。質(zhì)外體屏障和細胞膜水孔蛋白是控制植物內(nèi)部以及與環(huán)境的水、離子和氧氣擴散和交換的重要結(jié)構(gòu)[4,8,10-14]。濕地植物體內(nèi)氣腔主要包括根中通氣組織,莖中髓腔和皮層通氣組織,保障植物淹沒脅迫時儲藏和輸導氧氣[16-18]。

經(jīng)典植物形態(tài)解剖學主要在光學顯微鏡和電鏡下,觀察植物細胞組織結(jié)構(gòu)和胞內(nèi)細胞器超微構(gòu)造,也有染色,其目的是便于觀察胞壁和細胞器的形態(tài)和邊界[19-21]。近些年,隨著組織化學、熒光顯微鏡的應用、植物細胞發(fā)育及其分子機理的研究,植物解剖學取得了以下幾方面的重要進展,植物的皮層、內(nèi)皮層、外皮層和皮下層的概念與經(jīng)典植物解剖學所指的結(jié)構(gòu)和意義完全不同。一是根尖細胞發(fā)育生物學及其基因表達等的研究結(jié)果表明,擬南芥(Arabidopsisthaliana)根尖內(nèi)皮層和皮層具有共同的原始細胞(CEI),表皮具獨立來源的原始細胞;水稻(Oryzasativa)根尖皮層、內(nèi)皮層、外皮層和表皮具共同的原始細胞(CEEI)[22]。二是擬南芥根內(nèi)皮層凱氏帶形成過程中,有凱氏帶膜蛋白家族(CASPs)參與,同時說明凱氏帶中具有蛋白質(zhì),該蛋白與凱氏帶在初生壁上也構(gòu)成類似于動物上皮組織細胞間僅蛋白質(zhì)參與的緊密連接,具有保護作用[23-24]。三是擬南芥根內(nèi)皮層凱氏帶應具備凱氏帶結(jié)構(gòu)、圍繞維管束的拓撲學結(jié)構(gòu)和SCR基因的表達三大要素[25]。四是凱氏帶部位先有凱氏帶膜蛋白家族出現(xiàn),隨后有木質(zhì)素沉積,再有木栓質(zhì)沉積[26]。五是依據(jù)根內(nèi)皮層細胞初生壁和次生壁出現(xiàn)凱氏帶之前、凱氏帶、栓質(zhì)化和木質(zhì)化的組織化學出現(xiàn)先后順序,把內(nèi)皮層的發(fā)育分為前內(nèi)皮層階段、第Ⅰ、Ⅱ 和Ⅲ階段,或者停留在某發(fā)育階段[8]。因此,認為植物內(nèi)皮層或外皮層一定具有凱氏帶,凱氏帶不僅有木栓質(zhì)和木質(zhì)素,還含有蛋白質(zhì)。植物的內(nèi)皮層、皮層、外皮層和表皮是同等意義結(jié)構(gòu)。皮下層是指表皮下有細胞形態(tài)分化的結(jié)構(gòu),或含有外皮層或和厚壁層分化的結(jié)構(gòu)。皮層是內(nèi)皮層和外皮層之間的薄壁細胞組織。

三峽庫區(qū)消落帶的生態(tài)修復問題,雖然從濕地植物的形態(tài)結(jié)構(gòu)與生理、種群分布格局等方面已取得進展,但解決該生態(tài)修復問題還有諸多工作需要開展。本研究試圖從天胡荽的解剖結(jié)構(gòu)、組織化學特征和質(zhì)外體屏障結(jié)構(gòu),為今后三峽庫區(qū)消落帶的生態(tài)修復尋找適合耐水淹植物提供線索。

1材料與方法

天胡荽實驗材料準備,于2013年3月底采集湖北荊州長江大學西校區(qū)附近野生植株,用農(nóng)田土壤栽培于花盆中,置于旱地花盆口部與地面平齊,在自然的光和水分條件下生長,一部分花盆作為旱生處理;另一部分花盆在6月中旬,模擬自然洪水脅迫,將有完整天胡荽植株的花盆沉入自來水中,8月中旬取出,水中植株未見開花。取旱生和水淹下樣本進行解剖學實驗。取完整不定根約長75 mm左右,完整匍匐莖約長350 mm左右,具4~5個節(jié)。不定根用FAA固定,匍匐莖、花柄和葉采用新鮮材料。

在立體解剖鏡(JNOEC JSZ6, China)下,用雙面刀片切片距根尖10, 30, 50, 70 mm;莖第1節(jié)間和第4節(jié)間,花柄中部,葉柄中部和葉片基部主脈。硫氫酸黃連素-苯氨蘭對染切片確定細胞壁木質(zhì)化和凱氏帶,凱氏帶呈現(xiàn)生動黃色(vivid yellow), 木質(zhì)化細胞壁呈現(xiàn)呆滯黃色(stagnant yellow),如木質(zhì)部[12,27],蘇丹紅7B染色切片檢測栓質(zhì)化細胞壁, 呈現(xiàn)紅色,具有很強的組織特異性,而蘇丹Ⅲ或Ⅳ常將細胞內(nèi)的脂肪也染成紅色,特異性差,造成栓質(zhì)化胞壁不易識別[28]。蘇丹紅7B染色切片在萊卡光學顯微鏡(Leica DME)下觀察,用數(shù)碼相機(Nikon E5400, Japan)拍照記錄圖片。硫氫酸黃連素-苯氨蘭對染切片在熒光顯微鏡(Olympus IX71)藍色激發(fā)光下觀察,用數(shù)碼相機(RZ200C-21, China)拍照記錄圖片,有關(guān)其他操作可參考Yang等[16]。圖片主要用 Photoshop 7.0軟件處理,加標尺,調(diào)整圖片亮度和對比度,以及合成圖片等。

2結(jié)果與分析

2.1 不定根的解剖結(jié)構(gòu)和組織化學

旱生和水淹下天胡荽的不定根有相似的解剖結(jié)構(gòu)和組織化學發(fā)育過程。距天胡荽根尖10和30 mm, 內(nèi)、外皮層開始形成微弱的凱氏帶,部分細胞壁栓質(zhì)化(圖1A,B),皮層具1~2層細胞,無通氣組織,表皮細胞壁無擴散狀栓質(zhì)層,二原型初生木質(zhì)部內(nèi)有后生木質(zhì)部發(fā)育,其兩側(cè)為韌皮部。距根尖50 mm, 除內(nèi)皮層的通道細胞外,內(nèi)、外皮層具強烈的凱氏帶,并且細胞壁栓質(zhì)化;部分表皮細胞壁開始出現(xiàn)擴散狀栓質(zhì)層[29](圖1C,D)。在根基部(距根尖70 mm),內(nèi)、外皮層細胞具凱氏帶,并強烈栓質(zhì)化,皮層僅具2層細胞,無通氣組織,維管柱停留在初生結(jié)構(gòu)階段(圖1E,F);內(nèi)皮層、皮層、外皮層和表皮細胞不脫落;表皮細胞壁均具擴散狀栓質(zhì)層。在不定根的各發(fā)育階段,已分化的不定根皮層未脫落,維管柱處于初生結(jié)構(gòu)狀態(tài)。不定根中質(zhì)外體屏障結(jié)構(gòu)包括兩部分,一是有凱氏帶且栓質(zhì)化的內(nèi)皮層,二是有凱氏帶且栓質(zhì)化的外皮層和緊鄰外側(cè)具擴散狀栓質(zhì)層的表皮細胞。

圖1 天胡荽不定根的顯微結(jié)構(gòu)Fig.1 Photomicrographs of H. sibthorpioides adventitious roots 標尺=50 μm. A~B. 距根尖10 mm橫切, A. BAB, 內(nèi)皮層凱氏帶(箭頭), 外皮層凱氏帶(箭), B. SR7B, 內(nèi)皮層栓質(zhì)化(箭頭), 外皮層栓質(zhì)化(箭); C~D. 距根尖50 mm橫切, C. BAB, 內(nèi)皮層凱氏帶(箭頭), 外皮層凱氏帶(箭), D. SR7B, 內(nèi)皮層栓質(zhì)化(箭頭), 外皮層栓質(zhì)化(箭); E~F. 距根尖70 mm橫切, E. BAB, 內(nèi)皮層凱氏帶(箭頭), 外皮層凱氏帶(箭), F. SR7B, 內(nèi)皮層栓質(zhì)化(箭頭), 外皮層栓質(zhì)化(箭)。 BAB. 硫氫酸黃連素-苯氨蘭對染; co. 皮層; ep. 表皮; mx. 后生木質(zhì)部; p. 韌皮部; pc. 通道細胞; px. 原生木質(zhì)部; SR7B. 蘇丹紅7B染色; sx. 次生木質(zhì)部; vb. 維管束。Scale bars=50 μm. A-B. Transverse sectioned at 10 mm from apex, A. BAB, endodermis (arrowheads), exodermis (arrows), B. SR7B, endodermis (arrowheads), exodermis (arrows); C-D. Sectioned at 50 mm, C. BAB, endodermis (arrowheads), exodermis (arrows), D. SR7B, endodermis (arrowheads), exodermis (arrows); E-F. Sectioned at 70 mm, E. BAB, endodermis (arrowheads), exodermis (arrows), F. SR7B, endodermis (arrowheads), exodermis (arrows). BAB. berberine hemisulfate-aniline blue stained, co. cortex; ep. epidermis; mx. metaxylem; p. phloem; pc. passage cell; px. protoxylem; SR7B. Sudan red 7B stained; sx. secondary xylem; vb. vascular bundle.

2.2 匍匐莖、花柄和葉的解剖結(jié)構(gòu)和組織化學

旱生天胡荽匍匐幼莖的解剖結(jié)構(gòu)自外向內(nèi)依次由表皮、皮層、維管束、髓射線和髓構(gòu)成。束狀初生維管束相互獨立,之間為薄壁細胞,呈輪狀排列;維管束可見初生木質(zhì)部導管。皮層細胞暫無分化,表皮下為1~2層細胞的厚角組織,表皮外有角質(zhì)層(圖2A,B)。

圖2 天胡荽匍匐莖、花柄和葉柄的顯微結(jié)構(gòu)Fig.2 Photomicrographs of H. sibthorpioides stolon, pedicel, petiole and leaf blade 標尺=100 μm. A~B. 幼莖橫切, 厚角組織(星號), A. BAB, B. SR7B; C~D. 老莖橫切, C. BAB, 內(nèi)皮層凱氏帶(箭頭), D. SR7B, 內(nèi)皮層栓質(zhì)化(箭頭), 厚角組織(星號); E~F. 水下老莖橫切, E. BAB, 內(nèi)皮層凱氏帶(箭頭), 厚角組織(星號), 插入圖為內(nèi)皮層(箭頭), F. SR7B, 內(nèi)皮層栓質(zhì)化(箭頭), 擴大型通氣組織(箭), 厚角組織(星號); G~H. 花柄橫切, G. BAB, 內(nèi)皮層凱氏帶(箭頭), 厚角組織(星號), H. SR7B, 厚角組織(星號); I~J. 葉柄橫切, I. BAB, 內(nèi)皮層凱氏帶(箭頭), J. SR7B, 厚角組織(星號). K. 葉片主脈橫切, SR7B, 厚角組織(星號), 角質(zhì)層(箭)。BAB. 硫氫酸黃連素-苯氨蘭對染; co. 皮層; cu. 角質(zhì)層; vb. 維管束; pi. 髓部; px. 原生木質(zhì)部; SR7B. 蘇丹紅7B染色; sx. 次生木質(zhì)部。Scale bars=100 μm. A-B. Transverse sectioned at the first internode of young stolon, collenchyma (asterisk), A. BAB, B. SR7B; C-D. Transverse sectioned at the 4th internode of aged stolon, C. BAB, endodermis (arrowheads), D. SR7B, endodermis (arrowheads), collenchyma (asterisk); E-F. Transverse sectioned at the 4th internode of aged stolon submerged, E. BAB, endodermis (arrowheads), collenchyma (asterisk), inset is endodermis (arrowheads), F. SR7B, endodermis (arrowheads), expansigeny aerenchyma (arrows), collenchyma (asterisk); G-H. Transverse sectioned the middle of pedicel, G. BAB, endodermis (arrowheads), collenchyma (asterisk), H. SR7B, collenchyma (asterisk); I-J. Transverse sectioned the middle of petiole, I. BAB, endodermis (arrowheads), J. SR7B, collenchyma (asterisk); K. Transverse sectioned the base main vein of leaf blade, SR7B, collenchyma (asterisk), cuticle (arrows). BAB. berberine hemisulfate-aniline blue stained, co. cortex; cu. cuticle; vb. vascular bundle; pi. pith; px. protoxylem; SR7B. Sudan red 7B stained; sx. secondary xylem.

老莖中,表皮外角質(zhì)層增厚;表皮下厚角組織細胞壁進一步加厚,細胞層數(shù)增加;皮層內(nèi)側(cè)有具凱氏帶的內(nèi)皮層分化,內(nèi)皮層且栓質(zhì)化;維管束有次生木質(zhì)部出現(xiàn)(圖2C,D)。水淹下老莖與旱生的比較,在皮層和髓部出現(xiàn)擴大型通氣組織(圖2E,F),而旱生老莖內(nèi)無通氣組織?;ū慕馄式Y(jié)構(gòu)和組織化學與老莖的類似,但內(nèi)皮層未栓質(zhì)化;厚角組織下數(shù)層細胞含葉綠體(圖2G,H)。

旱生和水淹下天胡荽的葉解剖結(jié)構(gòu)和組織化學相似,葉柄由外而內(nèi)及其特點依次為:表皮外有角質(zhì)層,表皮下為厚角組織;厚角組織下數(shù)層細胞含葉綠體,皮層,皮層內(nèi)方為3個相互獨立的維管束,內(nèi)部為髓部(圖2I,J);每個維管束鞘細胞具凱氏帶,但未栓質(zhì)化。葉片主脈中間為維管束,維管束上下兩側(cè)為厚角組織,最外為角質(zhì)層,主脈兩側(cè)葉片為葉肉細胞(圖2K)。

天胡荽匍匐莖、花柄和葉具相似的質(zhì)外體屏障結(jié)構(gòu),一是有凱氏帶且栓質(zhì)化的內(nèi)皮層,二是表皮外角質(zhì)層,但花柄和葉柄有凱氏帶的細胞,并不栓質(zhì)化;葉片的質(zhì)外體屏障僅為表皮外角質(zhì)層。

3討論

3.1 天胡荽的解剖結(jié)構(gòu)

在天胡荽的各發(fā)育階段,不定根、匍匐莖、花柄和葉的結(jié)構(gòu)以初生結(jié)構(gòu)為主,除了匍匐莖和花柄維管束具次生結(jié)構(gòu)。不定根的結(jié)構(gòu)為二原型維管柱,具有表皮,皮層內(nèi)側(cè)細胞分化為內(nèi)皮層,外側(cè)為外皮層。莖和花柄的結(jié)構(gòu)為表皮、皮層,皮層外側(cè)為厚角組織、皮層內(nèi)側(cè)分化為內(nèi)皮層,初、次生維管束環(huán)狀排列,內(nèi)部有髓。花柄厚角組織下數(shù)層細胞具葉綠體。葉柄的維管束散生,厚角組織下數(shù)層細胞具葉綠體。葉片主脈中間為維管束,上下兩側(cè)為厚角組織,葉片具葉肉細胞。天胡荽與海邊生長的藥用同屬植物H.umbellate[30],在莖、花柄和葉片的解剖結(jié)構(gòu)相似。

常見雙子葉植物老根的維管柱后期有次生結(jié)構(gòu)發(fā)育,皮層脫落,由維管柱鞘細胞發(fā)育而來的木栓層代替皮層的保護功能。而天胡荽不定根的皮層僅2層細胞,皮層不脫落,無通氣組織;也不同于常見濕地植物的根皮層具發(fā)達通氣組織,如水稻、蘆葦(Phragmitesaustralis)等[4,7,11-14,16-18]。

常見雙子葉植物莖的次生木栓層代替皮層的保護功能,天胡荽莖維管束具次生結(jié)構(gòu),皮層內(nèi)側(cè)有內(nèi)皮層分化,表皮下有厚角組織。天胡荽莖在水淹脅迫條件下出現(xiàn)通氣組織,而濕地植物莖中通氣組織為組成型[7,9,16-17,30]。

3.2 不定根屏障結(jié)構(gòu)

天胡荽不定根的質(zhì)外體屏障由兩部分組成,內(nèi)側(cè)為具凱氏帶且栓質(zhì)化的內(nèi)皮層,外側(cè)為具凱氏帶且栓質(zhì)化的外皮層和具擴散狀栓質(zhì)層的表皮細胞。植物根中內(nèi)皮層都為單層細胞,而外皮層隨物種不同有單層、2層和多層細胞之分[6,12]。天胡荽、紅樹林和亞馬遜雨林耐淹植物幼根等的外皮層為單層細胞[31-32],而水稻、玉米(Zeamays)、蘆葦、狗牙根(Cynodondactylon)等的外皮層為2層和多層細胞[11-14,16,18]。此外天胡荽與雙穗雀稗(Paspalumdistichum)、玉米、菰(Zizanialatifolia)等的不定根表皮具擴散狀栓質(zhì)層[18,29,33-34]。盡管天胡荽不定根的外側(cè)屏障結(jié)構(gòu)為單層細胞外皮層和具栓質(zhì)層的表皮細胞,對天胡荽適應各種水濕環(huán)境具有重要的保護作用。

3.3 莖、花柄和葉屏障結(jié)構(gòu)

天胡荽匍匐莖和花柄具相似的質(zhì)外體屏障結(jié)構(gòu)為內(nèi)側(cè)的內(nèi)皮層和表皮的角質(zhì)層,葉柄的維管束鞘細胞具凱氏帶,花柄和葉柄具凱氏帶的細胞不栓質(zhì)化,葉片的僅為角質(zhì)層。雙穗雀稗、牛鞭草(Hemarthriaaltissima)、狗牙根和菰莖的屏障結(jié)構(gòu)為外側(cè)的角質(zhì)層和表皮下栓質(zhì)化和木質(zhì)化的周緣厚壁層,或者有內(nèi)側(cè)栓質(zhì)化和木質(zhì)化的厚壁組織,雙穗雀稗表皮下具凱氏帶[7,16,18]。天竺葵莖的屏障結(jié)構(gòu)為具凱氏帶的木栓層[10],香蒲屬植物莖具內(nèi)皮層[9],水生毛茛的莖具內(nèi)皮層,葉柄散生維管束鞘細胞具凱氏帶[15],水稻中胚軸為散生維管束鞘細胞具凱氏帶、第一節(jié)莖的內(nèi)皮層和其厚壁組織內(nèi)散生維管束鞘細胞具凱氏帶[35]。天胡荽匍匐莖、花柄和葉的屏障結(jié)構(gòu)是其忍耐多種水濕環(huán)境的重要特征。

3.4 天胡荽解剖結(jié)構(gòu)和屏障結(jié)構(gòu)的生態(tài)學意義

天胡荽解剖結(jié)構(gòu)主要為初生結(jié)構(gòu),除了匍匐莖和花柄維管束具次生結(jié)構(gòu),水淹誘導莖中形成通氣組織。屏障結(jié)構(gòu)包括不定根的內(nèi)、外皮層和表皮栓質(zhì)層;莖和花柄的內(nèi)皮層、葉柄具凱氏帶的維管束鞘細胞和角質(zhì)層。天胡荽的解剖結(jié)構(gòu)和屏障結(jié)構(gòu)特征是其適應多種水濕環(huán)境的結(jié)構(gòu)基礎,是篩選適合用于三峽庫區(qū)消落帶生態(tài)修復植物的重要依據(jù)。

References:

[1]Gu Z H, Xiang G H, Peng Y L. An introduction test ofHydrocotylesibthorpoioides, a new type of lawn grass. Guizhou Agricultural Sciences, 2009, 37(10): 19-20.

[2]Zhang L, Zhang D Z. Research advance on progress ofHydrocotylesibthorpoioides. Journal of Modern Food and Pharmaceuticals, 2007, 17(1): 15-17.

[3]Armstrong J, Jones R E, Armstrong W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytologist, 2006, 172: 719-731.

[4]Colmer T D, Gibberd M R, Wiengweera A,etal. The barrier to radial oxygen loss from roots of rice (OryzasativaL.) is induced by growth in stagnant solutions. Journal of Experimental Botany, 1998, 49: 1431-1436.

[5]Greenway H, Armstrong W, Colmer T D. Conditions leading to high CO2(>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany, 2006, 98: 9-32.

[6]Yang C D, Zhang X, Liu G F,etal. Progress on the structure and physiological functions of apoplastic barriers in root. Bulletin of Botanical Research, 2013, 33(1):114-119.

[7]Yang C D, Zhang X. Permeability and supplement structures of stems ofPaspalumdistichum. Bulletin of Botanical Research, 2013, 33(5): 564-568.

[8]Enstone D E, Peterson C A, Ma F. Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 2003, 21: 335-351.

[9]Mc Manus H A, Seago Jr J L, Marsh L C. Epifluorescent and histochemical aspects of shoot anatomy ofTyphalatifoliaL.,TyphaangustifoliaL. andTyphaglaucaGodr. Annals of Botany, 2002, 90: 489-493.

[10]Meyer C J, Peterson C A. Casparian bands occur in the periderm ofPelargoniumhortorumstem and root. Annals of Botany, 2011, 107: 591-598.

[11]Ranathunge K, Lin J, Steudle E,etal. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (OryzasativaL.) roots. Plant Cell Environment, 2011, 34: 1223-1240.

[12]Seago Jr. J L, Peterson C A, Enstone D E,etal. Development of the endodermis and hypodermis ofTyphaglaucaGodr. andT.angustifoliaL. roots. Canadian Journal of Botany, 1999, 77: 122-134.

[14]Soukup A, Armstrong W, Schreiber L,etal. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species,PhragmitesaustralisandGlyceriamaxima. New Phytologist, 2007, 173: 264-278.

[15]Vecchia F D, Cuccato F, Rocca N L,etal. Endodermis-like sheaths in the submerged freshwater macrophyteRanunculustrichophyllusChaix. Annals of Botany,1999, 83: 93-97.

[16]Yang C D, Zhang X, Zhou C Y,etal. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 2011, 206: 653-661.

[17]Seago Jr. J L, Marsh L C, Stevens K J,etal. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Annals of Botany, 2005, 96: 565-579.

[18]Yang C, Zhang X, Li J,etal. Anatomy and histochemistry of roots and shoots in wild rice (ZizanialatifoliaGriseb.). Journal of Botany, 2014, 2014: http://dx.doi.org/10.1155/2014/181727.

[19]Liu L L, Yang X, Gao T P,etal. A study on the attractive function of different floral structures inTrolliusranunculoides(Ranunculaceae). Acta Prataculturae Sinica, 2013, 22(3): 190-195.

[20]Lu Q L, Chai S X, Zhang L J,etal. Contribution of winter wheat leaf and non-leaf organs to grain weight. Acta Prataculturae Sinica, 2013, 22(5): 165-174.

[21]Zhang X X, Liu M, Cheng X Y,etal. Comparative study of the morphological and anatomical features ofLinderniaprocumbensin different ecological environments (Lindernuacea). Acta Prataculturae Sinica, 2014, 23(2): 235-242.

[22]Pauluzzi G, Divol F, Puig J,etal. Surfing along the root ground tissue gene network. Developmental Biology, 2012, 365: 14-22.

[23]Roppolo D, De Rybel B, Tendon V D,etal. A novel protein family mediates Casparian strip formation in the endodermis. Nature, 2011, 473: 380-383.

[24]Alassimone J, Roppolo D, Geldner N,etal. The endodermis-development and differentiation of the plant’s inner skin. Protoplasma, 2012, 249(3): 433-443.

[25]Geldner N. The endodermis. Annual Review in Plant Biology, 2013, 64: 531-558.

[26]Naseer S, Leea Y, Lapierre C,etal. Casparian strip diffusion barrier inArabidopsisis made of a lignin polymer without suberin. Proceedings of the National Academy of Science USA, 2012, 109: 10101-10106.

[27]Brundrett M C, Enstone D E, Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma, 1988, 146: 133-142.

[28]Brundrett M C, Kendrick B, Peterson C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotechnic and Histochemistry, 1991, 66: 111-116.

[29]Schreiber L, Franke R B. Endodermis and Exodermis in Roots eLSM. Chichester: John Wiley and Sons Ltd. 2011. doi: 10.1002/9780470015902. a0002086. pub2.

[30]Martins M B G, Marconi A P, Cavalheiro A J,etal. Anatomical and chemical characterization of the leaf and root system ofHydrocotyleumbellata(Apiaceae). Brazilian Journal of Pharmacognosy, 2008, 18(3): 402-414.

[31]De Simone O, Haase K, Müller E,etal. Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiologist, 2003, 132: 206-217.

[32]Krishnamurthy P, Jyothi-Prakash P A, Qin L,etal. Role of root hydrophobic barriers in salt exclusion of a mangrove plantAvicenniaofficinalis. Plant, Cell Environment, 2014, doi: 10.1111/pce.12272.

[33]Abiko T, Kotula L, Shiono K,etal. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots ofZeanicaraguensiscontribute to its waterlogging tolerance as compared with maize (Zeamaysssp. mays). Plant Cell Environment, 2012, 35: 1618-1630.

[34]Zhang X, Yang C D, Ning G G. The developmental comparison of apoplastic barriers inCynodondactylonandPaspalumdistichumroots. Hubei Agricultural Sciences, 2013, 52(20): 4991-4994.

[35]Watanabe H, Saigusa M, Morita S. Identification of Casparian bands in the mesocotyl and lower internodes of rice (OryzasativaL.) seedlings using fluorescence microscopy. Plant Production Science, 2006, 9: 390-394.

參考文獻:

[1]顧振華, 向國紅, 彭友林. 天胡荽新型草坪引種試驗研究. 貴州農(nóng)業(yè)科學, 2009, 37(10): 19-20.

[2]張?zhí)m, 張德志. 天胡荽的研究進展. 現(xiàn)代食品與藥品雜志, 2007, 17(1): 15-17.

[6]楊朝東, 張霞, 劉國鋒, 等. 植物根中質(zhì)外體屏障結(jié)構(gòu)和生理功能研究進展. 植物研究, 2013, 33(1): 114-119.

[7]楊朝東, 張霞. 雙穗雀稗(Paspalumdistichum)通透性生理和莖解剖結(jié)構(gòu)補充研究. 植物研究, 2013, 33(5): 564-568.

[19]劉樂樂, 楊曉, 高天鵬, 等. 毛茛狀金蓮花花部結(jié)構(gòu)的吸引功能. 草業(yè)學報, 2013, 22(3): 190-195.

[20]魯清林, 柴守璽, 張禮軍, 等. 冬小麥葉片和非葉器官對粒重的貢獻. 草業(yè)學報, 2013, 22(5): 165-174.

[21]張欣欣, 劉玫, 程薪宇, 等. 不同生境下陌上菜的形態(tài)解剖學比較. 草業(yè)學報, 2014, 23(2): 235-242.

[34]張霞, 楊朝東, 寧國貴. 狗牙根和雙穗雀稗根中質(zhì)外體屏障結(jié)構(gòu)發(fā)育過程的比較研究. 湖北農(nóng)業(yè)科學, 2013, 52(20): 4991-4994.

猜你喜歡
組織化學
卷丹的顯微及組織化學觀察
勘誤聲明
菰適應濕地環(huán)境的解剖和屏障結(jié)構(gòu)特征研究
黃連體內(nèi)黃連素的組織器官定位和根尖屏障結(jié)構(gòu)特征研究
免疫組織化學技術(shù)在獸醫(yī)診斷中的應用
食管鱗狀細胞癌中FOXC2、E-cadherin和vimentin的免疫組織化學表達及其與血管生成擬態(tài)的關(guān)系
大口黑鱸鰓黏液細胞的組織化學特征及5-HT免疫反應陽性細胞的分布
新疆貝母屬8種藥用植物地上部位葉的組織化學研究
免疫組織化學和免疫熒光染色在腎活檢組織石蠟切片磷脂酶A2受體檢測中的應用
《中國組織化學與細胞化學雜志》2013年征訂單
定南县| 九台市| 陆川县| 丰原市| 临安市| 乌兰察布市| 厦门市| 莲花县| 江孜县| 巴东县| 渑池县| 高尔夫| 汉川市| 博乐市| 嵊泗县| 固始县| 龙里县| 宕昌县| 伊春市| 常宁市| 淳化县| 墨竹工卡县| 盖州市| 长丰县| 嘉祥县| 浦江县| 德清县| 房山区| 腾冲县| 肥东县| 买车| 资中县| 长子县| 色达县| 扶余县| 咸宁市| 河北省| 靖宇县| 方山县| 闵行区| 泰和县|