姚盛波,郝建慧,李旭光,樊 莉,劉 艷(哈爾濱醫(yī)科大學(xué)藥理學(xué)教研室 省部共建生物醫(yī)藥國家重點實驗室培育基地,黑龍江哈爾濱 150081)
天然產(chǎn)物抗心律失常作用靶點的研究進(jìn)展
姚盛波,郝建慧,李旭光,樊 莉,劉 艷
(哈爾濱醫(yī)科大學(xué)藥理學(xué)教研室 省部共建生物醫(yī)藥國家重點實驗室培育基地,黑龍江哈爾濱 150081)
心律失常是心血管系統(tǒng)最常見的病癥之一,其發(fā)病率和致死率均很高,嚴(yán)重威脅人們的健康和生命。隨著醫(yī)學(xué)的發(fā)展,天然產(chǎn)物抗心律失常的優(yōu)勢和潛力日益顯現(xiàn),但其作用靶點尚未完全闡明。近十年來,科學(xué)家們不斷深入探明天然產(chǎn)物作用靶點,發(fā)現(xiàn)其可通過抑制鈉、L型鈣、瞬時外向鉀和ether-a-go-go等相關(guān)基因通道電流及穩(wěn)態(tài)鉀離子電流,增加緩慢激活延遲整流鉀離子電流和ATP敏感鉀離子電流;抑制微小RNA(miRNA)-1表達(dá),改變心臟miRNA表達(dá)譜;影響Na+-K+-ATP酶和超氧化物歧化酶活性;抑制β受體和血管緊張素Ⅱ受體;調(diào)節(jié)脂質(zhì)代謝,進(jìn)而影響心臟節(jié)律,產(chǎn)生抗心律失常作用。本文就天然產(chǎn)物抗心律失常作用靶點研究進(jìn)展進(jìn)行綜述。
天然產(chǎn)物;心律失常;離子通道;微小RNA
心血管病是全球范圍內(nèi)造成死亡的最主要原因,到2030年,將有約2360萬人死于心血管?。?]。心律失常是心血管系統(tǒng)最常見的病癥之一,又是心源性猝死的主要誘因。臨床上用于治療心律失常的藥物主要為合成藥物或天然產(chǎn)物。合成藥物具有起效迅速、療效確切的優(yōu)點,但其不良反應(yīng)卻不容小覷,而且用藥不當(dāng)也易誘發(fā)心律失常。目前研究發(fā)現(xiàn),天然產(chǎn)物具有抗腫瘤、抗心血管系統(tǒng)疾病及調(diào)節(jié)免疫等作用[2-4]。近年來,天然產(chǎn)物抗心律失常的作用在臨床上得到了普遍認(rèn)可,其治療的優(yōu)勢和潛力日益顯現(xiàn),但其作用靶點尚未完全闡明。近10年來研究發(fā)現(xiàn),天然產(chǎn)物可影響離子通道、微小RNA (microRNA,miRNA)、細(xì)胞內(nèi)酶和細(xì)胞因子及細(xì)胞膜受體等,進(jìn)而產(chǎn)生抗心律失常作用。本文就天然產(chǎn)物抗心律失常作用靶點研究進(jìn)展進(jìn)行綜述。
心肌細(xì)胞膜上存在鈉(Na),鉀(K)和鈣(Ca)等離子通道,這些離子通道順序開放并保持動態(tài)平衡是心臟電信號轉(zhuǎn)導(dǎo)的基礎(chǔ)。一些心律失常易感因素可通過影響Na,K和Ca等離子通道功能,引起離子通道間平衡失調(diào),心肌電信號轉(zhuǎn)導(dǎo)紊亂,進(jìn)而誘發(fā)心律失常。所以,這些離子通道與心律失常的發(fā)生、發(fā)展密切相關(guān),是抗心律失常藥物作用的重要靶點[5]。天然產(chǎn)物對心肌細(xì)胞膜離子通道電流的影響是其抗心律失常作用機(jī)制的研究熱點。
1.1影響Na通道電流
Na通道是Ⅰ類抗心律失常藥的主要作用靶點,阻滯Na通道可降低動作電位0相上升速率,延長復(fù)極過程。研究發(fā)現(xiàn),苦參的主要活性成分苦參堿和氧化苦參堿抗心律失常的作用顯著。在烏頭堿誘導(dǎo)的心律失常模型中,烏頭堿可延長心肌細(xì)胞動作電位時程(action potential duration,APD),同時增加Na通道電流(sodium channel current,INa)、L-型鈣通道電流(L-type calcium channel current,ICa-L)和內(nèi)向整流K離子電流(inward rectifier K+current,IKi),而苦參堿可逆轉(zhuǎn)烏頭堿的作用,縮短APD,說明苦參堿治療心律失常的機(jī)制之一可能是影響Na、Ca和K通道電流[6]。氧化苦參堿可降低單Na通道的開放時間和開放概率,而不影響單INa幅值[7]。此外,其對Ca離子電流也有抑制作用[8]。青藤堿具有抗心律失常作用,并應(yīng)用于臨床。其對INa及ICa-L均具有濃度依賴性抑制作用,使二者電流-電壓曲線上移,但不改變激活、峰值和反轉(zhuǎn)電位。青藤堿使INa滅活后恢復(fù)過程延遲,提示其作用于INa的失活態(tài)[9]。關(guān)附甲素是我國首次從毛莨科黃芪烏頭的塊根中提取的一種二萜類生物堿,具有抗實驗性心律失常作用。關(guān)附甲素對INa和ICa-L具有濃度依賴性阻滯作用,這種阻滯作用可能為其抗心律失常作用的主要機(jī)制[10]。甘草次酸為甘草活性成分甘草酸在人體內(nèi)的最終代謝產(chǎn)物,可對抗烏頭堿、冠狀動脈結(jié)扎及缺血再灌注等多種原因引起的心律失常。甘草次酸可使電流-電壓曲線明顯上移,峰值電流減小,內(nèi)向INa減?。?1]。其對INa的抑制作用具有劑量依賴性,但對ICa-L和起搏電流沒有明顯影響[12]。蛇床子成熟果實中提取的蛇床子素具有抗心律失常作用[13]。蛇床子素對乳鼠心肌細(xì)胞INa的激活閾電位和峰電位無影響,但可濃度依賴性地抑制INa[14]。燈盞花素具有抗心律失常作用,其能明顯減慢離體大鼠心室肌細(xì)胞INa復(fù)活,以濃度依賴性和電壓依賴性的方式阻斷INa[15]。
1.2影響Ca通道電流
Ca2+對心肌興奮-收縮耦聯(lián)起重要調(diào)節(jié)作用。L 型Ca通道是Ca2+內(nèi)流的單向轉(zhuǎn)運系統(tǒng),參與動作電位平臺期的形成,激活細(xì)胞內(nèi)肌漿網(wǎng)的Ca2+釋放。抑制lCa-L可降低竇房結(jié)自律性,減慢房室結(jié)傳導(dǎo)性。
目前,許多抗心律失常天然產(chǎn)物都可作用于Ca通道。丹參素對外源性自由基所致心律失常具有明顯的抑制作用,可使再灌注性心律失常發(fā)生率顯著降低。丹參素可顯著縮短APD,抑制ICa-L,減少Ca2+超載[16]。葛根素對大鼠心室肌細(xì)胞ICa-L具一定程度的時間依賴性阻斷作用,同時,葛根素可以上移ICa-L的電流-電壓曲線而不改變其激活、峰值和反轉(zhuǎn)電位。提示葛根素的抗心肌缺血和抗心律失常作用可能與抑制ICa-L有關(guān)[17]。酸棗仁皂苷A可影響L型Ca通道的激活態(tài)和失活態(tài),濃度依賴性抑制枸杞多糖呈濃度依賴性抑制ICa-L,產(chǎn)生抗心律失常和抑制Ca2+超載的作用[19]。有些天然產(chǎn)物因劑量不同而對ICa-L呈現(xiàn)雙向作用。大黃素藥理活性與濃度有關(guān),其對心肌細(xì)胞內(nèi)Ca2+及ICa-L具有雙向調(diào)節(jié)作用,低濃度明顯促進(jìn)ICa-L,產(chǎn)生正性肌力作用,高濃度明顯抑制ICa-L,產(chǎn)生抗心律失常作用[20]。丹參酮Ⅱ-A可濃度依賴性地抑制大鼠心肌細(xì)胞L型Ca通道,降低ICa-L密度[21]。薯蕷中的薯蕷皂苷可通過促進(jìn)L型Ca通道失活,抑制正常大鼠心室肌細(xì)胞ICa-L,減小ICa-L峰值,產(chǎn)生抗缺血再灌所致心律失常的作用[22]。石菖蒲所含β-細(xì)辛腦可抑制心臟搏動而產(chǎn)生抗心律失常作用,此作用可能與降低心肌細(xì)胞內(nèi)Ca2+濃度有關(guān)[23]。
1.3影響K通道電流
K通道是目前發(fā)現(xiàn)的亞型最多、作用最復(fù)雜的一類離子通道,在調(diào)節(jié)細(xì)胞膜電位和興奮性以及平滑肌舒縮活性中起重要作用。K通道異常與心律失常密切相關(guān),是重要的抗心律失常作用靶點。
1.3.1瞬時外向K離子電流
瞬時外向K離子電流(transient outward K+current,Ito)決定動作電位Ⅰ相電位幅度,影響其他離子通道的激活和失活過程,與心律失常關(guān)系密切[24-25]。虎杖的根莖中富含一種多酚類化合物白藜蘆醇,對哇巴因、烏頭堿及冠狀動脈結(jié)扎誘發(fā)的心律失常均具有抑制作用[26]。其抗心律失常機(jī)制可能為抑制INa,Ito及穩(wěn)態(tài)K離子電流,延長有效不應(yīng)期(effective refractory period,ERP)[27]。
1.3.2快速激活延遲整流K離子電流
快速激活延遲整流K離子電流(rapidly activiting delayed rectifier K+current,IKr)是心律失常發(fā)生的重要靶點。其α亞單位由人類ether-a-go-go相關(guān)基因(human ether-a-go-go-relatedgene,HERG)編碼,該基因突變可引起心律失常,并可誘發(fā)心源性猝死[28-29]。小檗堿(黃連素)具有抗心律失常作用,其作用機(jī)制是延長APD,抑制IK1、緩慢激活延遲整流K離子電流(slowly activating delayed rectifier K+current,IKs)和IKr[30]。蝙蝠葛中的蝙蝠葛堿可以通過抑制HERG和ICa-L通道[31-32],產(chǎn)生抗心律失常作用。人參皂苷Re,Rb,Rh、Rg和Ro均具有抗心律失常作用,其中人參皂苷Rg3可通過抑制HERG通道產(chǎn)生心臟保護(hù)作用[33]。
1.3.3緩慢激活延遲整流K離子電流s是參與心肌復(fù)極化的外向電流之一,激活及失活均慢,在心肌動作電位Ⅱ期復(fù)極過程中起關(guān)鍵作用[34]。人參皂苷中的人參皂苷Re抗心律失常作用最強(qiáng)。研究表明,人參皂苷Re的抗心律失常作用與增加IKs,抑制ICa-L有關(guān)[35]。
1.3.4ATP敏感K離子電流
心臟ATP敏感K離子電流(ATPsensitive inward rectifier K+current,IKATP)是一種弱的內(nèi)向整流K通道電流,受細(xì)胞內(nèi)ATP水平調(diào)節(jié)。當(dāng)細(xì)胞內(nèi)ATP濃度下降時,ATP敏感K通道開放;ATP濃度升高時通道顯著抑制。ATP敏感K通道開放可使K離子外流增加,細(xì)胞膜超極化,Ca2+內(nèi)流減少,心肌APD縮短,抑制細(xì)胞Ca2+超載,保護(hù)心肌損傷[36]。刺五加中的刺五加皂苷具有抗心律失常作用,其中刺五加皂苷B就具有IKATP開放劑樣作用[37]。
1.3.5M3型乙酰膽堿受體激活K離子電流
膽堿可介導(dǎo)心房肌細(xì)胞產(chǎn)生一種新的延遲整流K離子電流,即M3型乙酰膽堿受體激活K離子電流(M3receptor mediated K+current,IKM3)[38]。隨著心臟M3型乙酰膽堿受體功能研究的逐漸深入,IKM3也受到了越加廣泛的關(guān)注。最近研究證實,IKM3電流可能是治療房顫的新靶點。在持續(xù)性房顫犬模型中,心房IKM3明顯增加,APD縮短,ERP縮短??鄥A對IKM3電流有抑制作用,使心房復(fù)極減慢、ERP延長,使沖動落入不應(yīng)期或使心肌各部分ERP趨于一致而終止折返激動[39]。
近年來,miRNA在心血管系統(tǒng)中的關(guān)鍵調(diào)控作用不斷得到闡明,其失衡可能是心肌肥厚、心力衰竭和心肌缺血時惡性心律失常等心臟疾病發(fā)生的基礎(chǔ),有望成為新的抗心律失常作用靶點[40-41]。miRNA-1(miR-1)在心肌組織表達(dá)量最為豐富,與心律失常關(guān)系密切。發(fā)生冠狀動脈疾病時miR-1表達(dá)升高,其可能通過抑制KCNJ2(編碼K通道)和GJA1(編碼connexin43)減慢轉(zhuǎn)導(dǎo)和去QRS化,使QRS波增寬,QT間期延長[42]。還可增加心肌細(xì)胞內(nèi)向鈣電流,促進(jìn)心肌細(xì)胞的鈣釋放頻率,提高興奮收縮偶聯(lián)而誘發(fā)心律失常[43]。丹參酮ⅡA是丹參的有效成分,具有抗缺血性心律失常和減少心源性猝死的作用。研究顯示,丹參酮ⅡA通過抑制血清反應(yīng)因子而抑制miR-1上調(diào),并能恢復(fù)由缺血引起的IKi下降及其蛋白表達(dá)下調(diào),發(fā)揮其治療心律失常及預(yù)防猝死的作用[44]。進(jìn)一步的研究表明,在心肌缺血時,丹參酮ⅡA抑制miR-1的作用可能是通過p38絲裂原活化蛋白激酶通路產(chǎn)生的[45]。白藜蘆醇可保護(hù)心肌缺血再灌注損傷,基因芯片檢測發(fā)現(xiàn)其可改變心臟miRNA表達(dá)譜[46]。
3.1影響細(xì)胞內(nèi)酶和細(xì)胞因子
天然產(chǎn)物可能通過影響細(xì)胞內(nèi)酶和細(xì)胞因子從而對抗心律失常的誘發(fā)因素。黃芪中的黃芪甲苷可減輕缺血再灌注引起的損傷,并使缺血組織中Na+-K+-ATP酶活性降低,改善細(xì)胞能量代謝[47],也可提高心肌細(xì)胞抗氧化能力并誘導(dǎo)一氧化氮生成[48]。白藜蘆醇對心房顫動具有治療作用,其可通過增加超氧化物歧化酶活性,降低丙二醛含量減輕持續(xù)性心房顫動的氧化應(yīng)激反應(yīng),也可激活磷脂酰肌醇-3-激酶/Akt/內(nèi)皮性一氧化氮信號通路降低衰竭心臟房顫的發(fā)生率[49~51]。
3.2影響細(xì)胞膜受體
心律失常的發(fā)生與心肌細(xì)胞膜上的受體密切相關(guān)。Ⅱ類抗心律失常藥作用于β腎上腺素受體(β受體),可降低心肌細(xì)胞自律性,消除折返。抑制血管緊張素Ⅱ受體也具有抗心律失常作用,血管緊張素轉(zhuǎn)換酶抑制劑和血管緊張素受體阻滯劑具有抗心房纖顫和抗室性心律失常作用。一些抗心律失常中藥有效成分可作用于細(xì)胞膜受體,起到輔助性抗心律失常作用。葛根中的葛根素具有抗心律失常作用,其可能與抑制β受體有關(guān)[52]。丹參酮ⅡA具有抑制血管緊張素Ⅱ受體激活的作用,可抑制血管緊張素Ⅱ誘導(dǎo)的心肌肥大[53]。激動β受體的藥物可能對緩慢型心律失常有效。去甲烏藥堿在低濃度時具有上調(diào)β受體的作用,并能增加血漿環(huán)磷酸腺苷反應(yīng)性;高濃度時能與β受體直接作用[54]。麻黃中的麻黃堿(麻黃素),可直接激活β受體,也可通過促使腎上腺素神經(jīng)末梢釋放去甲腎上腺素而間接激活β受體[55]。
3.3影響脂質(zhì)代謝
脂質(zhì)與心臟正常電生理功能以及心律失常的發(fā)生關(guān)系密切。飲食中的脂肪酸在心肌損傷發(fā)展為嚴(yán)重的心室顫動和致死性心律失常中起重要作用[56]。溶血磷脂酰膽堿是細(xì)胞內(nèi)磷脂代謝產(chǎn)物,在心肌缺血時急劇聚集,是致死性心律失常的誘因之一[57]。有研究表明,溶血磷脂酰膽堿聚集引起的心律失常與HERG鉀通道密切相關(guān)。另外,鞘磷脂代謝產(chǎn)物神經(jīng)酰胺也可通過影響自由基的活性而影響HERG鉀通道功能誘發(fā)心律失常[58]。苦參堿可通過降低膽固醇、增強(qiáng)機(jī)體抗氧化酶活性、改善高脂血癥大鼠心臟舒縮功能而發(fā)揮心臟保護(hù)作用[59]。甘松中的齊墩果酸和熊果酸對心臟有直接作用,可降低心率,而且它們還具有抗高血脂和抗氧化作用[60]。
目前,心律失常仍然是醫(yī)學(xué)界亟待解決的世界性難題。在心律失常的治療中,合成藥物作用靶點較為單一,雖快速有效,但副作用大,且多集中于對快速性心律失常的治療,對緩慢性心律失常效果不佳。而天然產(chǎn)物對多種致病因素或途徑都有調(diào)控作用,治療效果好,且不易出現(xiàn)致心律失常等不良反應(yīng)。
近年來,天然產(chǎn)物在心律失常的治療中得到了廣泛認(rèn)可。然而,其作用靶點還待闡明。隨著分子生物學(xué)和細(xì)胞生物學(xué)等技術(shù)的進(jìn)步,從細(xì)胞、分子的水平來闡釋天然產(chǎn)物的作用靶點將會是一個新的趨勢。天然產(chǎn)物的分子作用機(jī)制正逐步被破解,在以細(xì)胞膜離子通道和miRNA為作用靶點的研究中已取得了一些有意義的研究成果?;陔x子通道靶點假說,多種天然產(chǎn)物對離子通道靶點的作用也已得到闡明。對于天然產(chǎn)物和miRNA的研究,腫瘤相關(guān)的研究報道較多,而心律失常相關(guān)的報道很少,此部分內(nèi)容還有待研究。長非編碼RNA與miRNA均是非編碼RNA,最新研究發(fā)現(xiàn),其參與心臟發(fā)育,并在心肌疾病狀態(tài)下表達(dá)異常[61-62]。目前尚無天然產(chǎn)物通過影響長非編碼RNA而產(chǎn)生抗心律失常作用的報道,這可能是一個新的研究領(lǐng)域。
深入闡明天然產(chǎn)物的藥理作用和作用靶點可以指導(dǎo)臨床合理用藥,有助于發(fā)現(xiàn)新的抗心律失常天然產(chǎn)物,為藥物的化學(xué)改構(gòu)或合成新的特異性激動劑和抑制劑提供新的理論基礎(chǔ)。
[1]World Health Organization.Cardiovascular diseases (CVDs)[DB/OL].Fact sheet No.317.(2015-01)[2015-05]http://www.who.int/mediacentre/factsheets/fs317/en/.
[2] Kim DG,Jung KH,Lee DG,Yoon JH,Choi KS,Kwon SW,et al.20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin[J].Oncotarget,2014,5(12):4438-4451.
[3] Wang Y,Hu Z,Sun B,Xu JH,Jiang JF,Luo M. Ginsenoside Rg3 attenuates myocardial ischemia/ reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B-cell lymphoma/B-cell lymphoma associated X protein pathway[J]. Mol Med Rep,2015,11(6):4518-4524.
[4] Choi YJ,Kang LJ,Lee SG.Stimulation of DDX3 expression by ginsenoside Rg3 through the Akt/ p53pathwayactivatestheinnateimmune response via TBK1/IKKε/IRF3 signalling[J].Curr Med Chem,2014,21(8):1050-1060.
[5] Yang BF,Cai BZ.Advances in the study of arrhythmogenic mechanisms[J].J Int Pharm Res(國際藥學(xué)研究雜志),2010,37(2):81-88.
[6] Shan HL,Yang BF,Zhou YH,Wang H,Li BX. Effects of matrine on aconitine-induced electrophysiological changes in rat ventricular myocytes [J].J Chin Pharm Sci(中國醫(yī)藥科學(xué)),2004,13 (3):193-197.
[7] Chen X,Zhang WJ,Lu WW,Li YJ,Zhong GG. Effect of oxymatrine on the action potential and sodium channel in guinea pig ventricular myocytes [J].Chin Tradit Herb Drugs(中草藥),2005,36 (12):1855-1856.
[8] Runtao G,Guo D,Jiangbo Y,Xu W,Shusen Y. Oxymatrine,themainalkaloidcomponentof Sophora roots,protects heart against arrhythmias in rats[J].Planta Med,2011,77(3):226-230.
[9] Ding ZR,Li GS,Jiang XJ,Xu JL,Wang T.The inhibitory effects of sinomenine on the Na and Ca channels in membrane of single guinea pig cardiomyocyte[J].Chin J Card Pac Cardioelectrophysiol(中國心臟起搏與心電生理雜志),2000,14(1):39-41.
[10] Pei DA.Blocking effects of guanfu base A on sodium channel and L-type calcium channel in single ventricular myocytes[J].Chin J Cardiac Func(心功能雜志),1998,10(4):225-229.
[11] Yang JY,Wu HJ,Wu DL.Effects of glycyrrhetinic acid on sodium Ion channel currents of rats' ventricular myocardial cells[J].Chin J Integr Traditi Western Med(中國中西醫(yī)結(jié)合雜志),2012,32(7):944-947.
[12] Dua Y,Zhang S,Wu H,Zou A,Lei M,Cheng L,et al.Glycyrretinic acid blocks cardiac sodium channels expressed in Xenopus oocytes[J].J Ethnopharmacol,2009,125(2):318-323.
[13] Zhou L,Shang GZ,Lian QS,Zhou Q,Zeng J,Xiang RD,et al.Experimental studies on the antiarrhythmic effect of osthole[J].Chin J Mod Appl Pharm(中國現(xiàn)代應(yīng)用藥學(xué)),1996,13(2):11-13,70.
[14] Li SJ,Sun LR,Yuan CH.Effect of osthole on sodium current in rat ventricular cardiomyocytes [J].J Mathemat Med(數(shù)理醫(yī)藥學(xué)雜志),2011,24(3):286-289.
[15] Tang CJ,Li ZC,Deng CY,Kuang SJ,Qian WM. Effect of breviscapin on INachannel current in isolated rat ventricular myocytes[J].Chin J Pathophysiol(中國病理生理雜志),2009,25(4):647-650.
[16]Sun KQ,Xu CQ,Wang XY,Jiang XS,Wang GZ.Research on the antiarrhythmic effect and electrophysiologic mechanisms of salvianic acid[J].Chin J Tradit Med Sci Technol(中國中醫(yī)藥科技),2000,7(3):171-172.
[17] Guo XG,Chen JZ,Zhang X,Xia Q.Effect of puerarin on L-type calcium channel in isolated rat ventricular myocytes[J].China J Chin Mat Med(中國中藥雜志),2004,29(3):248-251.
[18] Deng W,Tang QZ,Li X,Yin XF,Guo HP,Guo K,et al.Inhibitory effect of jujuboside A on L-type calcium currents in ventricular myocytes of rats [J].Med J Wuhan Univ(Med Ed)〔武漢大學(xué)學(xué)報(醫(yī)學(xué)版)〕,2009,20(3):299-302.
[19] Liu M,Tang QZ,Wang XL,Wang JJ,Wang T. Effects of Lycium Barbarum polysaccharides on L-type calcium channel current in rat ventricular myocytes[J].Med J Wuhan Univ(Med Ed)(武漢大學(xué)學(xué)報(醫(yī)學(xué)版)),2009,30(1):57-60.
[20] Liu Y,Shan HL,Sun HL,He SZ,Yang BF. Effects of emodin on the intracellular calcium concentration([Ca2+]i)and L-type calcium current of the single ventricular mytocytes from guinea pig [J].Acta Pharm Sin(藥學(xué)學(xué)報),2004,39(1):5-8.
[21] Huang J,Pei JH,Teng SY,Hao J,Zhang YH,Pu JL,et al.Effect of tanshinoneⅡ-A on L-type calcium channel in rat ventricular myocytes[J]. Mol Cardiol China(中國分子心臟病學(xué)雜志). 2012,12(2):106-109.
[22] Zhang MH,Yi YQ,He HY,Kang Y,Lou JS.Antitumor effects of berberine α-hydroxy β-decanoylethyl sulfonate in vitro[J].Pharmacol Clin Chin Mat Med(中藥藥理與臨床),2011,27(1):23-26.
[23] Hou P,Yang L,Liu N,Chen L.Effects of ephedrine,β-asarone and higenamine on calcium contraction and cell membrane calcium channels in rat ventricular myocytes[J].J China Med Univ(中國醫(yī)科大學(xué)學(xué)報),2013,42(3):201-203.
[24] Du Z,Xu CQ,Shan HL,Lu Y,Ren N.Functional impairment of cardiac transient outward K+current as a result of abnormally altered cellular environment[J].Clin Exp Pharmacol Physiol,2007,34(3):148-152.
[25]Michael G,Xiao L,Qi XY,Dobrev D,Nattel S. Remodelling of cardiac repolarization:how homeostatic response can lead to arrhythmogenesis [J].Cardiovasc Res,2009,81(3):491-499.
[26] Zhang Y,Liu Y,Wang T,Li B,Li H,Wang Z,et al.Resveratrol,a natural ingredient of grape skin:antiarrhythmic efficacy and ionic mechanisms [J].Biochem Biophys Res Commun,2006,340 (4):1192-1199.
[27] Chen WP,Su MJ,Hung LM.In vitro electrophysiological mechanisms for antiarrhythmic efficacy of resveratrol,a red wine antioxidant[J].Eur J Pharmacol,2007,554(2-3):196-204.
[28] Markiewicz-?oskot G,Moric-Janiszewska E,Mazurek U.The risk of cardiac events and genotypebased management of LQTS patients[J].Ann Noninvasive Electrocardiol,2009,14(1):86-92.
[29] Sanguinetti MC,Tristani-Firouzi M.hERG Potassium channels and cardiac arrhythmia[J].Nature,2006,440(7083):463-469.
[30] Li BX,Yang BF,Zhou J,Xu CQ,Li YR.Inhibitory effects of berberine on IK1,IK,and HERG channels of cardiac myocytes[J].Acta Pharmacol Sin,2001,22(2):125-131.
[31] Zhao J,Lian Y,Lu C,Jing L,Yuan H,Peng S. Inhibitory effects of a bisbenzylisoquinline alkaloid dauricine on HERG potassium channels[J].J Ethnopharmacol,2012,141(2):685-691.
[32] Liu QN,Zhang L,Gong PL,Yang XY,Zeng FD. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current[J].Can J Physiol Pharmacol,2009,87(11):954-962.
[33] Choi SH,Shin TJ,Hwang SH,Lee BH,Kang J,Kim HJ,et al.Ginsenoside Rg3decelerates hERG K+channel deactivation through Ser631 residue interaction[J].Eur J Pharmacol,2011,663(1-3):59-67.
[34]Charpentier F,Mérot J,Loussouarn G,Baró I. Delayed rectifier K+currents and cardiac repolarization[J].J Mol Cell Cardiol,2010,48(1):37-44.
[35] Bai CX,Takahashi K,Masumiya H,Sawanobori T,F(xiàn)urukawa T.Nitric oxide-dependent modulation of the delayed rectifier K+current and the L-type Ca2+current by ginsenoside Re,an ingredient of Panax ginseng,in guinea-pig cardiomyocytes [J].Br J Pharmacol,2004,142(3):567-575.
[36] Holmuhamedov EL,Wang LW,Terzic A.ATP-sensitive K+channel openers prevent Ca2+overload in rat cardiac mitochondria[J].J Physiol,1999,519(Pt 2):347-360.
[37] Zhou Y,Tang QZ,Shi XT,Wang T,F(xiàn)u JR.Effect of Acanthopanax senticosides B on sarcolemmal ATP sensitive potassium channel of ventricular myocytes[J].Chin J Cardiac Arrhythm(中華心律失常學(xué)雜志),2005,9(5):378.
[38]Liu Y,Xu CQ,Jiao JD,Wang HZ,Dong DL,Yang BF.M3-R/IKM3a new target of antiarrhythmic agents[J].Acta Pharm Sin(藥學(xué)學(xué)報),2005,40 (1):8-12.
[39] Sui XH,Zhou YH,Li ZQ,Yang M,Lu YJ,QiaoGF,et al.The effects of matrine on IKM3atrial myocytes of canine with atrial fibrillation[J].Chin Pharmacol Bull(中國藥理學(xué)通報),2008,24(2):199-202.
[40] Ha M,Kim VN.Regulation of microRNA biogenesis [J].NatRevMolCellBiol,2014,15(8):509-524.
[41] Piubelli C,Meraviglia V,Pompilio G,D'Alessandra Y,Colombo GI,Rossini A.microRNAs And cardiac cell fate[J].Cells,2014,3(3):802-823.
[42] Yang B,Lin H,Xiao J,Lu Y,Luo X,Li B,et al. The muscle-specific microRNA miR-1 regulates cardiacarrhythmogenicpotentialbytargeting GJA1 and KCNJ2[J].Nat Med,2007,13(4):486-491.
[43]Terentyev D, Belevych AE,Terentyeva R,Martin MM,Malana GE,Kuhn DE,et al.miR-1 Overexpression enhances Ca2+release and promotescardiacarrhythmogenesisbytargeting PP2A regulatory subunit B56alpha and causing CaMKⅡ-dependenthyperphosphorylationof RyR2[J].Circ Res,2009,104(4):514-521.
[44] Shan H,Li X,Pan Z,Zhang L,Cai B,Zhang Y,et al.TanshinoneⅡA protects against sudden cardiacdeathinducedbylethalarrhythmias via repression of microRNA-1[J].Br J Pharmacol,2009,158(5):1227-1235.
[45] Zhang Y,Zhang L,Chu W,Wang B,Zhang J,Zhao M,et al.TanshinoneⅡA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes[J].Cell Physiol Biochem,2010,26(6):991-998.
[46] Mukhopadhyay P,Mukherjee S,Ahsan K,Bagchi A,Pacher P,Das DK.Restoration of altered microRNA expression in the ischemic heart with resveratrol[J].PLoS One,2010,5(12):e15705.
[47]Zhang WD,Chen H,Zhang C,Liu RH,LiHL,Chen HZ.AstragalosideⅣfrom Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro[J].Planta Med,2006,72(1):4-8.
[48]Guan FY,Li H,Sun W,Yang SJ.Protective effects of astragalosideⅣon hydrogen peroxideinduced injury of cultured neonatal rat myocardial cells[J].J Jilin Univ(Med Ed)〔吉林大學(xué)學(xué)報(醫(yī)學(xué)版)〕,2007,33(2):211-214.
[49] Zhou XF,Wang ZR,Zhang ZQ,Zhang CQ,Xu W,Zhang T.Effect of resveratrol on superoxide dismutase activity and maleic dialdehyde content in pigs with sustained atrial fibrillation[J].Chin J Cardiovasc Med(中國心血管雜志),2014,19(4):287-290.
[50]Baczko I,Liknes D,Yang W,Hamming KC,Searle G,Jaeger K,et al.Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation[J].Br J Pharmacol,2014,171(1):92-106.
[51] Chong E,Chang SL,Hsiao YW,Singhal R,Liu SH,Leha T,et al.Resveratrol,a red wine antioxidant,reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation[J].Heart Rhythm,2015,12(5):1046-1056.
[52] Lu BZ,Gao Er,Shan JR,Chen ZT.Effects of puerarin on the binding capacity of β-adrenergic receptor and the activity of adenylate cyclase[J]. Med J Chin People's Lib Army(解放軍醫(yī)學(xué)雜志),2015,10(2):97-100.
[53] Hu ZH,Liang QS,Zheng Z,Wen B.The effect of TSNⅡA on myocardial hypertrophy induced by angiotensinⅡ[J].Clin Med J China(中國臨床醫(yī)學(xué)),2009,16(1):34-36.
[54] Xiang R,Xu JT,Yi NY,Xia ZQ.The pharmacologic action of higenamine on beta-adrenergic receptors in heart of mice[J].Chin Pharmacol Bull(中國藥理學(xué)通報),1995,11(2):113-116.
[55] Vansal SS,F(xiàn)eller DR.Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes[J].Biochem Pharmacol,1999,58(5):807-810.
[56]Charnock JS.Lipids and cardiac arrhythmia[J]. Prog Lipid Res,1994,33(4):355-385.
[57]Daleau P.Lysophosphatidylcholine,a metabolite which accumulates early in myocardium during ischemia,reduces gap junctional coupling in cardiac cells[J].J Mol Cell Cardiol,1999,31(7):1391-1401.
[58] Bai YL,Wang J,Lu Y,Shan H,Yang B,Wang Z.Phospholipid lysophosphatidylcholine as a metabolic trigger and HERG as an ionic pathway for extracellular K accumulation and″short QT syndrome″in acute myocardial ischemia[J].Cell Physiol Biochem,2007,20(5):417-428.
[59] Wang XP,Zheng P,Yang CY,Zhou R,Yan L,Zheng J,et al.Protective effect of matrine on myocardial injury in hyperlipemia rats[J].West China J Pharmaceut Sci(華西藥學(xué)雜志),2008,23(4):407-410.
[60] Somova LO,Nadara A,Rammanana P,Shode FO.Cardiovascular,antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids inexperimental hypertension[J].Phytomedicine,2003,10(2-3):115-121.
[61] Kataoka M,Wang DZ.Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease[J].Cells,2014,3(3):883-898.
[62]Wang K,Liu F,Zhou LY,Long B,Yuan SM,Wang Y,et al.The long noncoding RNA CHRF regulatescardiachypertrophybytargeting miR-489[J].CircRes, 2014,114(9):1377-1388.
Anti-arrhythmic targets of natural products:research advances
YAO Sheng-bo,HAO Jian-hui,LI Xu-guang,F(xiàn)AN Li,LIU Yan
(Department of Pharmacology,State-province Key Laboratories of Biomedicine Pharmaceutics of China,Harbin Medical University,Harbin 150081,China)
Cardiac arrhythmia is one of the most common cardiovascular diseases,with high morbidity and mortality,which threatens human health and lives.With the development of medicine,natural products are revealing ever-greater anti-arrhythmic benefits and potential.However,their targets have not been fully clarified.In the recent ten years,scientists have been studying the molecular mechanisms of natural products that have been found to inhibitINa,ICa-L,Ito,IK1,IKr,IKM3,HERG channel current and steady state K+current,promoteIKsandIKATP,inhibit microRNA-1 expression and change cardiac microRNA expression profile,affect Na+-K+-ATPase and superoxide dismutase activity,inhibit β receptor and angiotensinⅡ receptor,and regulate lipid metabolism,thus affecting cardiac rhythm and exerting anti-arrhythmic effect.This paper revies the research advances in the antiarrhythmic targets of natural products.
natural products;cardiac arrhythmia;ion channels;microRNA
The project supported by National Natural Science Foundation of China(81121003)Corresponding author:LIU Yan,E-mail:liuyan_gyp@163.com,Tel:(0451)86671354
R285.5,R972.2
A
1000-3002-(2016)02-0151-07
10.3867/j.issn.1000-3002.2016.02.010
2015-03-20接受日期:2015-05-31)
(本文編輯:喬虹)
國家自然科學(xué)基金(81121003)
姚盛波,男,碩士研究生,主要從事心血管藥理學(xué)研究,E-mail:182041150@qq.com;劉艷,女,博士,教授,主要從事心血管藥理學(xué)研究。
劉 艷,E-mail:liuyan_gyp@163.com,Tel:(0451)86671354