蔣婭 綜述 李波 審校
(昆明醫(yī)科大學(xué)第二附屬醫(yī)院心功能科,云南 昆明650101)
?
心肌瘢痕研究進(jìn)展
蔣婭綜述李波審校
(昆明醫(yī)科大學(xué)第二附屬醫(yī)院心功能科,云南 昆明650101)
【摘要】瘢痕修復(fù)是心肌梗死后最常見的修復(fù)方式,心外膜來源細(xì)胞與骨髓來源細(xì)胞相互作用提供了瘢痕形成的細(xì)胞骨架,磷脂酶D1可抑制梗死后心室重塑,減少瘢痕形成,白介素-1拮抗劑是瘢痕缺陷愈合的治療靶點(diǎn)。心臟干細(xì)胞釋放的細(xì)胞因子在再生療法中的作用,碎裂QRS波預(yù)測非透壁心肌瘢痕價(jià)值有限,交界區(qū)心肌瘢痕與室性心律失常密切相關(guān)。心肌瘢痕會引起心臟再同步化治療無應(yīng)答。
【關(guān)鍵詞】心肌瘢痕;心臟再生;心律失常;心臟再同步化治療
心肌缺血缺氧使細(xì)胞發(fā)生程序性細(xì)胞死亡或壞死,繼而引起心肌梗死,心臟收縮功能障礙,心室重塑以及瘢痕組織形成,這些變化導(dǎo)致心室腔變大,變薄。心肌細(xì)胞是永久細(xì)胞,不能再發(fā)生有絲分裂,再生能力極差,心肌壞死區(qū)最常見的修復(fù)方式是瘢痕修復(fù),心肌梗死后,心肌以頓抑、冬眠和傷殘的形式存在,這部分心肌若能得到及時(shí)灌注可完全恢復(fù)功能,否則趨于壞死。
1心肌瘢痕的病理基礎(chǔ)及主要細(xì)胞來源
心肌梗死后成纖維細(xì)胞激活,大量細(xì)胞外基質(zhì)等膠原成分沉積,膠原過度沉積轉(zhuǎn)化為心肌瘢痕,室壁動(dòng)力發(fā)生改變,破壞心電耦合,心律失常的風(fēng)險(xiǎn)增大,并最終導(dǎo)致心力衰竭。研究發(fā)現(xiàn)心外膜來源的細(xì)胞(EDPC)是心肌梗死后成纖維細(xì)胞的主要來源,骨髓來源細(xì)胞(EDPC-BMC)交互作用提供了膠原纖維沉積形成瘢痕組織所需的細(xì)胞支架,促進(jìn)心肌梗死后纖維修復(fù)向惡性瘢痕的轉(zhuǎn)化[1]。Ruiz-Villalba 等[1]通過基因標(biāo)記研究胚胎及成人心臟間質(zhì)結(jié)構(gòu)發(fā)現(xiàn)形成成纖維細(xì)胞的EDPC主要以Eyfp+/CD31-/CD90+亞型為主。操縱這些細(xì)胞的相互作用可減少心肌梗死后膠原沉積,有望在細(xì)胞療法減少瘢痕組織生成有所突破。
2磷脂酶D1和白介素-1在瘢痕形成中的病理生理機(jī)制
長時(shí)間心肌缺血-再灌注過程中,適當(dāng)?shù)难装Y修復(fù)反應(yīng)有助于心肌功能的恢復(fù),磷脂酶D1(PLD1)是心血管炎癥反應(yīng)和修復(fù)過程的重要媒介,PLD1可調(diào)節(jié)肌成纖維細(xì)胞的分化和間質(zhì)膠原纖維的沉積[2]。磷脂介質(zhì)主要在動(dòng)脈粥樣硬化中通過炎癥細(xì)胞黏附,遷移到血管壁,促進(jìn)趨化因子的釋放等過程發(fā)揮作用[3-4]。Schonberger等[5]發(fā)現(xiàn)心肌梗死后PLD1表達(dá)上調(diào),腫瘤壞死因子-α(TNF-α), 核因子-κB (NF- κB), 白介素-1(IL-1)等炎性介質(zhì)的釋放增加,此過程主要發(fā)生在梗死缺血區(qū)和邊緣區(qū)。小鼠前降支動(dòng)脈結(jié)扎24 h后PLD1表達(dá)增加,促進(jìn)TNF-α的分泌,心肌成纖維細(xì)胞a平滑肌肌動(dòng)蛋白(a-SMA)表達(dá)增加,抑制心室重塑,減少心肌瘢痕的形成。PLD1陰性的小鼠心肌梗死后24 h炎癥細(xì)胞黏附和遷移減少,影響心肌梗死后心肌修復(fù),梗死面積增大,左心室收縮功能下降,血流動(dòng)力學(xué)不穩(wěn)定,病死率增加。炎癥反應(yīng)過程中PLD1介導(dǎo)的 TNF-α是急性期炎癥反應(yīng)的重要細(xì)胞因子,這種內(nèi)源性致熱源會引起IL-1a的釋放,IL-1是一個(gè)關(guān)鍵的促炎細(xì)胞因子,為最近心血管疾病治療的新靶點(diǎn), IL-1拮抗劑治療可減少梗死面積[2]。動(dòng)物試驗(yàn)中阻斷IL-1在改善心肌梗死預(yù)后方面有作用[6-7]。重組人IL-1受體拮抗劑可保護(hù)心肌,促進(jìn)心臟功能的恢復(fù)[7]。但Schonberger等[5]發(fā)現(xiàn)PLD1缺乏引起IL-1水平下降,心臟功能受損也更明顯。
炎癥對心肌梗死早期修復(fù)愈合過程至關(guān)重要,PLD1是適當(dāng)炎癥反應(yīng)的重要環(huán)節(jié),對于心肌修復(fù)過程至關(guān)重要,PLD1 的缺乏引起早期修復(fù)炎癥細(xì)胞不能激活,IL-1等炎性介質(zhì)分泌減少,修復(fù)過程不順利,心肌瘢痕缺陷愈合,心臟功能減退。然而過度的炎癥反應(yīng)也會引起梗死后心肌重塑,IL-1拮抗靶點(diǎn)治療是一個(gè)新熱點(diǎn),未來需要平衡炎癥與抑制炎癥反應(yīng)的矛盾過程,在減少心肌瘢痕形成的同時(shí)又不影響心肌早期修復(fù)過程。
3心肌瘢痕的干細(xì)胞再生療法
心臟移植治療是終末期心力衰竭(大多為心肌梗死后)唯一有效的方法,心臟供體的缺乏促使大量研究者從細(xì)胞學(xué)出發(fā),尋找替代死亡或受損心肌的最佳細(xì)胞來源[8]。心肌再生研究中,血管生成,心肌細(xì)胞增殖,心臟干細(xì)胞的募集等是心臟內(nèi)源性功能修復(fù)的關(guān)鍵,是缺血后修復(fù)的重要環(huán)節(jié)[9]。心臟干細(xì)胞具有自我更新,無性繁殖,多向分化的潛能,有望取代和修復(fù)受損心肌。目前受歡迎的組織再生細(xì)胞包括:脂肪干細(xì)胞、骨髓間充質(zhì)干細(xì)胞(MSCS)、胚胎干細(xì)胞、血管內(nèi)皮祖細(xì)胞、骨髓來源干細(xì)胞(BMSCS)、誘導(dǎo)多能干細(xì)胞、心臟祖細(xì)胞等[10]。Li 等[11]發(fā)現(xiàn)心臟祖細(xì)胞、骨髓來源間充質(zhì)干細(xì)胞、多能誘導(dǎo)干細(xì)胞是心臟干細(xì)胞的主要來源。細(xì)胞再編程過程可使終末分化細(xì)胞去分化為多能干細(xì)胞或者轉(zhuǎn)分化為心肌細(xì)胞[12]。但干細(xì)胞治療的療效不佳,目前為止臨床研究中心臟細(xì)胞注射療法實(shí)驗(yàn)結(jié)果不甚理想,將細(xì)胞注入受損器官的時(shí)間點(diǎn)選擇尤其重要[13]。移植到瘢痕組織內(nèi)的干細(xì)胞受炎癥因子、促程序性細(xì)胞死亡因子的影響,且缺乏氧氣、營養(yǎng)供給等,移植后細(xì)胞在相關(guān)區(qū)域存活率低。移植細(xì)胞被膠原組織及瘢痕組織包繞,正常細(xì)胞的除極電流無法傳導(dǎo)至移植細(xì)胞。移植細(xì)胞和自身細(xì)胞不能同步活動(dòng),在改善心臟功能方面無明顯療效。
干細(xì)胞能向心肌細(xì)胞和血管分化,而它釋放的具有抗炎、抗程序性細(xì)胞死亡、抑制心室重塑、抗心律失常作用的旁分泌因子才是細(xì)胞替代治療的關(guān)鍵[14-15],Latham 等[16]發(fā)現(xiàn)聯(lián)合移植干細(xì)胞,改善心肌梗死后心臟修復(fù)和再生是通過強(qiáng)大的旁分泌機(jī)制促進(jìn)血管生成,干細(xì)胞遷移及修復(fù)作用而發(fā)生的。細(xì)胞因子是細(xì)胞分泌的小分子物質(zhì),在組織增殖、分化和抗程序性細(xì)胞死亡過程發(fā)揮作用,心肌再生中研究最廣泛最重要的細(xì)胞因子是轉(zhuǎn)化生長因子-β(TGF-β)、IL-6、趨化因子等[17]。與哺乳動(dòng)物相比,斑馬魚心臟表現(xiàn)出強(qiáng)大的再生能力,TGF-β在斑馬魚心臟早期發(fā)育過程中得以表達(dá),它介導(dǎo)的信號調(diào)節(jié)途徑有利于實(shí)現(xiàn)完整的心臟再生[18]。TGF-β通過刺激內(nèi)皮細(xì)胞增殖促進(jìn)血管生成,抑制過度炎癥反應(yīng),改變肌成纖維細(xì)胞表型,促進(jìn)細(xì)胞外基質(zhì)沉積等作用影響心臟功能[19]。小鼠自體血清試驗(yàn)中TGF-β可促進(jìn)骨髓間充質(zhì)細(xì)胞向心肌細(xì)胞分化[20],TGF-β信號通路可作為心臟再生研究中的潛在治療靶點(diǎn),通過刺激內(nèi)源性旁分泌或外源性增加旁分泌因子可優(yōu)化心臟干細(xì)胞治療效果。
4碎裂QRS波的診斷價(jià)值
心肌梗死后心肌瘢痕可劃分為透壁瘢痕和非透壁瘢痕,如果心肌缺血程度較低,側(cè)支循環(huán)豐富,得到再灌注治療,則出現(xiàn)非透壁瘢痕,呈彌漫、稀疏、點(diǎn)狀分布,其除極電活動(dòng)延遲,不完全,除極方向變換,產(chǎn)生碎裂QRS波(fQRS)。fQRS波檢測心肌瘢痕和識別高危患者已擴(kuò)展到各種心臟疾病,包括心臟結(jié)節(jié)病、致心律失常性右室心肌病,急性冠狀動(dòng)脈綜合征,Brugada綜合征和獲得性長QT間期綜合征[21]。作為心肌瘢痕的診斷工具,其特異性比Q波低,但其敏感性和陰性預(yù)測值都較高,它的出現(xiàn)可能不完全支持心肌瘢痕的存在,但對于排除陳舊性心肌梗死有較大的預(yù)測價(jià)值[22],心電圖上fQRS和Q波同時(shí)出現(xiàn)使心肌梗死診斷的特異性和陽性預(yù)測值明顯提高[22]。213例患者進(jìn)行冠狀動(dòng)脈心臟搭橋術(shù),術(shù)后fQRS是遠(yuǎn)期心血管不良事件(心臟死亡,復(fù)發(fā)心肌梗死,失代償性心力衰竭,再入院)的獨(dú)立預(yù)測因素,對預(yù)測不良事件的準(zhǔn)確率為70%,陰性預(yù)測值很高。術(shù)后出現(xiàn)fQRS的這類患者需要密切隨訪[23]。
用單光子發(fā)射計(jì)算機(jī)斷層掃描評估心肌瘢痕,238例疑似或確診的急性冠狀動(dòng)脈綜合征患者中,fQRS組與無fQRS組心肌瘢痕存在無差異。fQRS波并不是心肌瘢痕的可靠預(yù)測因子,相關(guān)冠狀動(dòng)脈區(qū)域的fQRS波無法定位瘢痕的具體分布[24]。
5心肌瘢痕與心律失常
心肌瘢痕是器質(zhì)性心臟病患者室性心律失常發(fā)生的重要基礎(chǔ),瘢痕區(qū)心肌細(xì)胞少,纖維組織豐盛,電生理檢查發(fā)現(xiàn)這些區(qū)域電壓幅度比正常組織低。纖維化瘢痕形成緩慢傳導(dǎo)區(qū),與存活心肌間共同構(gòu)成折返環(huán)導(dǎo)致室性心律失常的發(fā)生。心肌瘢痕為不均質(zhì)結(jié)構(gòu),瘢痕組織的異質(zhì)性與心律失常密切相關(guān)。異質(zhì)性瘢痕質(zhì)量是可誘導(dǎo)性室性心動(dòng)過速的獨(dú)立預(yù)測因子[25]。
Demirel等[26]發(fā)現(xiàn)心肌梗死邊緣區(qū)(PIZ)及瘢痕交界區(qū)與持續(xù)性室性心動(dòng)過速(SVT),植入式心律轉(zhuǎn)復(fù)除顫器(ICD)的植入率相關(guān)。延遲增強(qiáng)核磁共振成像評價(jià)心肌瘢痕,PIZ定義為心肌梗死區(qū)最高信號強(qiáng)度的35%~50%之間,核心梗死區(qū)為大于心肌梗死最高信號強(qiáng)度的50%,梗死邊緣區(qū)與核心區(qū)比值可以預(yù)測SVT的發(fā)生,比值越大,SVT發(fā)生概率越高,且與臨床ICD植入相關(guān)。PIZ內(nèi)心電復(fù)極波傳導(dǎo)擴(kuò)散緩慢,為心律失常提供了重要的環(huán)境[27]。核心梗死區(qū)無構(gòu)成折返通道的存活心肌細(xì)胞,對室性心動(dòng)過速的預(yù)測價(jià)值有限,大面積梗死核心區(qū)無法預(yù)測致死性室性心動(dòng)過速,而交界區(qū)瘢痕是SVT及ICD治療的獨(dú)立預(yù)測因子[26]。41例有ICD植入指征的缺血性心肌病患者納入研究,利用心肌釓延遲成像定量瘢痕,心肌瘢痕容積,質(zhì)量是自發(fā)性單形性室性心動(dòng)過速的預(yù)測因子[28]。Kwon等[29]發(fā)現(xiàn)心肌瘢痕負(fù)荷可作為嚴(yán)重缺血性心肌病的危險(xiǎn)分層因子,有利于確定何種患者可從ICD植入中獲益,瘢痕負(fù)荷<25%的缺血性心肌病患者中,ICD植入未見臨床獲益,瘢痕負(fù)荷質(zhì)量越大,植入ICD者相對于常規(guī)治療手段的患者,其后期生存獲益巨大,這種獲益差別在男性患者中更加明顯。
6心肌瘢痕與心臟再同步化治療
心臟再同步化治療(CRT)是目前治療充血性心力衰竭公認(rèn)的策略,可以減少住院率,延緩左心室重塑,延長生存周期,最近更新指南建議CRT適用于慢性心力衰竭患者,特別是左心室射血分?jǐn)?shù)<35%,紐約心臟病協(xié)會心功能分級為II~I(xiàn)V級,經(jīng)適當(dāng)醫(yī)療干預(yù)仍不能緩解癥狀者。心電圖提示QRS>120 ms的左束支傳導(dǎo)阻滯,或QRS>150 ms的非左束支傳導(dǎo)阻滯患者[30]。CRT應(yīng)答受心肌瘢痕和心肌存活面積的影響,缺血性心肌病存在壞死心肌,肌電活動(dòng)異常,無應(yīng)答反應(yīng)率較高。缺血性心肌病患者,CRT左心室電極位置遠(yuǎn)離瘢痕的患者,兩年無心臟事件生存率高于臨近瘢痕或位于瘢痕內(nèi)部者,后者經(jīng)CRT治療后左心室同步性并無明顯改善,電極位于瘢痕內(nèi)部是臨床預(yù)后不良的獨(dú)立預(yù)測因子[31]。
起搏位置位于瘢痕處或瘢痕交界區(qū)可增加心律失常的風(fēng)險(xiǎn),導(dǎo)致心臟猝死, CRT植入之前,心臟磁共振釓延遲成像評估心肌瘢痕位置,導(dǎo)線位置遠(yuǎn)離瘢痕組心血管不良事件發(fā)生率最低[32]。Wong等[33]全面評估了電極導(dǎo)線位置與CRT應(yīng)答之間的關(guān)系,心室起搏處存在瘢痕是CRT無應(yīng)答的主要原因,左右心室起搏處無瘢痕者CRT應(yīng)答率為81%,右心室起搏處有瘢痕者應(yīng)答率為55%,左心室者為25%,雙心室起搏處均有瘢痕者,則無應(yīng)答反應(yīng)。心肌CRT植入應(yīng)避免瘢痕部位及瘢痕附近起搏,選擇CRT治療前,應(yīng)對存活心肌和瘢痕組織范圍進(jìn)行評估。
[ 參 考 文 獻(xiàn) ]
[1]Ruiz-Villalba A,Simon AM,Pogontke C,et al.Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar[J]. J Am Coll Cardiol,2015,65(19):2057-2066.
[2]Grothusen C, Hagemann A, Attmann T, et al. Impact of an interleukin-1 receptor antagonist and erythropoietin on experimental myocardial ischemia/reperfusion injury[J]. Sci World J,2012,2012:737585.
[3]Baumer Y, Leder C, Ziegler M, et al.The recombinant bifunctional protein alphacd133-GPVI promotes repair of the infarcted myocardium in mice[J]. J Thromb Haemost,2012,10(6):1152-1164.
[4]Ziegler M, Elvers M, Baumer Y, et al.The bispecific SDF1-GPVI fusion protein preserves myocardial function after transient ischemia in mice[J]. Circulation, 2012,125(5):685-696.
[5]Schonberger T, Jurgens T, Muller J, et al. Pivotal role of phospholipase D1 in tumor necrosis factor-alpha-mediated inflammation and scar formation after myocardial ischemia and reperfusion in mice[J]. Am J Pathol,2014,184(9):2450-2464.
[6]Abbate A,van Tassell BW, Biondi-Zoccai GG. Blocking interleukin-1 as a novel therapeutic strategy for secondary prevention of cardiovascular events[J]. BioDrugs,2012,26(4):217-233.
[7]Toldo S, Schatz AM, Mezzaroma E, et al.Recombinant human interleukin-1 receptor antagonist provides cardioprotection during myocardial ischemia reperfusion in the mouse[J]. Cardiovasc Drugs Ther,2012,26(3):273-276.
[8]Laflamme MA, Murry CE. Heart regeneration[J]. Nature,2011,473(7347):326-335.
[9]Doppler SA, Deutsch MA, Lange R, et al. Cardiac regeneration: current therapies—future concepts[J]. J Thorac Dis,2013,5(5):683-697.
[10]Hastings CL, Roche ET, Ruiz-Hernandez E, et al. Drug and cell delivery for cardiac regeneration[J]. Adv Drug Deliv Rev,2015,84:85-106.
[11]Li N, Wang C, Jia L,et al. Heart regeneration, stem cells, and cytokines[J]. Regen Med Res,2014,2(1):6.
[12]Steinhauser ML,Lee RT.Regeneration of the heart[J].EMBO Mol Med,2011,3(12):701-712.
[13]Couzin-Frankel J. The elusive heart fix[J]. Science,2014,345(6194):252-257.
[14]Mingliang R,Bo Z,Zhengguo W. Stem cells for cardiac repair:status, mechanisms, and new strategies[J]. Stem Cells Int,2011,2011:310928.
[15]Duran JM, Makarewich CA, Sharp TE, et al. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms[J]. Circ Res,2013,113(5):539-552.
[16]Latham N, Ye B, Jackson R, et al.Human blood and cardiac stem cells synergize to enhance cardiac repair when cotransplanted into ischemic myocardium[J]. Circulation,2013,128(11 Suppl 1):S105-112.
[17]Maltais S, Tremblay JP, Perrault LP, et al. The paracrine effect:pivotal mechanism in cell-based cardiac repair[J]. J Cardiovasc Transl Res,2010,3(6):652-662.
[18]Chablais F, Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling[J]. Development,2012,139(11):1921-1930.
[19]Park JS, Chu JS, Tsou AD, et al.The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta[J]. Biomaterials,2011,32(16):3921-3930.
[20]Rouhi L, Kajbafzadeh AM, Modaresi M, et al.Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-beta1 (TGF-beta1)[J]. In Vitro Cell Dev Biol Anim,2013,49(4):287-294.
[21]Take Y,Morita H.Fragment QRS:what is the meaning?[J].Indian Pacing Electrophysiol J,2012,12(5):213-225.
[22]Dabbagh Kakhki VR, Ayati N, Zakavi SR, et al. Comparison between fragmented QRS and Q waves in myocardial scar detection using myocardial perfusion single photon emission computed tomography[J]. Kardiol Pol,2015, 73(6):437-444.
[23]Cicek Y, Kocaman SA, Durakoglugil ME, et al. Relationship of fragmented QRS with prognostic markers and long-term major adverse cardiac events in patients undergoing coronary artery bypass graft surgery[J]. J Cardiovasc Med (Hagerstown),2015,16(2):112-117.
[24]Wang DD, Tibrewala A, Nguygen P, et al. Fragmented QRS on surface electrocardiogram is not a reliable predictor of myocardial scar, angiographic coronary disease or long term adverse outcomes[J]. Cardiovasc Diagn Ther,2014,4(4):279-286.
[25]Arenal A, Hernandez J, Perez-David E, et al.Do the spatial characteristics of myocardial scar tissue determine the risk of ventricular arrhythmias?[J]. Cardiovasc Res,2012,94(2):324-332.
[26]Demirel F, Adiyaman A, Timmer JR, et al. Myocardial scar characteristics based on cardiac magnetic resonance imaging is associated with ventricular tachyarrhythmia in patients with ischemic cardiomyopathy[J]. Int J Cardiol,2014,177(2):392-399.
[27]Haugaa KH, Smedsrud MK, Steen T, et al.Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia[J]. JACC Cardiovasc Imaging,2010,3(3):247-256.
[28]Bernhardt P, Stiller S, Kottmair E, et al. Myocardial scar extent evaluated by cardiac magnetic resonance imaging in ICD patients:relationship to spontaneous VT during long-term follow-up[J].Int J Cardiovasc Imaging,2011,27(6):893-900.
[29]Kwon DH, Hachamovitch R, Adeniyi A, et al. Myocardial scar burden predicts survival benefit with implantable cardioverter defibrillator implantation in patients with severe ischaemic cardiomyopathy: influence of gender[J]. Heart ,2014,100(3):206-213.
[30]Brignole M, Auricchio A, Baron-Esquivias G, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy:the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology(ESC).Developed in collaboration with the European Heart Rhythm Association(EHRA)[J]. Europace,2013,15(8):1070-1118.
[31]Sade LE, Saba S, Marek JJ, et al. The association of left ventricular lead position related to regional scar by speckle-tracking echocardiography with clinical outcomes in patients receiving cardiac resynchronization therapy[J]. J Am Soc Echocardiogr,2014,27(6):648-656.
[32]Leyva F, Foley PW, Chalil S, et al. Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson,2011,13:29.
[33]Wong JA, Yee R, Stirrat J, et al. Influence of pacing site characteristics on response to cardiac resynchronization therapy[J]. Circ Cardiovasc Imaging,2013,6(4):542-550.
Research Progress of Myocardial Scar
JIANG Ya,LI Bo
(DepartmentofCardiacFunction,TheSecondAffiliatedHospitalofChongqingMedicalUniversity,Kunming650101,Yunnan,China)
【Abstract】Scar formation is the most common method of repairing after myocardial infarction.The interaction between epicardium derived cell and bone marrow derived blood cell provide the cytoskeleton of scar formation. Additionally the combination of epicardium derived cell and bone marrow derived blood cell provide the cytoskeleton of scar formation, and phospholipase D1 can inhibit left ventricular remodeling after infarction, reducing scar formation.The interleukin 1 antagonist is the therapeutic targets to prevent defective scar healing. The role of stem cells related to paracrine factor should be emphasized in the treatment of alternative therapy in myocardial regeneration therapy. The value of fragmented QRS wave in the prediction of non transmural cardiac scar is limited and border-zone infarcts are closely related to ventricular arrhythmia.Myocardial scar is also related to the non-response of cardiac resynchronization therapy.
【Key words】Myocardial scar;Cardiac regeneration;Cardiac arrhythmia;Cardiac resynchronization therapy
收稿日期:2015-06-25修回日期:2015-09-09
【中圖分類號】R542.2
【文獻(xiàn)標(biāo)志碼】A【DOI】10.16806/j.cnki.issn.1004-3934.2016.01.017
作者簡介:蔣婭(1990—),在讀碩士,主要從事無創(chuàng)心功能和心電生理的臨床應(yīng)用。Email:654725316@qq.com通信作者:李波(1966—),主任醫(yī)師,碩士,主要從事無創(chuàng)心功能和心電生理的臨床應(yīng)用。Email:xgnLiBo1995@sina.com