国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

富血小板血漿在糖尿病潰瘍創(chuàng)面的應(yīng)用

2016-03-09 22:51:21李立柴益民
國際骨科學(xué)雜志 2016年3期
關(guān)鍵詞:纖維細(xì)胞生長因子內(nèi)皮細(xì)胞

李立 柴益民

?

富血小板血漿在糖尿病潰瘍創(chuàng)面的應(yīng)用

李立柴益民

糖尿病潰瘍創(chuàng)面常較普通創(chuàng)面難愈,相關(guān)機制主要包括周圍神經(jīng)病變、微循環(huán)障礙、炎癥及感染、細(xì)胞過度凋亡等。富血小板血漿(PRP)含有多種生長因子及大量白細(xì)胞,能夠促進(jìn)創(chuàng)面微血管再生及周圍神經(jīng)修復(fù),且有助于炎癥感染控制,減少細(xì)胞凋亡。該文圍繞PRP在糖尿病潰瘍創(chuàng)面的應(yīng)用作一綜述。

富血小板血漿;糖尿病潰瘍創(chuàng)面;血管;神經(jīng)

糖尿病潰瘍創(chuàng)面的治療一直是臨床工作中的難題,也是近年的研究熱點。富血小板血漿(PRP)含有多種生長因子及大量白細(xì)胞,能夠促進(jìn)創(chuàng)面微血管再生及周圍神經(jīng)修復(fù),且有助于炎癥感染控制,減少細(xì)胞凋亡。本文圍繞PRP在糖尿病潰瘍創(chuàng)面的應(yīng)用作一綜述。

1 糖尿病潰瘍創(chuàng)面難愈機制

創(chuàng)面愈合是一個由多種細(xì)胞、細(xì)胞外基質(zhì)及各類生長因子等共同參與的復(fù)雜過程,包括第一期(涉及初始損傷及快速止血)、炎癥期、增殖期、重塑期等階段[1]。但糖尿病潰瘍創(chuàng)面愈合并不完全遵循上述過程。受機體持續(xù)高血糖及代謝相關(guān)因素影響,糖尿病潰瘍創(chuàng)面較普通創(chuàng)面難愈。影響其正常愈合的機制主要包括局部微循環(huán)障礙、周圍神經(jīng)病變、創(chuàng)面炎癥及感染、細(xì)胞過度凋亡等[2]。

1.1微循環(huán)障礙

糖尿病患者機體高血糖環(huán)境可引起血液黏度增加,造成局部缺氧,進(jìn)而導(dǎo)致血管內(nèi)皮損傷[3]。血管內(nèi)皮損傷又可導(dǎo)致內(nèi)皮細(xì)胞增生、管腔狹窄,造成局部血運不暢,加重局部缺氧并形成惡性循環(huán)[4-5],影響創(chuàng)面愈合。同時,糖尿病潰瘍創(chuàng)面中重要的促血管生成因子血管內(nèi)皮生長因子(VEGF)和堿性成纖維細(xì)胞生長因子(bFGF)表達(dá)下降,導(dǎo)致血管自我修復(fù)能力下降[6],也影響糖尿病潰瘍創(chuàng)面修復(fù)。

1.2周圍神經(jīng)病變

表皮干細(xì)胞具有多向分化能力,是促進(jìn)創(chuàng)面修復(fù)的重要細(xì)胞。正常神經(jīng)末梢能分泌神經(jīng)肽P物質(zhì),P物質(zhì)是受神經(jīng)調(diào)控的修復(fù)信號因子,可誘導(dǎo)表皮干細(xì)胞向創(chuàng)緣聚集以修復(fù)創(chuàng)面。糖尿病可引起周圍神經(jīng)病變,末梢神經(jīng)受損后分泌的P物質(zhì)明顯減少[7],誘導(dǎo)表皮干細(xì)胞遷移分化的能力減弱,影響潰瘍創(chuàng)面修復(fù)。

1.3炎癥及感染

糖尿病潰瘍創(chuàng)面始終處于輕度炎癥反應(yīng)狀態(tài),促炎性因子刺激固有免疫應(yīng)答,激活下游信號轉(zhuǎn)導(dǎo)通路,產(chǎn)生炎性介質(zhì),導(dǎo)致慢性炎癥。促炎性因子如白細(xì)胞介素(IL)-1可誘發(fā)抗原遞呈細(xì)胞表面免疫分子表達(dá),介導(dǎo)免疫球蛋白分泌,強化免疫介導(dǎo)的組織損傷過程。持續(xù)高血糖環(huán)境可激活核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白 (NLRP) 3炎癥小體,誘導(dǎo)巨噬細(xì)胞分泌炎癥反應(yīng)的中心介質(zhì)IL-1β[8],發(fā)生內(nèi)源性炎癥反應(yīng),同時IL-1β也可促進(jìn)部分巨噬細(xì)胞促炎表型的表達(dá)[9]。

糖尿病潰瘍創(chuàng)面等修復(fù)緩慢的創(chuàng)面由于長期缺少皮膚對外部環(huán)境的屏障保護,加上機體高代謝狀態(tài)與細(xì)胞凋亡加速,存在較高感染風(fēng)險。感染可導(dǎo)致原有或新生組織壞死,創(chuàng)面肉芽組織形成障礙,影響創(chuàng)面愈合,并因局部生長因子大量消耗導(dǎo)致生長因子匱乏,延緩創(chuàng)面愈合過程[10]。

1.4細(xì)胞過度凋亡

糖尿病潰瘍創(chuàng)面中凋亡細(xì)胞明顯多于普通創(chuàng)面,其中以成纖維細(xì)胞占多數(shù),細(xì)胞凋亡增加可導(dǎo)致創(chuàng)面長期不愈[11]。高血糖環(huán)境可引起轉(zhuǎn)化生長因子(TGF)-β信號轉(zhuǎn)導(dǎo)通路異常,抑制成纖維細(xì)胞的遷移、趨化及增殖[12];同時可誘導(dǎo)Ras信號轉(zhuǎn)導(dǎo)通路表達(dá)異常,致使細(xì)胞周期停滯于有絲分裂前期,減少細(xì)胞增殖[13]。

Bcl-2基因與Bax基因是一對正負(fù)細(xì)胞凋亡調(diào)節(jié)基因,前者主要抑制細(xì)胞凋亡,后者主要促進(jìn)細(xì)胞凋亡。與正常創(chuàng)面組織相比,糖尿病潰瘍創(chuàng)面組織Bcl-2基因表達(dá)水平明顯降低、Bax基因表達(dá)水平升高[14],這些變化正是由于高血糖環(huán)境所引起。Bcl-2與Bax基因表達(dá)水平的改變可使細(xì)胞凋亡增多,造成相關(guān)修復(fù)細(xì)胞減少,潰瘍創(chuàng)面愈合延遲或停滯。此外,糖尿病潰瘍創(chuàng)面中抑癌基因p53表達(dá)水平升高、氧自由基含量增多也可導(dǎo)致Bcl-2基因表達(dá)水平降低和Bax基因表達(dá)水平升高,致使細(xì)胞凋亡增多[15]。

2 PRP促進(jìn)糖尿病潰瘍創(chuàng)面愈合機制

PRP是自體血經(jīng)離心方法提取出的血小板濃縮物,含高濃度血小板、白細(xì)胞和纖維蛋白等,在凝血酶作用下可激活并釋放TGF-β、胰島素樣生長因子(IGF)、血小板衍生因子(PDGF)、表皮生長因子(EGF)、VEGF、bFGF等多種生長因子[16-17],這些生長因子可刺激細(xì)胞增殖與分化,且相互之間具有良好的協(xié)同作用。隨著研究的深入,PRP促進(jìn)糖尿病潰瘍創(chuàng)面愈合機制也逐步清晰。

2.1PRP與微循環(huán)

組織修復(fù)重建中最重要的是局部血管系統(tǒng)重建,新生血管形成、血供充足為促進(jìn)創(chuàng)面愈合的主要因素,而血管內(nèi)皮細(xì)胞增殖則為關(guān)鍵環(huán)節(jié)[18]。糖尿病潰瘍創(chuàng)面中血管內(nèi)皮細(xì)胞損傷且自我修復(fù)能力下降。張云松等[19]在培養(yǎng)人臍靜脈血管內(nèi)皮細(xì)胞時加入PRP,觀察血管內(nèi)皮細(xì)胞增殖及血管形成情況,發(fā)現(xiàn)PRP能促進(jìn)人臍靜脈血管內(nèi)皮細(xì)胞增殖及毛細(xì)血管腔形成。動物實驗[20-22]表明,采用皮瓣覆蓋治療創(chuàng)面時應(yīng)用PRP可促進(jìn)皮瓣新生毛細(xì)血管形成,加快血運重建。Kontopodis等[23]研究發(fā)現(xiàn),使用PRP治療糖尿病潰瘍創(chuàng)面時,創(chuàng)面新生血管形成增加。糖尿病潰瘍創(chuàng)面中VEGF、bFGF表達(dá)下降,而PRP中含有高濃度生長因子,包括大量VEGF、bFGF和TGF-β。當(dāng)組織缺血、缺氧或內(nèi)皮細(xì)胞受損時,VEGF和bFGF通過增加內(nèi)皮細(xì)胞通透性,促進(jìn)血管內(nèi)皮細(xì)胞增殖分化,加速血管新生[24]。VEGF和bFGF對維持血管內(nèi)皮的通透性、整體性及血管形成有重要作用[25];TGF-β可通過Smad蛋白調(diào)控VEGF表達(dá),進(jìn)一步調(diào)控血管化進(jìn)程[26]。

2.2PRP與周圍神經(jīng)修復(fù)

神經(jīng)損傷修復(fù)對于現(xiàn)代醫(yī)學(xué)而言仍是一個極具挑戰(zhàn)的難題,而周圍神經(jīng)修復(fù)對于糖尿病潰瘍創(chuàng)面修復(fù)意義重大。Sariguney等[27]采用PRP對大鼠坐骨神經(jīng)損傷模型的神經(jīng)吻合進(jìn)行術(shù)中干預(yù)研究,結(jié)果發(fā)現(xiàn)PRP能明顯改善大鼠周圍神經(jīng)修復(fù)效果,認(rèn)為PRP所含的生長因子參與了神經(jīng)軸突髓鞘再生修復(fù)過程。Lichtenfels等[28]采用PRP聯(lián)合神經(jīng)導(dǎo)管對大鼠坐骨神經(jīng)部分缺損模型進(jìn)行修復(fù)治療,結(jié)果發(fā)現(xiàn)PRP能促進(jìn)周圍神經(jīng)功能恢復(fù),其效果接近自體神經(jīng)移植。糖尿病潰瘍創(chuàng)面中神經(jīng)生長因子(NGF)明顯缺失,而PRP中含有NGF,可能有助于創(chuàng)面神經(jīng)再生修復(fù)。NGF也可刺激VEGF表達(dá)分泌,促進(jìn)潰瘍創(chuàng)面血管床再生,抑制血管內(nèi)皮細(xì)胞凋亡[29]。PRP的應(yīng)用為周圍神經(jīng)修復(fù)提供了新的方法和思路,在神經(jīng)修復(fù)方面具有很大潛力。但PRP是否也促進(jìn)糖尿病潰瘍創(chuàng)面周圍神經(jīng)或神經(jīng)末梢的修復(fù),尚需進(jìn)一步研究。

2.3PRP與炎癥感染

糖尿病潰瘍創(chuàng)面感染是常見的并發(fā)癥,嚴(yán)重影響創(chuàng)面愈合。袁霆等[30]報道1例采用PRP治療慢性骨髓炎病例,創(chuàng)面膿性滲出物迅速減少。PRP所含的高濃度白細(xì)胞被局部炎性因子激活后,具有較好的抗感染能力,可抑制炎癥反應(yīng)[31-33]。PRP能聚集并趨化大量巨噬細(xì)胞浸潤于糖尿病潰瘍創(chuàng)面,同時誘導(dǎo)細(xì)胞向非炎癥表型分化,抑制炎性因子表達(dá),促進(jìn)抗炎性因子表達(dá)。PRP能上調(diào)IL-4的表達(dá),IL-4早期可促進(jìn)炎癥反應(yīng),后期可抑制IL-1等促炎性因子的表達(dá),有利于纖維蛋白生成[34-35]。Bendinelli等[36]、Kim等[37]研究發(fā)現(xiàn),PRP能降低核因子-κB(NF-κB)的轉(zhuǎn)移活性,減弱NF-κB對NLRP3炎癥小體的上調(diào)功能,減少IL-1β分泌,終止炎癥反應(yīng)。

2.4PRP與細(xì)胞凋亡

正常創(chuàng)面愈合過程中所需的細(xì)胞和信號分子在糖尿病潰瘍創(chuàng)面嚴(yán)重受損,成纖維細(xì)胞的功能、反應(yīng)性、增殖能力和趨化能力明顯下降,凋亡增加,導(dǎo)致潰瘍創(chuàng)面膠原合成及代謝異常。劉宸等[38]研究發(fā)現(xiàn),PRP促進(jìn)糖尿病大鼠潰瘍創(chuàng)面愈合的作用與強化成纖維細(xì)胞功能、促進(jìn)潰瘍創(chuàng)面修復(fù)相關(guān)膠原蛋白合成有關(guān)。bFGF是維持正常細(xì)胞有絲分裂及增強細(xì)胞趨化的重要因素,PRP中含大量bFGF,可高速增加成纖維細(xì)胞數(shù)量以滿足潰瘍創(chuàng)面修復(fù)需求。

PRP中含有的TGF-β和IGF可修復(fù)和增強TGF-β信號轉(zhuǎn)導(dǎo)通路,其中TGF-β可刺激巨噬細(xì)胞分泌細(xì)胞因子,促進(jìn)成纖維細(xì)胞和平滑肌細(xì)胞增殖趨化,刺激Ⅰ型膠原蛋白合成,增強細(xì)胞收縮能力,促進(jìn)血管和細(xì)胞外基質(zhì)生成[39-41]。PRP還可修復(fù)Ras信號轉(zhuǎn)導(dǎo)通路,使成纖維細(xì)胞恢復(fù)正常細(xì)胞分裂周期,增加成纖維細(xì)胞比例并改善其細(xì)胞功能,還可促進(jìn)基質(zhì)金屬蛋白酶分泌,從而改善膠原結(jié)構(gòu),對膠原重塑和代謝有重要影響[42]。PRP還可促進(jìn)細(xì)胞外基質(zhì)蛋白合成[43],從而加速潰瘍創(chuàng)面愈合。實驗[44]發(fā)現(xiàn),PRP可引起B(yǎng)ax基因表達(dá)水平降低,減弱其促細(xì)胞凋亡能力,從而減少成纖維細(xì)胞凋亡。

3 PRP在糖尿病潰瘍創(chuàng)面應(yīng)用的臨床效果

大量臨床研究證實,局部應(yīng)用PRP能促進(jìn)骨與軟組織創(chuàng)面的修復(fù)。近年來,眾多學(xué)者嘗試將PRP應(yīng)用于糖尿病潰瘍創(chuàng)面,并取得了良好效果。

Cobos等[45]在PRP治療糖尿病潰瘍創(chuàng)面效果與效率評估研究中發(fā)現(xiàn),與傳統(tǒng)治療方法相比,PRP組愈合率為73%~80%,而傳統(tǒng)方法組愈合率僅為20%,PRP組創(chuàng)面愈合時間約為15周,而傳統(tǒng)方法組為35.5周。另一項關(guān)于PRP治療糖尿病潰瘍創(chuàng)面效率及費用方面的研究[46]顯示,PRP治療糖尿病潰瘍創(chuàng)面治愈率為81.3%,平均花費約15 159美元/人,而傳統(tǒng)方法治療糖尿病潰瘍創(chuàng)面治愈率僅為42.1%,平均花費約33 214美元/人。與傳統(tǒng)方法相比,PRP治療糖尿病潰瘍創(chuàng)面治愈率更高,并發(fā)癥更少,截肢率、感染率更低,手術(shù)清創(chuàng)次數(shù)更少,表明PRP能有效改善糖尿病潰瘍創(chuàng)面治療效果。Yotsu等[47]對糖尿病引起的下肢潰瘍創(chuàng)面局部應(yīng)用PRP,以1周為1個療程,前3天使用PRP覆蓋創(chuàng)面,后4天去除PRP,并使用凡士林紗布覆蓋,如此反復(fù)直至創(chuàng)面愈合,多數(shù)患者經(jīng)2周治療后,創(chuàng)面面積明顯縮小,且基本在1~2個月的平均治療時間內(nèi)完全愈合。Mehrannia等[48]采用PPR治療1例持續(xù)6個月不愈的57歲2型糖尿病患者足潰瘍創(chuàng)面,發(fā)現(xiàn)PRP能促進(jìn)潰瘍創(chuàng)面修復(fù),表明PRP對遷延不愈的糖尿病潰瘍創(chuàng)面也有較好療效。Kontopodis等[23]研究發(fā)現(xiàn),對于肢體嚴(yán)重缺血或下肢動脈栓塞的糖尿病患者,PRP仍可有效促進(jìn)其潰瘍創(chuàng)面愈合,表明PRP對于局部組織血液循環(huán)較差的潰瘍創(chuàng)面也有治療效果。Scimeca等[49]對1例糖尿病足潰瘍導(dǎo)致跖趾關(guān)節(jié)損壞患者行關(guān)節(jié)置換術(shù)并以PRP覆蓋創(chuàng)面,4周后成功治愈潰瘍創(chuàng)面,且未出現(xiàn)關(guān)節(jié)感染等并發(fā)癥,表明PRP不僅促進(jìn)創(chuàng)面愈合,在炎癥控制方面也有效果。Saad-Setta等[50]將PRP與去血小板血漿(PPP)作對比,發(fā)現(xiàn)PRP對糖尿病潰瘍創(chuàng)面的治療效果明顯優(yōu)于PPP,認(rèn)為是PRP中的高濃度血小板及相關(guān)生長因子促進(jìn)潰瘍創(chuàng)面愈合。Villela等[51]的薈萃分析表明,影響糖尿病潰瘍創(chuàng)面愈合因素眾多,PRP可作為綜合治療手段之一,且與其他治療方法聯(lián)合應(yīng)用時促進(jìn)糖尿病潰瘍創(chuàng)面愈合效果明顯。

4 結(jié)語

PRP對于糖尿病潰瘍創(chuàng)面愈合有獨特的優(yōu)勢和效果,且PRP來源于自體,不存在免疫排斥和疾病傳播風(fēng)險,使用安全,制備簡便快捷,對機體損傷較小,在促進(jìn)組織修復(fù)和再生方面有廣闊的應(yīng)用前景。隨著對PRP臨床應(yīng)用的增多和對其作用機制研究的深入,PRP用于糖尿病潰瘍創(chuàng)面修復(fù)將得到更全面的闡述。

[1]Goldberg SR, Diegelmann RF. Wound healing primer[J]. Crit Care Nurs Clin North Am, 2012, 24(2):165-178.

[2]Suresh DH, Suryanarayan S, Sarvajnamurthy S, et al. Treatment of a non-healing diabetic foot ulcer with platelet-rich plasma[J]. J Cutan Aesthet Surg, 2014, 7(4):229-231.

[3]Herrmann M, Sullivan DR, Veillard AS, et al. Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes[J]. Diabetes Care, 2015, 38(3):521-528.

[4]Pickwell K, Siersma V, Kars M, et al. Predictors of lower-extremity amputation in patients with an infected diabetic foot ulcer[J]. Diabetes Care, 2015, 38(5):852-857.

[5]Braun LR, Fisk WA, Lev-Tov H, et al. Diabetic foot ulcer: an evidence-based treatment update[J]. Am J Clin Dermatol, 2014, 15(3):267-281.

[6]Guo WY, Wang GJ, Wang P, et al. Acceleration of diabetic wound healing by low-dose radiation is associated with peripheral mobilization of bone marrow stem cells[J]. Radiat Res, 2010, 174(4):467-479.

[7]Kim YJ, Bi S. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats[J]. Am J Physiol Regul Integr Comp Physiol, 2016, 310(2):R134-R142.

[8]Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans[J]. Semin Immunol, 2013, 25(6):469-484.

[9]McGettrick AF, O’Neill LA. NLRP3 and IL-1β in macrophages as critical regulators of metabolic diseases[J]. Diabetes Obes Metab, 2013, 15(Suppl 3):19-25.

[10]Sarvajnamurthy S, Suryanarayan S, Budamakuntala L, et al. Autologous platelet rich plasma in chronic venous ulcers: study of 17 cases[J]. J Cutan Aesthet Surg, 2013, 6(2):97-99.

[11]Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats[J]. Chem Biol Interact, 2014, 219:101-112.

[12]Ciechomska M, O’Reilly S, Suwara M, et al. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis[J]. PLoS One, 2014, 9(12):e115596.

[13]Nakamura M, Kitaura J, Enomoto Y, et al. Transforming growth factor-β-stimulated clone-22 is a negative-feedback regulator of Ras / Raf signaling: implications for tumorigenesis[J]. Cancer Sci, 2012, 103(1):26-33.

[14]Long L, Wang J, Lu X, et al. Protective effects of scutellarin on type Ⅱ diabetes mellitus-induced testicular damages related to reactive oxygen species/Bcl-2/Bax and reactive oxygen species/microcirculation/staving pathway in diabetic rat[J]. J Diabetes Res, 2015, 2015:252530.

[15]Sitarek P, Skala E, Toma M, et al. A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of leonurus sibiricus L[J]. Tumour Biol, 2016, [Epub ahead of print].

[16]Yuan T, Zhang C, Zeng B. Treatment of chronic femoral osteomyelitis with platelet-rich plasma(PRP): a case report[J]. Transfus Apher Sci, 2008, 38(2):167-173.

[17]Pietramaggiori G, Scherer SS, Mathews JC, et al. Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model[J]. Wound Repair Regen, 2008, 16(2):218-225.

[18]馬桂芳,李惠芬,楊李. 胃腺癌組織中HDGF、VEGF的表達(dá)及意義[J]. 重慶醫(yī)學(xué), 2012, 41(22):2253-2255.

[19]張云松,何井華,戴麗冰,等. 富血小板血漿對血管內(nèi)皮細(xì)胞增殖及血管形成的影響[J]. 實用醫(yī)學(xué)雜志, 2011, 27(7):1145-1147.

[20]Vourtsis SA, Spyriounis PK, Agrogiannis GD, et al. VEGF application on rat skin flap survival[J]. J Invest Surg, 2012, 25(1):14-19.

[21]Tuncer S, Ayhan S, Findikcioglu K, et al. Effect of systemic piracetam treatment on flap survival and vascular endothelial growth factor expression after ischemia-reperfusion injury[J]. J Reconstr Microsurg, 2011, 27(7):409-418.

[22]Zhang F, Lineaweaver W. Acute and sustained effects of vascular endothelial growth factor on survival of flaps and skin grafts[J]. Ann Plast Surg, 2011, 66(5):581-582.

[23]Kontopodis N, Tavlas E, Papadopoulos G, et al. Effectiveness of platelet-rich plasma to enhance healing of diabetic foot ulcers in patients with concomitant peripheral arterial disease and critical limb ischemia[J]. Int J Low Extrem Wounds, 2016, 15(1):45-51.

[24]Ortolani E, Guerriero M, Coli A, et al. Effect of PDGF, IGF-1 and PRP on the implant osseointegration. An histological and immunohistochemical study in rabbits[J]. Ann Stomatol (Roma), 2014, 5(2):66-68.

[25]Lee HW, Reddy MS, Geurs N, et al. Efficacy of platelet-rich plasma on wound healing in rabbits[J]. J Periodontol, 2008, 79(4):691-696.

[26]Piotrowski WJ, Kiszalkiewicz J, Gorski P, et al. Immunoexpression of TGF-β/Smad and VEGF-A proteins in serum and BAL fluid of sarcoidosis patients[J]. BMC Immunol, 2015, 16:58.

[27]Sariguney Y, Yavuzer R, Elmas C, et al. Effect of platelet-rich plasma on peripheral nerve regeneration[J]. J Reconstr Microsurg, 2008, 24(3):159-167.

[28]Lichtenfels M, Colome L, Sebben AD, et al. Effect of platelet rich plasma and platelet rich fibrin on sciatic nerve regeneration in a rat model[J]. Microsurgery, 2013, 33(5):383-390.

[29]Mantelli F, Lambiase A, Colafrancesco V, et al. NGF and VEGF effects on retinal ganglion cell fate: new evidence from an animal model of diabetes[J]. Eur J Ophthalmol, 2014, 24(2):247-253.

[30]袁霆,曾炳芳,孟憲民,等. 富血小板血漿治療慢性骨髓炎一例報告[J]. 中華骨科雜志, 2008, 28(11):962-963.

[31]Sundman EA, Cole BJ, Karas V, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis[J]. Am J Sports Med, 2014, 42(1):35-41.

[32]Liu J, Song W, Yuan T, et al. A comparison between platelet-rich plasma (PRP) and hyaluronate acid on the healing of cartilage defects[J]. PLoS One, 2014, 9(5):e97293.

[33]吳開澤,陳獻(xiàn)聰,康禹,等. 富血小板血漿在膝關(guān)節(jié)骨關(guān)節(jié)炎治療中的應(yīng)用[J]. 國際骨科學(xué)雜志, 2015, 36(6):414-418.

[34]Sanchez-Gonzalez DJ, Mendez-Bolaina E, Trejo-Bahena NI. Platelet-rich plasma peptides: key for regeneration[J]. Int J Pept, 2012, 2012:532519.

[35]Li GY, Yin JM, Ding H, et al. Efficacy of leukocyte- and platelet-rich plasma gel (L-PRP gel) in treating osteomyelitis in a rabbit model[J]. J Orthop Res, 2013, 31(6):949-956.

[36]Bendinelli P, Matteucci E, Dogliotti G, et al. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF[J]. J Cell Physiol, 2010, 225(3):757-766.

[37]Kim YH, Furuya H, Tabata Y. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels[J]. Biomaterials, 2014, 35(1):214-224.

[38]劉宸,章宏偉,徐寧. 同種異體富血小板血漿可增強糖尿病大鼠合成創(chuàng)面膠原[J]. 中國組織工程研究, 2014, 18(39):6329-6334.

[39]Frykberg RG, Driver VR, Carman D, et al. Chronic wounds treated with a physiologically relevant concentration of platelet-rich plasma gel: a prospective case series[J]. Ostomy Wound Manage, 2010, 56(6):36-44.

[40]Kushida S, Kakudo N, Suzuki K, et al. Effects of platelet-rich plasma on proliferation and myofibroblastic differentiation in human dermal fibroblasts[J]. Ann Plast Surg, 2013, 71(2):219-224.

[41]Scherer SS, Tobalem M, Vigato E, et al. Nonactivated versus thrombin-activated platelets on wound healing and fibroblast-to-myofibroblast differentiation in vivo and in vitro[J]. Plast Reconstr Surg, 2012, 129(1):46e-54e.

[42]Cho JW, Kim SA, Lee KS. Platelet-rich plasma induces increased expression of G1 cell cycle regulators, type Ⅰ collagen, and matrix metalloproteinase-1 in human skin fibroblasts[J]. Int J Mol Med, 2012, 29(1):32-36.

[43]Behjati M, Hashemi M. Application of fibrocytes in the treatment of diabetic foot: as a potential new therapeutic approach[J]. Diabetes Res Clin Pract, 2009, 86(2):152-153.

[44]Li B, Wang JH. Fibroblasts and myofibroblasts in wound healing: force generation and measurement[J]. J Tissue Viability, 2011, 20(4):108-120.

[45]Cobos R, Aizpuru F, Parraza N, et al. Effectiveness and efficiency of platelet rich plasma in the treatment of diabetic ulcers[J]. Curr Pharm Biotechnol, 2015, 16(7):630-634.

[46]Dougherty EJ. An evidence-based model comparing the cost-effectiveness of platelet-rich plasma gel to alternative therapies for patients with nonhealing diabetic foot ulcers[J]. Adv Skin Wound Care, 2008, 21(12):568-575.

[47]Yotsu RR, Hagiwara S, Okochi H, et al. Case series of patients with chronic foot ulcers treated with autologous platelet-rich plasma[J]. J Dermatol, 2015, 42(3):288-295.

[48]Mehrannia M, Vaezi M, Yousefshahi F, et al. Platelet rich plasma for treatment of nonhealing diabetic foot ulcers: a case report[J]. Can J Diabetes, 2014, 38(1):5-8.

[49]Scimeca CL, Bharara M, Fisher TK, et al. Novel use of platelet-rich plasma to augment curative diabetic foot surgery[J]. J Diabetes Sci Technol, 2010, 4(5):1121-1126.

[50]Saad-Setta H, Elshahat A, Elsherbiny K, et al. Platelet-rich plasma versus platelet-poor plasma in the management of chronic diabetic foot ulcers: a comparative study[J]. Int Wound J, 2011, 8(3):307-312.

[51]Villela DL, Santos VL. Evidence on the use of platelet-rich plasma for diabetic ulcer: a systematic review[J]. Growth Factors, 2010, 28(2):111-116.

(收稿:2016-01-29;修回:2016-04-03)

(本文編輯:李圓圓)

200233,上海交通大學(xué)附屬第六人民醫(yī)院骨科

柴益民E-mail: chaiyimin@vip.163.com

10.3969/j.issn.1673-7083.2016.03.010

猜你喜歡
纖維細(xì)胞生長因子內(nèi)皮細(xì)胞
Tiger17促進(jìn)口腔黏膜成纖維細(xì)胞的增殖和遷移
滇南小耳豬膽道成纖維細(xì)胞的培養(yǎng)鑒定
淺議角膜內(nèi)皮細(xì)胞檢查
雌激素治療保護去卵巢對血管內(nèi)皮細(xì)胞損傷的初步機制
鼠神經(jīng)生長因子對2型糖尿病相關(guān)阿爾茨海默病的治療探索
胃癌組織中成纖維細(xì)胞生長因子19和成纖維細(xì)胞生長因子受體4的表達(dá)及臨床意義
細(xì)胞微泡miRNA對內(nèi)皮細(xì)胞的調(diào)控
兩種制備大鼠胚胎成纖維細(xì)胞的方法比較
鼠神經(jīng)生長因子修復(fù)周圍神經(jīng)損傷對斷掌再植術(shù)的影響
痰瘀與血管內(nèi)皮細(xì)胞的關(guān)系研究
博野县| 岳阳市| 阿城市| 安化县| 宝应县| 吉木萨尔县| 岳普湖县| 日土县| 夏津县| 林西县| 京山县| 略阳县| 丽水市| 宾阳县| 柏乡县| 长汀县| 荆州市| 泰和县| 辽宁省| 寻乌县| 开鲁县| 玛多县| 九龙县| 桑植县| 绥芬河市| 平和县| 沁源县| 若尔盖县| 舒城县| 克东县| 合水县| 樟树市| 乌鲁木齐县| 陆河县| 东台市| 从江县| 无极县| 鸡西市| 扎兰屯市| 肇东市| 满洲里市|