劉卓超 孟祥超 張興凱
?
脊索細(xì)胞特異性標(biāo)志物研究進(jìn)展
劉卓超孟祥超張興凱
椎間盤(pán)退變(尤其是其中髓核改變)與腰背痛密切相關(guān)。合適的標(biāo)志物可以準(zhǔn)確地將脊索細(xì)胞與椎間盤(pán)內(nèi)其他細(xì)胞進(jìn)行區(qū)分,以便于對(duì)其起源分化及形態(tài)結(jié)構(gòu)進(jìn)行深入了解并探索其在椎間盤(pán)退變治療中的應(yīng)用。目前發(fā)現(xiàn)在脊索細(xì)胞內(nèi)特異性表達(dá)且對(duì)其生存有重要作用的特異性標(biāo)志物包括低氧誘導(dǎo)因子-1(HIF-1)、葡萄糖轉(zhuǎn)運(yùn)因子-1(GLUT-1)、Shh蛋白、Brachyury蛋白、角蛋白(KRT)-8/18/19及CD24。此外,通過(guò)基因芯片技術(shù)檢測(cè)到可能的脊索細(xì)胞特異性標(biāo)記物,由于其作用尚未被證實(shí),故僅可作為備選標(biāo)志物。該文就脊索細(xì)胞特異性標(biāo)志物研究進(jìn)展作一綜述。
脊索細(xì)胞;椎間盤(pán)退變;髓核細(xì)胞;軟骨樣細(xì)胞;標(biāo)志物
據(jù)統(tǒng)計(jì),全世界約有80%的人在一生中至少有1次腰背痛的經(jīng)歷[1]。全球疾病負(fù)擔(dān)(GBD)研究顯示,1990年因腰背痛而導(dǎo)致殘疾的人數(shù)為5 800萬(wàn),然而到了2010年因此致殘人數(shù)增至8 200萬(wàn)[2]。椎間盤(pán)退變是造成腰背痛的主要原因,目前臨床治療的方式主要包括保守治療(消炎治療、理療等)和手術(shù)治療(腰椎融合術(shù)、人工椎間盤(pán)置換術(shù)等),雖能緩解癥狀,但同時(shí)也會(huì)降低相應(yīng)節(jié)段的活動(dòng)度并引起鄰近節(jié)段退變,無(wú)法從根本上治愈這一疾病[3]。
椎間盤(pán)由外周纖維環(huán)、上下軟骨終板及中間富含蛋白聚糖的膠凍樣髓核3部分組成[4]。伴隨著椎間盤(pán)退變的發(fā)生,髓核內(nèi)細(xì)胞由最初的脊索細(xì)胞逐漸轉(zhuǎn)變?yōu)檐浌菢蛹?xì)胞,這一形態(tài)學(xué)改變被認(rèn)為是退變開(kāi)始的標(biāo)志[5]。因此,如何鑒別脊索細(xì)胞成為其相關(guān)治療研究的首要問(wèn)題。本文就脊索細(xì)胞特異性標(biāo)志物作一綜述,并根據(jù)脊索細(xì)胞在椎間盤(pán)退變中的作用探討其在治療中的價(jià)值。
關(guān)于成人椎間盤(pán)內(nèi)髓核細(xì)胞的來(lái)源,長(zhǎng)期以來(lái)一直存在爭(zhēng)議。在早期椎間盤(pán)中,髓核主要由直徑為25~85 μm的脊索細(xì)胞組成。隨著年齡的增長(zhǎng),脊索細(xì)胞逐漸消失并被直徑約為10 μm的軟骨樣細(xì)胞所取代[4]。近年來(lái)有研究[6-7]將Shh基因和Noto基因作為啟動(dòng)子激活脊索細(xì)胞特異性Cre重組酶并進(jìn)行追蹤,發(fā)現(xiàn)成年椎間盤(pán)髓核中所有細(xì)胞均來(lái)源于脊索。而脊索細(xì)胞特異性Brachyury蛋白在髓核中大量表達(dá),也從另一方面證明了此說(shuō)法[8]。盡管這些髓核細(xì)胞形態(tài)不同,但這只是由于它們物質(zhì)代謝活動(dòng)不同或處于細(xì)胞發(fā)育不同階段。另有學(xué)者[9]認(rèn)為髓核中的軟骨樣細(xì)胞是由鄰近軟骨終板中的軟骨細(xì)胞遷移而來(lái),但目前更多的證據(jù)還是指向脊索才是它們共同的起源組織。
2.1與脊索細(xì)胞生存相關(guān)的標(biāo)志物
椎間盤(pán)是人體最大的無(wú)血管組織,在成年人椎間盤(pán)中離髓核最近的血流供應(yīng)為相距7~8 mm的一些小血管[10-11],因此髓核細(xì)胞長(zhǎng)期處于低氧狀態(tài)。由于脊索細(xì)胞長(zhǎng)期生存于低氧環(huán)境中,它具有一些幫助其適應(yīng)這種低氧環(huán)境的特殊物質(zhì)來(lái)改變自身的代謝與能量供應(yīng),這些物質(zhì)可以作為脊索細(xì)胞特異性標(biāo)志物。
2.1.1低氧誘導(dǎo)因子-1α與葡萄糖轉(zhuǎn)運(yùn)因子-1
在氧含量正常的情況下,機(jī)體大多數(shù)細(xì)胞中的低氧誘導(dǎo)因子-1α(HIF-1α)會(huì)被26S蛋白酶體分解,且HIF-1α的活性會(huì)受低氧誘導(dǎo)因子抑制因子(FIH)的調(diào)節(jié)[12]。但在脊索細(xì)胞內(nèi),無(wú)論氧含量多少,HIF-1α均會(huì)持續(xù)表達(dá)[13-14]。HIF-1α可以上調(diào)葡萄糖轉(zhuǎn)運(yùn)因子-1(GLUT-1)、血管內(nèi)皮生長(zhǎng)因子A(VEGFA)及3-磷酸甘油醛脫氫酶(GAPDH)的表達(dá)[15],促進(jìn)脊索細(xì)胞充分利用糖酵解供能[16],使其可以在低氧環(huán)境下生存。GLUT-1與HIF-1α均在脊索細(xì)胞內(nèi)特異性表達(dá),且對(duì)其在低氧環(huán)境下生存至關(guān)重要[17-18],所以可以作為脊索細(xì)胞的特異性標(biāo)志物。
2.1.2Brachyury蛋白
Brachyury蛋白作為一種轉(zhuǎn)錄因子對(duì)于胚胎時(shí)期中胚層,尤其是脊索的發(fā)育極為重要[19-20]。現(xiàn)已通過(guò)多種方法證實(shí)Brachyury蛋白在脊索細(xì)胞內(nèi)表達(dá)[8,19,21]。Smolders等[22]研究發(fā)現(xiàn),與軟骨發(fā)育正常犬相比,軟骨發(fā)育不良犬的椎間盤(pán)更易發(fā)生退變,同時(shí)其中的脊索細(xì)胞消失,取而代之的是軟骨樣細(xì)胞,而該細(xì)胞中Brachyury蛋白表達(dá)水平較脊索細(xì)胞顯著降低。Tang等[20]對(duì)健康與退變髓核進(jìn)行免疫細(xì)胞化學(xué)染色,發(fā)現(xiàn)Brachyury蛋白表達(dá)僅存在于健康髓核中,并在后續(xù)實(shí)驗(yàn)中通過(guò)流式細(xì)胞技術(shù)進(jìn)行了驗(yàn)證。盡管目前尚無(wú)對(duì)Brachyury蛋白與椎間盤(pán)退變之間因果關(guān)系的具體研究,但該蛋白值得引起關(guān)注并可作為脊索細(xì)胞的特異性標(biāo)志物。
2.1.3Shh蛋白
Shh蛋白在脊索中特異性表達(dá),對(duì)于脊索細(xì)胞正常功能十分重要[23-24]。盡管Shh蛋白在脊索細(xì)胞內(nèi)的表達(dá)隨著椎間盤(pán)成熟而逐漸減少,但通過(guò)Wnt信號(hào)轉(zhuǎn)導(dǎo)通路激活Shh蛋白可促進(jìn)Brachyury蛋白表達(dá)和聚集蛋白聚糖合成[25],這表明Shh蛋白可以通過(guò)調(diào)節(jié)細(xì)胞外基質(zhì)組成和脊索細(xì)胞活性對(duì)椎間盤(pán)起到保護(hù)作用。鑒于Shh蛋白在脊索細(xì)胞內(nèi)的特異性表達(dá)和阻止椎間盤(pán)退變的潛能,它可作為脊索細(xì)胞特異性標(biāo)志物。
2.1.4聚集蛋白聚糖與Ⅱ型膠原比值
脊索細(xì)胞外基質(zhì)主要含有蛋白聚糖(主要為聚集蛋白聚糖)與膠原(主要為Ⅱ型膠原),其中聚集蛋白聚糖可以通過(guò)水化作用幫助髓核抵抗縱向壓力。隨著年齡的增長(zhǎng),聚集蛋白聚糖含量下降引起髓核抵抗縱向壓力功能受損,使其無(wú)法將壓力均勻分散至四周,導(dǎo)致局部壓力過(guò)大,引起纖維環(huán)破裂[26-27]。盡管軟骨細(xì)胞外基質(zhì)中也有聚集蛋白聚糖與Ⅱ型膠原,但其比例遠(yuǎn)低于脊索細(xì)胞(分別為2~3∶1、>20∶1)[28]。鑒于脊索細(xì)胞與椎間盤(pán)內(nèi)其他細(xì)胞聚集蛋白聚糖與Ⅱ型膠原比值存在明顯差異,所以聚集蛋白聚糖與Ⅱ型膠原的比值可作為鑒別脊索細(xì)胞的標(biāo)準(zhǔn)之一。
2.1.5其他標(biāo)志物
角蛋白(KRT)作為一種細(xì)胞中間絲,常存在于上皮細(xì)胞中。它是細(xì)胞骨架重要組成成分,在維持細(xì)胞結(jié)構(gòu)完整、調(diào)節(jié)細(xì)胞大小、調(diào)節(jié)Fas介導(dǎo)的細(xì)胞凋亡及蛋白合成等多個(gè)方面有重要作用[29]。脊索是胚胎早期主要的軸向結(jié)構(gòu),隨著胚胎的逐步發(fā)育,脊索細(xì)胞在鄰近成骨細(xì)胞連續(xù)靜水壓的作用下逐漸由發(fā)育中的椎體中央遷移至椎間盤(pán)內(nèi)。KRT的細(xì)胞骨架功能可以幫助脊索細(xì)胞發(fā)生上述位置結(jié)構(gòu)改變[30]。同時(shí)KRT-8、KRT-18、KRT-19在脊索細(xì)胞中特異性表達(dá)。因此,它可作為脊索細(xì)胞特異性標(biāo)志物。
CD24是在B細(xì)胞與T細(xì)胞成熟過(guò)程中表達(dá)于細(xì)胞表面的一類(lèi)表面蛋白,它在人與大鼠各個(gè)生長(zhǎng)階段的脊索細(xì)胞中均存在特異性表達(dá)[20,31],且胚胎時(shí)期小鼠體內(nèi)CD24陽(yáng)性細(xì)胞可以自然分化成為具有脊索細(xì)胞特征的細(xì)胞[32]??傊?,CD24與脊索細(xì)胞密切相關(guān),可以作為脊索細(xì)胞特異性標(biāo)志物將其與纖維環(huán)細(xì)胞、軟骨細(xì)胞等椎間盤(pán)內(nèi)其他細(xì)胞區(qū)分開(kāi)。
2.2應(yīng)用基因芯片技術(shù)發(fā)現(xiàn)的標(biāo)志物
應(yīng)用基因芯片技術(shù)得到的某些脊索細(xì)胞特異性表達(dá)的基因可能存在RNA與蛋白表達(dá)水平不一致的情況,因此應(yīng)用此技術(shù)選擇脊索細(xì)胞特異性標(biāo)志物時(shí)需謹(jǐn)慎。
Minogue等[33]對(duì)牛脊索細(xì)胞進(jìn)行基因芯片檢測(cè),發(fā)現(xiàn)突觸相關(guān)蛋白-25(SNAP-25)、KRT-8/18/19、鈣黏蛋白2(CDH2)、腦酸溶性蛋白-1(BASP-1)及硬化蛋白域蛋白(SOSTDC)1在牛脊索細(xì)胞中特異性表達(dá)。值得注意的是,SNAP-25、KRT-8、KRT-18、CDH2、SOSTDC與人椎間盤(pán)退變相關(guān),其mRNA表達(dá)水平隨著退變的發(fā)展逐漸減少。他們[34]隨后的實(shí)驗(yàn)通過(guò)基因芯片與實(shí)時(shí)定量聚合酶聯(lián)反應(yīng)(qRT-PCR)技術(shù)檢測(cè)發(fā)現(xiàn),人脊索細(xì)胞中特異性表達(dá)的物質(zhì)包括Pax1蛋白、叉頭蛋白F1(FOXF1)、碳酸酐酶Ⅻ(CAⅫ)、β鏈血紅蛋白(HBB)與卵固蛋白 2(OVOS2)。Power等[35]對(duì)CAⅫ進(jìn)行了深入的研究,證實(shí)脊索細(xì)胞內(nèi)CAⅫ基因在RNA與蛋白水平均存在特異性表達(dá)。CAⅫ對(duì)于酸堿平衡的維持十分重要,由于椎間盤(pán)髓核主要依賴(lài)糖酵解供能且缺乏血供,因此有大量乳酸產(chǎn)生并無(wú)法運(yùn)出,導(dǎo)致椎間盤(pán)內(nèi)乳酸堆積。在脊索細(xì)胞內(nèi)的CAⅫ可能在緩沖酸性環(huán)境過(guò)程中發(fā)揮重要作用,因此其可能與脊索細(xì)胞存活相關(guān),但這需要進(jìn)一步的實(shí)驗(yàn)進(jìn)行證實(shí)。
Tang等[31]研究發(fā)現(xiàn),CD24、CD155、CD221、Brachyury蛋白、腦富含膜附著信號(hào)蛋白-1(Basp-1)、神經(jīng)軟骨蛋白(NCDN)及神經(jīng)菌毛素-1(NRP-1)在大鼠脊索細(xì)胞中特異性表達(dá)。隨后他們[20]研究證實(shí), Brachyury蛋白、Basp-1、NCDN、NRP-1、CD24及CD221在人脊索細(xì)胞也特異性表達(dá)。但Rodrigues-Pinto等[30]對(duì)此存在異議,認(rèn)為Basp-1在人椎間盤(pán)纖維環(huán)、椎體中也有表達(dá)。
綜上所述,HIF-1、GLUT-1、Shh蛋白、Brachyury蛋白、KRT-8/18/19及CD24可作為脊索細(xì)胞特異性標(biāo)志物[21,30,36]。其他可能的特異性標(biāo)志物包括CAⅫ、SNAP-25、SOSTDC、CDH2、FOXF1、Pax1、OVOS2、HBB、CD155、CD221、Basp-1、NCDN及NRP-1等[20,33-34],但目前尚缺乏對(duì)以上備選標(biāo)志物在椎間盤(pán)退變中所起作用的相關(guān)深入研究。
由于椎間盤(pán)內(nèi)細(xì)胞需要合成大量細(xì)胞外基質(zhì),但它本身可以從周?chē)h(huán)境中攝取的營(yíng)養(yǎng)物質(zhì)卻很少,所以容易發(fā)生退變[37]。脊索細(xì)胞數(shù)量減少與椎間盤(pán)退變密切相關(guān),而造成細(xì)胞數(shù)量減少的原因主要是細(xì)胞凋亡和壞死[38-39]。Erwin等[27,40-41]研究發(fā)現(xiàn),脊索細(xì)胞分泌的細(xì)胞因子可以明顯降低由白細(xì)胞介素(IL)-1/Fas配體(FasL)誘導(dǎo)的細(xì)胞凋亡率和死亡率(凋亡率由46.26%降至32.00%,死亡率由8.81%降至4.11%);對(duì)含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)活性進(jìn)行檢測(cè)發(fā)現(xiàn),Caspase-3、Caspase-7表達(dá)受到抑制。這證明脊索細(xì)胞可以通過(guò)分泌細(xì)胞因子抑制Caspase-3、Caspase-7活性,從而抑制IL-1/FasL介導(dǎo)的細(xì)胞凋亡[27,42],在椎間盤(pán)退變中起到抗凋亡的作用。此外,脊索細(xì)胞還可以通過(guò)促進(jìn)細(xì)胞外基質(zhì)合成[43]和抑制椎間盤(pán)中血管神經(jīng)長(zhǎng)入[44-45]等抑制椎間盤(pán)退變的發(fā)生。
針對(duì)椎間盤(pán)退變中的各種改變,可采取相應(yīng)措施阻止退變進(jìn)一步發(fā)展?,F(xiàn)階段關(guān)于椎間盤(pán)退變的治療僅限于對(duì)癥治療,并未涉及糾正其病因、恢復(fù)椎間盤(pán)結(jié)構(gòu)和功能而使椎間盤(pán)得到修復(fù)與再生[46]。脊索細(xì)胞作為一種原始干細(xì)胞,可以通過(guò)抑制細(xì)胞凋亡及促進(jìn)基質(zhì)合成方式來(lái)緩解椎間盤(pán)退變的發(fā)生發(fā)展,因此可采用現(xiàn)代手段將脊索細(xì)胞或其分泌的細(xì)胞因子注入病變椎間盤(pán)中,從而延緩、阻止甚至逆轉(zhuǎn)病變發(fā)展,在根本上解決引起疾病的原因,而不僅僅是緩解臨床癥狀[10,43]。一些血小板源性生長(zhǎng)因子如轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)、胰島素樣生長(zhǎng)因子-1(IGF-1)可以延緩椎間盤(pán)退變發(fā)生,但其半衰期較短,因此應(yīng)用于椎間盤(pán)退變治療受到限制。有學(xué)者[47]認(rèn)為可以將富含血小板血漿與脊索細(xì)胞共同注入椎間盤(pán)內(nèi)使其發(fā)揮協(xié)同作用,并通過(guò)實(shí)驗(yàn)證明了此方法對(duì)修復(fù)早期椎間盤(pán)退變的可行性。為緩解椎間盤(pán)源性疼痛,可以通過(guò)恢復(fù)椎間盤(pán)內(nèi)蛋白聚糖含量或注入脊索細(xì)胞分泌因子(如臂板蛋白3A、Noggin等),達(dá)到抑制退變過(guò)程中血管與神經(jīng)生長(zhǎng)的目的,還可通過(guò)刺激髓核細(xì)胞持續(xù)分泌蛋白聚糖,恢復(fù)蛋白聚糖“隔離帶”,進(jìn)而阻止血管神經(jīng)生長(zhǎng)[44]。
盡管生物治療有恢復(fù)椎間盤(pán)結(jié)構(gòu)、功能的可能性,但椎間盤(pán)自身仍存在可獲取的營(yíng)養(yǎng)物質(zhì)極其有限、缺乏血供及自我修復(fù)能力較差等一系列問(wèn)題,且如何獲取足夠量的脊索細(xì)胞也是困擾學(xué)者們的一大問(wèn)題,所以現(xiàn)階段要想將該方法應(yīng)用于臨床仍存在較大困難[4,48]。目前有學(xué)者嘗試通過(guò)采用滅活豬脊索細(xì)胞粉末誘導(dǎo)人多能干細(xì)胞向脊索細(xì)胞方向分化,從而為細(xì)胞移植治療提供足量脊索細(xì)胞。而由人多能干細(xì)胞分化得到的脊索細(xì)胞可最大程度地消除安全隱患[49]。但當(dāng)椎體軟骨終板出現(xiàn)硬化時(shí),椎間盤(pán)內(nèi)的微環(huán)境會(huì)發(fā)生改變,此時(shí)便無(wú)法通過(guò)注入細(xì)胞及生長(zhǎng)因子進(jìn)行治療。因此,治療時(shí)機(jī)的選擇十分重要。需要注意的是,在進(jìn)行生物治療的同時(shí)應(yīng)補(bǔ)充營(yíng)養(yǎng)物質(zhì)并留意生物力學(xué)因素等的影響[48,50]。盡管存在一些問(wèn)題,但脊索細(xì)胞作為一種髓核細(xì)胞前體細(xì)胞,為椎間盤(pán)退變治療提供了新思路。
[1]Gotfryd AO, Valesin-Filho ES, Viola DC, et al. Analysis of epidemiology, lifestyle, and psychosocial factors in patients with back pain admitted to an orthopedic emergency unit[J]. Einstein (Sao Paulo), 2015, 13(2):243-248.
[2]Buchbinder R, Blyth FM, March LM, et al. Placing the global burden of low back pain in context[J]. Best Pract Res Clin Rheumatol, 2013, 27(5):575-589.
[3]Wang SZ, Rui YF, Tan Q, et al. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy[J]. Arthritis Res Ther, 2013, 15(5):220.
[4]Rodrigues-Pinto R, Richardson SM, Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration[J]. Eur Spine J, 2014, 23(9):1803-1814.
[5]Abbott RD, Purmessur D, Monsey RD, et al. Regenerative potential of TGFβ3+Dex and notochordal cell conditioned media on degenerated human intervertebral disc cells[J]. J Orthop Res, 2012, 30(3):482-488.
[6]Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation[J]. Dev Dyn, 2008, 237(12):3953-3958.
[7]McCann MR, Tamplin OJ, Rossant J, et al. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development[J]. Dis Model Mech, 2012, 5(1):73-82.
[8]Risbud MV, Shapiro IM. Notochordal cells in the adult intervertebral disc: new perspective on an old question[J]. Crit Rev Eukaryot Gene Expr, 2011, 21(1):29-41.
[9]Kim KW, Lim TH, Kim JG, et al. The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs[J]. Spine (Phila Pa 1976), 2003, 28(10):982-990.
[10]Zhang Y, Chee A, Thonar EJ, et al. Intervertebral disk repair by protein, gene, or cell injection: a framework for rehabilitation-focused biologics in the spine[J]. PM R, 2011, 3(6 Suppl 1):S88-S94.
[11]Chen JW, Ni BB, Zheng XF, et al. Hypoxia facilitates the survival of nucleus pulposus cells in serum deprivation by down-regulating excessive autophagy through restricting ROS generation[J]. Int J Biochem Cell Biol, 2015, 59:1-10.
[12]Hirose Y, Johnson ZI, Schoepflin ZR, et al. FIH-1-Mint3 axis does not control HIF-1 transcriptional activity in nucleus pulposus cells[J]. J Biol Chem, 2014, 289(30):20594-20605.
[13]Fujita N, Chiba K, Shapiro IM, et al. HIF-1alpha and HIF-2alpha degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc[J]. J Bone Miner Res, 2012, 27(2):401-412.
[14]Fujita N, Hirose Y, Tran CM, et al. HIF-1-PHD2 axis controls expression of syndecan 4 in nucleus pulposus cells[J]. FASEB J, 2014, 28(6):2455-2465.
[15]Agrawal A, Guttapalli A, Narayan S, et al. Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk[J]. Am J Physiol Cell Physiol, 2007, 293(2):C621-C631.
[16]Wang C, Gonzales S, Levene H, et al. Energy metabolism of intervertebral disc under mechanical loading[J]. J Orthop Res, 2013, 31(11):1733-1738.
[17]Merceron C, Mangiavini L, Robling A, et al. Loss of HIF-1alpha in the notochord results in cell death and complete disappearance of the nucleus pulposus[J]. PLoS One, 2014, 9(10):e110768.
[18]Richardson SM, Knowles R, Tyler J, et al. Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc[J]. Histochem Cell Biol, 2008, 129(4):503-511.
[19]Lauri A, Brunet T, Handberg-Thorsager M, et al. Development of the annelid axochord: insights into notochord evolution[J]. Science, 2014, 345(6202):1365-1368.
[20]Tang X, Jing L, Richardson WJ, et al. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration[J]. J Orthop Res, 2016,[Epub ahead of print].
[21]Risbud MV, Schoepflin ZR, Mwale F, et al. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting[J]. J Orthop Res, 2015, 33(3):283-293.
[22]Smolders LA, Meij BP, Riemers FM, et al. Canonical Wnt signaling in the notochordal cell is upregulated in early intervertebral disk degeneration[J]. J Orthop Res, 2012, 30(6):950-957.
[23]Choi KS, Lee C, Harfe BD. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs[J]. Mech Dev, 2012, 129(9-12):255-262.
[24]Dahia CL, Mahoney E, Wylie C. Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc[J]. PLoS One, 2012, 7(4):e35944.
[25]Winkler T, Mahoney EJ, Sinner D, et al. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse[J]. PLoS One, 2014, 9(6):e98444.
[26]O’Connell GD, Vresilovic EJ, Elliott DM. Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration[J]. J Orthop Res, 2011, 29(4):547-555.
[27]Erwin WM, Islam D, Inman RD, et al. Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration[J]. Arthritis Res Ther, 2011, 13(6):R215.
[28]Choi H, Johnson ZI, Risbud MV. Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration[J]. Curr Stem Cell Res Ther, 2015, 10(4):307-316.
[29]Sun Z, Wang HQ, Liu ZH, et al. Down-regulated CK8 expression in human intervertebral disc degeneration[J]. Int J Med Sci, 2013, 10(8):948-956.
[30]Rodrigues-Pinto R, Berry A, Piper-Hanley K, et al. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18 and 19 as notochord-specific markers during early human intervertebral disc development[J]. J Orthop Res, 2016, [Epub ahead of print].
[31]Tang X, Jing L, Chen J. Changes in the molecular phenotype of nucleus pulposus cells with intervertebral disc aging[J]. PLoS One, 2012, 7(12):e52020.
[32]Chen J, Lee EJ, Jing L, et al. Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro[J]. PLoS One, 2013, 8(9):e75548.
[33]Minogue BM, Richardson SM, Zeef LA, et al. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes[J]. Arthritis Res Ther, 2010, 12(1):R22.
[34]Minogue BM, Richardson SM, Zeef LA, et al. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation[J]. Arthritis Rheum, 2010, 62(12):3695-3705.
[35]Power KA, Grad S, Rutges JP, et al. Identification of cell surface-specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase Ⅻ varies with age and degeneration[J]. Arthritis Rheum, 2011, 63(12):3876-3886.
[36]Weiler C, Nerlich AG, Schaaf R, et al. Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc[J]. Eur Spine J, 2010, 19(10):1761-1770.
[37]Vo NV, Hartman RA, Yurube T, et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration[J]. Spine J, 2013, 13(3):331-341.
[38]Lin Y, Yue B, Xiang H, et al. Survivin is expressed in degenerated nucleus pulposus cells and is involved in proliferation and the prevention of apoptosis in vitro[J]. Mol Med Rep, 2016, 13(1):1026-1032.
[39]Huang GF, Zou J, Shi J, et al. Electroacupuncture stimulates remodeling of extracellular matrix by inhibiting apoptosis in a rabbit model of disc degeneration[J]. Evid Based Complement Alternat Med, 2015, 2015:386012.
[40]Erwin WM, Las Heras F, Islam D, et al. The regenerative capacity of the notochordal cell: tissue constructs generated in vitro under hypoxic conditions[J]. J Neurosurg Spine, 2009, 10(6):513-521.
[41]Erwin WM, Inman RD. Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation[J]. Spine (Phila Pa 1976), 2006, 31(10):1094-1099.
[42]Mehrkens A, Karim MZ, Kim S, et al. Canine notochordal cell-secreted factors protect murine and human nucleus pulposus cells from apoptosis by inhibition of activated caspase-9 and caspase-3/7[J]. Evid Based Spine Care J, 2013, 4(2):154-156.
[43]de Vries SA, Potier E, van Doeselaar M, et al. Conditioned medium derived from notochordal cell-rich nucleus pulposus tissue stimulates matrix production by canine nucleus pulposus cells and bone marrow-derived stromal cells[J]. Tissue Eng Part A, 2015, 21(5-6):1077-1084.
[44]Purmessur D, Cornejo MC, Cho SK, et al. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability[J]. Spine J, 2015, 15(5):1060-1069.
[45]Richardson SM, Purmessur D, Baird P, et al. Degenerate human nucleus pulposus cells promote neurite outgrowth in neural cells[J]. PLoS One, 2012, 7(10):e47735.
[46]Smith LJ, Nerurkar NL, Choi KS, et al. Degeneration and regeneration of the intervertebral disc: lessons from development[J]. Dis Model Mech, 2011, 4(1):31-41.
[47]Wang SZ, Jin JY, Guo YD, et al. Intervertebral disc regeneration using plateletrich plasmacontaining bone marrowderived mesenchymal stem cells: a preliminary investigation[J]. Mol Med Rep, 2016, 13(4):3475-3481.
[48]Purmessur D, Cornejo MC, Cho SK, et al. Notochordal cell-derived therapeutic strategies for discogenic back pain[J]. Global Spine J, 2013, 3(3):201-218.
[49]Liu Y, Fu S, Rahaman MN, et al. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration[J]. J Biomed Mater Res A, 2015, 103(3):1053-1059.
[50]Arkesteijn IT, Smolders LA, Spillekom S, et al. Effect of coculturing canine notochordal, nucleus pulposus and mesenchymal stromal cells for intervertebral disc regeneration[J]. Arthritis Res Ther, 2015, 17:60.
(收稿:2016-02-15; 修回:2016-04-23)
(本文編輯:盧千語(yǔ))
國(guó)家自然科學(xué)基金(81071502)、 上海市科委科研項(xiàng)目(15ZR1437600)
200025,上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院骨科
張興凱E-mail: zxk68@hotmail.com
10.3969/j.issn.1673-7083.2016.05.008