国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

幾種常見被動(dòng)采樣技術(shù)在水環(huán)境中研究進(jìn)展

2016-04-18 05:19:50汪盼盼王靜劉錚錚陳金媛
關(guān)鍵詞:采樣器極性被動(dòng)

汪盼盼,王靜,劉錚錚,陳金媛

(1. 浙江工業(yè)大學(xué)環(huán)境學(xué)院,浙江 杭州 310014 ,2. 浙江省環(huán)境監(jiān)測(cè)中心,浙江 杭州 310015)

幾種常見被動(dòng)采樣技術(shù)在水環(huán)境中研究進(jìn)展

汪盼盼1,王靜2,劉錚錚2,陳金媛1

(1. 浙江工業(yè)大學(xué)環(huán)境學(xué)院,浙江 杭州 310014 ,2. 浙江省環(huán)境監(jiān)測(cè)中心,浙江 杭州 310015)

總結(jié)了半透膜被動(dòng)采樣器(SPMDs)、極性有機(jī)化合物整合采樣器(POCIS)、化學(xué)捕收器(Chemcatcher)和硅橡膠被動(dòng)采樣器(Silicon rubber)幾種常用被動(dòng)采樣器的結(jié)構(gòu)組成、應(yīng)用模型、原理、樣品的前處理、影響因素及應(yīng)用范圍,指出幾種被動(dòng)采樣技術(shù)應(yīng)用上存在的問題,并對(duì)其應(yīng)用前景進(jìn)行總結(jié)和展望。

被動(dòng)采樣技術(shù);SPMDs;POCIS;化學(xué)捕收器;SR被動(dòng)采樣器

傳統(tǒng)采樣方法,即主動(dòng)采樣,為瞬時(shí)采樣技術(shù),反映的是某一時(shí)刻污染物的濃度。該種采樣方法獲得的結(jié)果往往缺乏代表性[1],對(duì)一些緊急污染事件無法做到及時(shí)采樣和追蹤[2];對(duì)于痕量污染物采樣體積大,并不斷重復(fù)分析,數(shù)據(jù)隨機(jī)性大,不利于了解水體痕量污染物的污染現(xiàn)狀及污染趨勢(shì)。而極性有機(jī)化合物(POCs)、疏水性有機(jī)物(HOCs)等由于其持久性,難以在環(huán)境中完全去除[3-4],在水體中常以痕量甚至超痕量形式存在,并對(duì)水生生物和人體健康產(chǎn)生影響。該類污染物難以通過主動(dòng)采樣實(shí)現(xiàn)有效監(jiān)測(cè)。而被動(dòng)采樣技術(shù)作為一種累積采樣方法,則可以實(shí)現(xiàn)對(duì)水體中痕量污染物的采集、檢測(cè)、分析,并作出全面的健康風(fēng)險(xiǎn)評(píng)價(jià),在水環(huán)境監(jiān)測(cè)中的應(yīng)用越來越廣泛。

現(xiàn)對(duì)水體中幾種常用的被動(dòng)采樣裝置的結(jié)構(gòu)組成、應(yīng)用模型、原理、樣品的前處理、影響因素及應(yīng)用范圍等進(jìn)行介紹,并闡述各項(xiàng)被動(dòng)采樣技術(shù)的應(yīng)用前景及存在的問題,以期為水體中痕量有機(jī)污染物樣品采集方法的選擇提供參考。

1 SPMDs

1.1 SPMDs的組成

SPMDs(semipermeable membrane devices),是由Huckins等[5]于1990年提出的一種半透膜被動(dòng)采樣器,主要由一層中性脂質(zhì)薄膜和填充著三油酸甘油酯的低密度聚乙烯(LDPE)管(厚約75~90 μm)組成。SPMDs采樣設(shè)備長(zhǎng)30~90 cm,寬約2~5 cm,但也有一些是長(zhǎng)<20 cm的小設(shè)備,具體根據(jù)采樣的需要選擇[6-7]。

1.2 SPMDs采樣模型及原理

利用SPMDs富集的化學(xué)反應(yīng)動(dòng)力學(xué)模型(CRK模型)可以推算出目標(biāo)污染物在水環(huán)境中的平均濃度[7]:

式中:Cw為水環(huán)境中目標(biāo)污染物的質(zhì)量濃度,ng/L;Cs為SPMDs中目標(biāo)污染物在吸附劑上的質(zhì)量比,ng/g;Vs為采樣體積,L;Ksw為目標(biāo)物在吸附相-水相中的分配系數(shù),cm3/cm3;Rs為采樣速率,L/d;t為采樣時(shí)間,d。

1.3 SPMDs的前處理以及樣品提取

采集樣品后的SPMDs置于密封盒中,-20 ℃貯存,帶回實(shí)驗(yàn)室。使用輕柔刷(尼龍刷)除去SPMDs裝置表面的雜物后,將SPMDs浸泡在稀鹽酸中,清洗表面去除鹽和其他雜質(zhì)后,依次用超純水和丙酮沖洗,再用異丙醇沖洗脫水。之后在180 ℃下,先用125~150 mL正己烷透析18 h,再用125~150 mL正己烷透析6 h,收集并合并兩次的透析液,氮吹至1 mL,通過SEC(凝膠柱)凈化,GC-MS/MS進(jìn)行檢測(cè)[6]。

1.4 SPMDs采樣速率Rs的影響因素

一般用Rs表示SPMDs采樣器對(duì)污染物的采樣情況。不同污染物的Rs除和自身的理化性質(zhì)有關(guān)(最主要為KOW)[8],還受環(huán)境因素的影響,主要有溫度、湍流、pH值、膜污染等。Huckins等[9]研究表明,在一定時(shí)間內(nèi),目標(biāo)污染物的Rs隨時(shí)間增加而增大,隨后會(huì)達(dá)到吸附平衡,處于飽和狀態(tài)。在一定時(shí)間內(nèi),Rs隨湍流度及流速增大而增大[10],膜污染會(huì)降低Rs[11]。但也有不同的結(jié)論,如Chang等[12]研究表明,Rs不隨溫度和流速的變化而變化。

獲取目標(biāo)物的Rs是估計(jì)被動(dòng)采樣體積的前提,目前尚無法準(zhǔn)確計(jì)算,一般通過實(shí)驗(yàn)室靜態(tài)模擬、實(shí)驗(yàn)室動(dòng)態(tài)模擬、現(xiàn)場(chǎng)模擬等方式推算。

1.5 SPMDs的應(yīng)用

SPMDs采樣過程中溶解相和汽態(tài)相中的細(xì)小污染物微粒進(jìn)入LDPE的氣孔中,從而實(shí)現(xiàn)截留。SPMDs可以采集監(jiān)測(cè)中等極性到非極性的有機(jī)污染物(LogKOW>3.0)[6],也可以采集1.0

2 POCIS

2.1 POCIS的組成

極性有機(jī)化合物整合采樣器(Polar organic chemical integrative sampler,POCIS)是Alvarez在1999年提出的一種被動(dòng)采樣技術(shù)[21]。POCIS是由兩個(gè)不銹鋼圓形墊圈,夾封兩層微孔膜,兩層微孔膜之間填充固相吸附劑,并且通過三個(gè)螺帽來固定不銹鋼圈形成的一種采樣裝置[22]。

2.2 POCIS的材料選擇

POCIS微孔膜的材質(zhì)會(huì)影響POCIS的Rs以及采樣成本,因而選擇合適的POCIS微孔膜十分重要。POCIS微孔膜要根據(jù)不同目標(biāo)污染物的吸附情況及不同膜在采樣環(huán)境中受到的污染情況進(jìn)行選擇。Kingston等[23]研究提出PS膜(聚砜膜)對(duì)極性有機(jī)化合物具有適用性,而Alvarez等[22]研究證實(shí)PES膜(聚醚砜膜)的采樣速率更高,受生物污染的程度更低,采樣壽命更長(zhǎng)。因此,現(xiàn)在POCIS采樣中一般都用PES膜。

兩膜之間的固相吸附材劑也是POCIS的重要組成部分,Alvarez等人[22]研究出兩種固相吸附劑,質(zhì)量比8∶2的聚苯乙烯-二乙烯苯樹脂和碳吸附質(zhì),對(duì)應(yīng)Pesticide-POCIS采樣器,適合農(nóng)藥和合成激素等極性物質(zhì)的吸附;多聚相二乙烯苯結(jié)合極性基團(tuán)形成的Oasis HLB吸附劑,對(duì)應(yīng)Pharmaceutical-POCIS采樣器[24],適合一些強(qiáng)極性藥物的吸附。對(duì)于這兩種POCIS吸附劑,Mazzella等[25]研究認(rèn)為Pharmaceutical-POCIS吸附除草劑的性能比Pesticide-POCIS更好,而Li等[26]則認(rèn)為Pesiticide-POCIS的吸附率更高。一般來說,Pharmaceutical-POCIS由于具有低毒性等特點(diǎn),比Pesticide-POCIS更有優(yōu)勢(shì)。此外,其他的吸附劑如離子交換樹脂,包括Oasis MAX[27]、Oasis MCX[28]、Strata XAW[29],也有一定的應(yīng)用。但目前主要還是用Oasis HLB作為POCIS的固相吸附劑。

2.3 POCIS采樣模型及原理

POCIS采樣富集過程遵循動(dòng)力學(xué)第一方程[22]:

動(dòng)力采樣階段受環(huán)境因素影響,Ku遠(yuǎn)大于Ke,吸附相中污染物濃度和累積時(shí)間有關(guān),故:Cs=CwKut,引入Rs得:

式中:Cs為POCIS固相吸附劑中目標(biāo)污染物的吸附質(zhì)量比,ng/g;Cw為水中目標(biāo)污染物的質(zhì)量濃度,ng/L;Ms為吸附相的質(zhì)量數(shù);Ku和Ke為吸收和解吸速率常數(shù),L/(g·d);Ksw為目標(biāo)物在吸附相-水相中的分配系數(shù),cm3/cm3;t為時(shí)間,d。

2.4 POCIS的前處理以及樣品提取

2.4.1 POCIS的活化

PES膜使用前用200 mL甲醇沖洗2 min,400 mL超純水沖洗10 min。組裝好的POCIS盤用200 mL含0.1%(V/V)氨水的甲醇溶液浸泡后,依次用20 mL甲醇和40 mL超純水各沖洗10 min?;罨玫腜OCIS用鋁箔紙密封4 ℃保存。

2.4.2 POCIS樣品提取

回收POCIS中的吸附劑,轉(zhuǎn)移至6 mL活化過的SPE小柱(填充少量20 μm的玻璃纖維,用于防止回收的吸附劑的流失),依次用6 mL含0.1%(V/V)氨水的甲醇溶液和6 mL甲醇洗脫,收集淋洗液,氮吹至0.5 mL,加超純水定容至1 mL,HPLC-MS/MS進(jìn)行檢測(cè)。

2.5 POCIS采樣速率Rs的影響因素及應(yīng)用

2.5.1Rs的影響因素

同SPMDs被動(dòng)采樣器一樣,POCIS的Rs目前尚無法通過參數(shù)準(zhǔn)確計(jì)算,一般通過實(shí)驗(yàn)室模擬、現(xiàn)場(chǎng)模擬等方式推算。影響POCIS采樣速率Rs的環(huán)境因素與SPMDs差異不大,主要有流速[22]、溫度[30]、膜污染[31]、pH值和溫度[28]等。除此之外,Rs還受到POCIS中微孔膜和填充吸附材料以及污染物自身理化性質(zhì)(如LogKOW值)的影響[28]。史曉東[32]通過實(shí)驗(yàn)室動(dòng)態(tài)試驗(yàn)研究了鹽度、流速及目標(biāo)物理化性質(zhì)對(duì)磺胺類、大環(huán)類脂類、氯霉素類抗生素Rs的影響,研究發(fā)現(xiàn),鹽度和流速對(duì)Rs有顯著影響,高鹽度高流速時(shí)Rs與LogKOW存在正相關(guān)關(guān)系,而且流速對(duì)Rs的影響比鹽度更大。

2.5.2 POCIS的應(yīng)用

近幾年P(guān)OCIS的其他應(yīng)用見表1。

表1 近幾年P(guān)OCIS在水環(huán)境監(jiān)測(cè)中的應(yīng)用

POCIS是一種極性綜合采樣器,是被開發(fā)作為一種類生物富集有機(jī)物的裝置[33]。POCIS彌補(bǔ)了SPMDs無法監(jiān)測(cè)評(píng)估水樣中極性污染物(LogKOW<4)的不足。POCIS目前已在各種水體中應(yīng)用,包括廢水、飲用水、河湖等水體中[34]。在污染物監(jiān)測(cè)方面的應(yīng)用主要有藥品和個(gè)人護(hù)理用品(PPCPs)、內(nèi)分泌干擾物(ECDs)、極性農(nóng)藥和除草劑等污染物的監(jiān)測(cè)[31]。Stephone等[35]的研究表明,POCIS能夠有效地監(jiān)測(cè)熱帶水體中PHACs、ECDs的TWA濃度,在湍流狀態(tài)下有著更高的采樣速率,但POCIS不適合相對(duì)分子質(zhì)量較低的化合物的采樣。Harman等[36]的研究顯示,POCIS采樣器用于長(zhǎng)期監(jiān)測(cè)違禁藥物的成本效益低,并且可以克服傳統(tǒng)采樣設(shè)備抽樣缺乏代表性的問題。近年,POCIS在PFCs(全氟化合物)的監(jiān)測(cè)上也有一定進(jìn)展[29]。Kaserzon等[37]研究用改性POCIS(600mg Strata XAW作為吸附劑,是一種弱陰離子交換樹脂)采樣測(cè)得全氟羧酸和全氟磺酸鹽2種PFCs濃度與主動(dòng)采樣測(cè)得濃度相關(guān)性良好,相關(guān)系數(shù)R2=0.92。

3 其他的被動(dòng)采樣技術(shù)

3.1 Chemcatcher

Chemcatcher,又叫化學(xué)捕收器,是Kingston等[23]人在2000年提出的,其主體結(jié)構(gòu)主要由主體盤、擴(kuò)散層(可選)、接受相組成。目前,發(fā)展出3種Chemcatcher裝置:(1) 兩個(gè)PTFE(聚四氟乙烯)材料支撐接受相,并且接受相在20mm的深腔中[47];(2) 由兩個(gè)PC(聚碳酸酯)材料封存接收相,并且空腔深度減少至7 mm[48];(3) 由兩個(gè)PTFE材料封存接收相,接受相在空腔深度只有2 mm??涨簧疃葴p少可以提高Rs,同時(shí)采樣器對(duì)流速和湍流等環(huán)境因素的影響更加敏感[49]。一般情況下,位于空腔中的接收相有4種:C18、SDB-RPS(反相磺化苯乙烯-二乙烯基苯的聚合物)、SDB-XD(苯乙烯-二乙烯苯)以及Chelating Emporedisks(亞氨基二乙酸螯合Empore盤)[23,48];保護(hù)接收相,控制外界干擾的擴(kuò)散層的膜也有4種:PES、PS、LDPE和CA膜(醋酸纖維素膜)[23,29]。Chemcatcher在非極性有機(jī)化合物(PAHs、PCBs、PBDEs等)、極性有機(jī)化合物(除草劑、殺蟲劑、藥品等)以及無機(jī)物采樣方面有著廣泛的應(yīng)用。

3.2 Silicone rubber

Silicone rubber,又叫硅橡膠被動(dòng)采樣器,簡(jiǎn)稱SR被動(dòng)采樣器。Smedes等[50]研究用的SR被動(dòng)采樣器由圓柱支撐主框架,內(nèi)部掛3~6個(gè)硅橡膠膜(5.5 cm×9.0 cm,膜厚約為0.5 mm),整個(gè)采樣膜表面積約為100 cm2。在采樣過程中,可以根據(jù)需求,使用更大表面積的膜。SR被動(dòng)采樣器適合疏水性有機(jī)物(LogKOW在3~8范圍)的監(jiān)測(cè)。Rusina等人[51]研究表明,SR被動(dòng)采樣器的傳質(zhì)阻力和Kpw(聚合物-水分配系數(shù))比SPMDs和Chematcher更低,SR更符合流體動(dòng)力學(xué)理論,采樣效果更好,有取代傳統(tǒng)疏水性被動(dòng)采樣裝置的趨勢(shì)。

4 結(jié)論與展望

被動(dòng)采樣技術(shù)的發(fā)展,對(duì)監(jiān)測(cè)環(huán)境中痕量污染物的研究具有重要意義。被動(dòng)采樣設(shè)備種類較多,文中提到的只是較常用的幾種。這些采樣設(shè)備各有特色,SPMDs適用于疏水性有機(jī)物采樣,POCIS適用于極性有機(jī)物的采樣,Chemcatcher則可用于無機(jī)物包括一些金屬離子的采樣??傊粍?dòng)采樣技術(shù)在采樣過程中更具靈活性和代表性,能及時(shí)應(yīng)對(duì)各種環(huán)境中的緊急污染情況。

被動(dòng)采樣技術(shù)也存在著諸多的問題。主要表現(xiàn)為:(1)一種采樣設(shè)備僅適用于某一類理化特性污染物的采樣,無法較全面地監(jiān)測(cè)水體污染物;(2)被動(dòng)采樣設(shè)備的PRCs校準(zhǔn)物選擇困難,要充分考慮其是否具有代表性以及PRCs在校準(zhǔn)過程中受環(huán)境干擾帶來的誤差等情況;(3)缺少被動(dòng)采樣的相關(guān)規(guī)范及標(biāo)準(zhǔn);(4)各種環(huán)境因素對(duì)被動(dòng)采樣過程的影響機(jī)理尚不清楚;(5)Rs數(shù)據(jù)資料匱乏,有關(guān)不同水體目標(biāo)物Rs的文獻(xiàn)很少。

目前,被動(dòng)采樣在我國仍處于起步階段,在實(shí)際環(huán)境監(jiān)測(cè)工作中的應(yīng)用還不夠廣泛。PRCs校準(zhǔn)物的優(yōu)化選擇以及利用PRCs校正實(shí)驗(yàn)在實(shí)驗(yàn)室模擬水樣、現(xiàn)場(chǎng)模擬來推算各種水樣采樣速率Rs仍是被動(dòng)采樣技術(shù)有待完善的難點(diǎn)。針對(duì)不同水樣及不同目標(biāo)污染物,選擇合適的被動(dòng)采樣器(如POCIS)中的固定吸附劑也是被動(dòng)采樣技術(shù)發(fā)展的一個(gè)重點(diǎn)。

[1] MAZZELLA N, DEBENNEST T, DELMAS F. Comparison between the polar organic chemical integrative sampler and the solid-phase extraction for estimating herbicide time-weighted average concentrations during a microcosm experiment[J]. Chemosphere, 2008, 73(4): 545-550.

[2] LISSALDE S, CHARRIAU A, POULIER G, et al. Overview of the Chemcatcher?; for the passive sampling of various pollutants in aquatic environments Part B: Field handling and environmental applications for the monitoring of pollutants and their biological effects[J]. Talanta, 2016, 148: 572-582.

[3] SCHMID P, KOHLER M, GUJER E, et al. Persistent organic pollutants, brominated flame retardants and synthetic musks in fish from remote alpine lakes in Switzerland.[J]. Chemosphere, 2007, 67(9):S16-S21.

[4] PETER S, CHRISTIAN B, NANCY B, et al. The missing piece: sediment records in remote Mountain lakes confirm glaciers being secondary sources of persistent organic pollutants.[J]. Environmental Science & Technology, 2011, 45(1):203-208.

[5] HUCKINS J N, TUBERGEN M W, MANUWEERA G K. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential[J]. Chemosphere, 1990, 20(5): 533-552.

[6] HUCKINS J N, PETTY J D, BOOIJ K. Monitors of organic chemicals in the environment: semipermeable membrane devices[M]. Springer Science & Business Media, 2006.

[7] HUCKINS J N, MANUWEERAA G K, PETTY J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water[J]. Environmental Science & Technology, 1993, 27(12): 2489-2496.

[8] MARRUCCI A, MARRAS B, CAMPISI S S, et al. Using SPMDs to monitor the seawater concentrations of PAHs and PCBs in marine protected areas (Western Mediterranean)[J]. Marine Pollution Bulletin, 2013, 75(1): 69-75.

[9] HUCKINS J N, PETTY J D, ORAZIO C E, et al. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water[J]. Environmental Science & Technology, 1999, 33(21): 3918-3923.

[10] BOOIJ K, SLEIDERINK H M, SMEDES F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards[J]. Environmental Toxicology and Chemistry, 1998, 17(7): 1236-1245.

[11] RICHARDSON B J, ABBOTT S B D L, MCCLELLAN K E, et al. The use of permeability reference compounds in biofouled semi-permeable membrane devices (SPMDs): A laboratory-based investigation[J]. Marine Pollution Bulletin, 2008, 56(9): 1663-1667.

[12] CHANG W T, LEE C L, BRIMBLECOMBE P, et al. The effects of flow rate and temperature on SPMD measurements of bioavailable PAHs in seawater[J]. Marine Pollution Bulletin, 2015, 97(1): 217-223.

[13] PETTY J D, ORAZIO C E, HUCKINS J N, et al. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants[J]. Journal of Chromatography A, 2000, 879(1): 83-95.

[14] UTVIK T I R, JOHNSEN S. Bioavailability of polycyclic aromatic hydrocarbons in the North Sea[J]. Environmental Science & Technology, 1999, 33(12): 1963-1969.

[15] WANG Y, WANG Z, MA M, et al. Monitoring priority pollutants in a sewage treatment process by dichloromethane extraction and triolein-semipermeable membrane device (SPMD)[J]. Chemosphere, 2001, 43(3): 339-346.

[16] VERWIJ F, BOOIJ K, SATUMALAY K, et al. Assessment of bioavailable PAH, PCB and OCP concentrations in water, using semipermeable membrane devices (SPMDs), sediments and caged carp[J]. Chemosphere, 2004, 54(11): 1675-1689.

[17] SHAW M, MüLLER J F. Preliminary evaluation of the occurrence of herbicides and PAHs in the Wet Tropics region of the Great Barrier Reef, Australia, using passive samplers[J]. Marine Pollution Bulletin, 2005, 51(8): 876-881.

[18] GALE R W, HUCKINS J N, PETTY J D, et al. Comparison of the uptake of dioxin-like compounds by caged channel catfish and semipermeable membrane devices in the Saginaw River, Michigan[J]. Environmental Science & Technology, 1996, 31(1): 178-187.

[20] KIM U J, KIM H Y, ALVAREZl D, et al. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples[J]. Science of the Total Environment, 2013, 470-471(2): 1537-1544.

[21] ALVAREZ D A. Development of an integrative sampling device for hydrophilic organic contaminants in aquatic environments[M]. UMI Dissertation Services, 2008.

[22] ALVAREZ D A, PETTY J D, HUCKINS J N, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments[J]. Environmental Toxicology and Chemistry, 2004, 23(7): 1640-1648.

[23] KINGSTON J K, GREENWOOD R, MILLS G A, et al. Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments[J]. Journal of Environmental Monitoring, 2000, 2(5): 487-495.

[24] 谷云云, 胡霞林, 尹大強(qiáng). 極性有機(jī)化合物整合采樣技術(shù)在水環(huán)境有機(jī)污染物監(jiān)測(cè)中的應(yīng)用[J]. 環(huán)境化學(xué), 2013(07):1376-1387.

[25] MAZZELLA N, LISSALDE S, MOREIRA S, et al. Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater[J]. Environmental Science & Technology, 2010, 44(5): 1713-1719.

[26] LI H, VERMEIRSSEN E L M, HELM P A, et al. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers[J]. Environmental Toxicology and Chemistry, 2010, 29(11): 2461-2469.

[27] FAUVELLE V, MAZZELLA N, DELMAS F, et al. Use of mixed-mode ion exchange sorbent for the passive sampling of organic acids by polar organic chemical integrative sampler (POCIS)[J]. Environmental Science & Technology, 2012, 46(24): 13344-13353.

[28] LI H, HELM P A, PATERSON G, et al. The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS)[J]. Chemosphere, 2011, 83(3): 271-280.

[29] KASERZON S L, VERMEIRSSEN E L M, HAWKER D W, et al. Passive sampling of perfluorinated chemicals in water: Flow rate effects on chemical uptake[J]. Environmental Pollution, 2013, 177: 58-63.

[30] RUJIRALAI T, BULL I D, LLEWELLYN N, et al. In situ polar organic chemical integrative sampling (POCIS) of steroidal estrogens in sewage treatment works discharge and river water[J]. Journal of Environmental Monitoring, 2011, 13(5): 1427-1434.

[31] ALVAREZ D A, HUCKINS J N, PETTY J D, et al. Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS)[J]. Comprehensive Analytical Chemistry, 2007, 48: 171-197.

[32] 史曉東. 利用被動(dòng)采樣方法研究藥物和內(nèi)分泌干擾物的河口環(huán)境行為[D]. 華東師范大學(xué), 2014.

[33] VERMEIRSSEN E L M, K?RNER O, SCH?NENBERGER R, et al. Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish[J]. Environmental Science & Technology, 2005, 39(21): 8191-8198.

[34] LINDBERG R H, OLOFSSON U, RENDAHL P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge[J]. Environmental Science & Technology, 2006, 40(3): 1042-1048.

[35] BAYEN S, SEGOVIA E, LOH L L, et al. Application of Polar Organic Chemical Integrative Sampler (POCIS) to monitor emerging contaminants in tropical waters[J]. Science of the Total Environment, 2014, 482: 15-22.

[36] HARMAN C, REID M, THOMAS K V. In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year-long assessment of community drug usage[J]. Environmental Science & Technology, 2011, 45(13): 5676-5682.

[37] KASERZON S L, KENNEDY K, HAWKER D W, et al. Development and calibration of a passive sampler for perfluorinated alkyl carboxylates and sulfonates in water[J]. Environmental Science & Technology, 2012, 46(9): 4985-4993.

[38] GUIBAL R, LISSALDE S, CHARRIAU A, et al. Improvement of POCIS ability to quantify pesticides in natural water by reducing polyethylene glycol matrix effects from polyethersulfone membranes[J]. Talanta, 2015, 144: 1316-1323.

[39] GONZALEZ-REY M, TAPIE N, Le MENACH K, et al. Occurrence of pharmaceutical compounds and pesticides in aquatic systems[J]. Marine Pollution Bulletin, 2015.

[40] JAIMES-CORREA J C, SNOW D D, BARTELT-HUNT S L. Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed[J]. Environmental Pollution, 2015, 205: 87-96.

[41] GUIBAL R, LISSALDE S, CHARRIAU A, et al. Coupling passive sampling and time of flight mass spectrometry for a better estimation of polar pesticide freshwater contamination: Simultaneous target quantification and screening analysis[J]. Journal of Chromatography A, 2015, 1387: 75-85.

[42] TANWAR S, DI CARRO M, MAGI E. Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106: 100-106.

[43] DALTON R L, PICK F R, BOUTIN C, et al. Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS)[J]. Environmental Pollution, 2014, 189: 134-142.

[44] LISCIO C, ABDUL-SADA A, AL-SALHI R, et al. Methodology for profiling anti-androgen mixtures in river water using multiple passive samplers and bioassay-directed analyses[J]. Water Research, 2014, 57: 258-269.

[45] BOLES T H, WELLS M J M. Pilot survey of methamphetamine in sewers using a Polar Organic Chemical Integrative Sampler[J]. Science of the Total Environment, 2014, 472: 9-12.

[46] BARRANGER A, AKCHA F, ROUXEL J, et al. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: Evidence of vertical transmission of DNA damage[J]. Aquatic Toxicology, 2014, 146: 93-104.

[47] VRANA B, MILLS G, GREENWOOD R, et al. Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water[J]. Journal of Environmental Monitoring, 2005, 7(6): 612-620.

[48] AGUILAR-MARTNEZ R, GMEZ-GMEZ M M, Palacios-Corvillo M A. Mercury and organotin compounds monitoring in fresh and marine waters across Europe by Chemcatcher passive sampler[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(11): 1100-1116.

[49] CHARRIAU A, LISSALDE S, POULIER G, et al. Overview of the Chemcatcher?; for the passive sampling of various pollutants in aquatic environments Part A: Principles, calibration, preparation and analysis of the sampler[J]. Talanta, 2016, 148: 556-571.

[50] SMEDES F, BOOIJ K. Guidelines for passive sampling of hydrophobic contaminants in water using silicone rubber samplers[M]. International Council for the Exploration of the Sea, 2012.

[51] RUSINA T P, SMEDES F, KLANOVA J. Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low‐density polyethylene polymers[J]. Journal of Applied Polymer Science, 2010, 116(3): 1803-1810.

Research Progress in Several Common Passive Sampling Techniques in Water Environment

WANG Pan-pan1, WANG Jing2, LIU Zheng-zheng2, CHEN Jin-yuan1

(1.CollegeofEnvironment,ZhejiangUniversityofTechnology,Hangzhou,Zhejiang310014,China; 2.ZhejiangProvinceEnvironmentalMonitoringCenter,Hangzhou,Zhejiang310015,China)

Several commonly used passive sampling techniques were summarized in this paper, including semipermeable membrane devices (SPMDs), polar organic chemical integrative sampler (POCIS), a chemical catcher named Chemcatcher, and Silicon rubber sampler. The device structure, model, principle, sample pretreatment, influence factors and application range of each of the technique were summarized, and technical issues was pointed out during current application. Future applications was summarized prospected.

Passive sampling technology; SPMDs; POCIS; Chemcatcher; Silicon rubber

2015-12-20;

2016-03-11

2014年浙江省重大科技專項(xiàng)項(xiàng)目(2014C03026);2016年浙江省環(huán)??萍柬?xiàng)目(2016A011)

汪盼盼(1992—),男,在讀碩士研究生,研究方向?yàn)榄h(huán)境監(jiān)測(cè)。

X830.1

B

1674-6732(2016)04-0031-06

猜你喜歡
采樣器極性被動(dòng)
新聞?wù)Z篇中被動(dòng)化的認(rèn)知話語分析
粉塵采樣器檢定和校準(zhǔn)證書中不確定度區(qū)別
主動(dòng)句都能轉(zhuǎn)換成被動(dòng)句嗎
跟蹤導(dǎo)練(四)
第五課 拒絕被動(dòng)
趣味(語文)(2019年5期)2019-09-02 01:52:44
表用無極性RS485應(yīng)用技術(shù)探討
一種新型的雙極性脈沖電流源
PM2.5小流量采樣器數(shù)據(jù)采集與導(dǎo)出系統(tǒng)優(yōu)化研究
基于VB的PM2.5采樣器數(shù)據(jù)處理軟件的研究
粉塵采樣器流量示值誤差的測(cè)量不確定度評(píng)定
河南科技(2014年1期)2014-02-27 14:04:24
梁平县| 龙里县| 松潘县| 临邑县| 隆化县| 兴山县| 阿荣旗| 台南市| 松潘县| 涿州市| 金山区| 孟村| 邵东县| 扎鲁特旗| 汝阳县| 恩平市| 合川市| 塔城市| 体育| 屏山县| 咸宁市| 肇庆市| 保靖县| 阿克| 许昌县| 杨浦区| 图木舒克市| 时尚| 固镇县| 丹凤县| 遂川县| 永仁县| 扬州市| 施甸县| 长宁区| 井冈山市| 措美县| 康乐县| 元朗区| 金秀| 克拉玛依市|