魏有柏
【摘 要】學(xué)生在平時的做題練習(xí)或是考試中,常常會出現(xiàn)許多意想不到的錯誤,教師在進(jìn)行錯題講解中,要有目的的向?qū)W生滲透錯題中表現(xiàn)出的思維缺陷,在課堂上運用多種方式進(jìn)行糾錯教學(xué),突破學(xué)生的“易錯”思維。
【關(guān)鍵詞】錯題分析;糾錯策略;初中數(shù)學(xué)
在學(xué)習(xí)過程中,由于教師教學(xué)風(fēng)格對學(xué)生產(chǎn)生影響的因素,或是學(xué)生學(xué)習(xí)過程中養(yǎng)成的習(xí)慣因素,或是課本中內(nèi)容的知識深淺編排不恰當(dāng)?shù)纫蛩兀率箤W(xué)生在小測、作業(yè)、考試等的做題過程中,總是出現(xiàn)不同程度、不同類別的錯誤。這些錯誤中,有些是偶然發(fā)生的,無須在意,而有些則是與學(xué)習(xí)習(xí)慣息息相關(guān)的,所以對于錯題的原因分析,要對癥下藥,根據(jù)學(xué)生錯誤的不同情況,進(jìn)行有針對性的糾錯教學(xué),幫助學(xué)生走出思維的陷阱和誤區(qū)。
一、嚴(yán)密推理,走出定勢誤區(qū)
學(xué)生在學(xué)習(xí)的過程中,思維都會存在惰性,對于能夠減少思考的地方會盡量不去思考,而且對于教師的教學(xué)會盡量記住教師所講的結(jié)論,而不是關(guān)注教師講課的過程記憶對于題目的分析方法與以往講題的方法有何不同。這些做法都會導(dǎo)致學(xué)生對于知識養(yǎng)成“好吃懶做”的習(xí)慣,不喜歡動腦思考,也不愿意動手計算,眼高手低,憑著自己的計算經(jīng)驗和對于教師的課堂記憶記憶進(jìn)行簡單的分析,徘徊在思維的誤區(qū)之中,難以自拔。
例如:用一根剛性的細(xì)繩圍繞在地球儀的赤道上,如果將鋼繩所圍成的圓的半徑增加1米,則需要多用m米的鋼繩;現(xiàn)在假如在地球的赤道上本來就有一個鐵圈,若是鐵圈的半徑增大1米,那么鐵絲則要多用n米,求m與n的大小關(guān)系?
分析:有的同學(xué)看完題目之后,認(rèn)為在赤道上的鐵圈半徑小,圍繞的鋼絲的半徑大,進(jìn)而得出m>n的關(guān)系,這樣就犯了思維定勢的錯誤。分析一下,對于這個鐵圈來講,對于鋼絲以及圍繞在外的鐵圈,二者的計算分別是m=2π(r+1)-2πr=2π,n=2π(r+1)-2πr=2π,計算可以發(fā)現(xiàn),實際上二者的大小是一樣的。
學(xué)生在計算這道題的過程中很可能會直接判斷從而忽略了對題目的條件分析,依靠自己的生活經(jīng)驗和學(xué)習(xí)習(xí)慣進(jìn)行解答,才會出現(xiàn)這樣的粗心的錯誤,掉進(jìn)了思維的誤區(qū)。對此,教師要注意對學(xué)生動手計算、動腦思考的習(xí)慣進(jìn)行培養(yǎng),鍛煉學(xué)生對于題目的分析和處理能力,對于任何題目都要進(jìn)行分析,而不是僅僅依靠經(jīng)驗來解決,這樣才能有效降低自己的犯錯率,避免這種低級錯誤的發(fā)生,打下良好的知識基礎(chǔ)。
二、全面考慮,分清內(nèi)涵外延
學(xué)生在進(jìn)行問題思考時,有時會出現(xiàn)直接化思維的表現(xiàn),即對于問題會直接按照所看到的進(jìn)行簡單的思考而忽略題目的本質(zhì),從而計算的過程中會出現(xiàn)很大的思維漏洞,無法取得較為滿意的學(xué)習(xí)結(jié)果。學(xué)生的思維是出于不斷發(fā)展的過程中的,對于教學(xué)的反應(yīng)有著較大的彈性空間,也就是說學(xué)生經(jīng)過各種思維的訓(xùn)練之后思維可以變得非??b密,對于問題的思考可以深入本質(zhì)和內(nèi)涵,而非停留在對于知識簡單的表面審視之中。
例如:某人在游泳池游泳,由于泳道較長,他從A游到 B的速度為a千米/小時,但是回來的時候比較累,故而他從 B游到A的速度為b千米/小時,求出其從A游到B然后從 B游到A的平均速度是多少?
通過題目的解答過程可以發(fā)現(xiàn),學(xué)生很容易漏掉題目的隱含信息,尤其是多次設(shè)問的問題,很可能各問題之間存在一定的聯(lián)系,一旦忽略了,就會發(fā)生錯誤,這是實際應(yīng)用中最大的問題,也是能夠通過訓(xùn)練進(jìn)而避免的失分點。
在教學(xué)過程中,要注重引導(dǎo)學(xué)生進(jìn)行思維的訓(xùn)練,以學(xué)生作為課堂的主體,讓學(xué)生充分發(fā)揮自己的主觀能動性,對自己的錯誤進(jìn)行分析和改進(jìn),找到各人的易錯點,進(jìn)而針對性地改正,成功“突破”易錯思維。
【參考文獻(xiàn)】
[1]曾華東.初中數(shù)學(xué)易錯題分析及應(yīng)對策略[J].中學(xué)生數(shù)理化:教與學(xué),2013(5)
[2]蘇曉紅.中學(xué)數(shù)學(xué)教學(xué)中易錯點解題策略的研究[J].新課程,2015(3)