凌永庚
摘 要:21世紀(jì)初我國(guó)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中要求數(shù)學(xué)建模以不同的形式滲透于必修和選修課程中.數(shù)學(xué)建模進(jìn)入高中數(shù)學(xué)課程成為必然,作為一線教師必須改變觀念,積極探索數(shù)學(xué)建模教學(xué)實(shí)施策略,為學(xué)生數(shù)學(xué)學(xué)習(xí)營(yíng)造更為寬廣的空間。
關(guān)鍵詞:高中;數(shù)學(xué);教學(xué)
數(shù)學(xué)建模就是應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題。在新課程學(xué)習(xí)的背景下,加強(qiáng)數(shù)學(xué)建模意識(shí),開(kāi)展各種課型的數(shù)學(xué)建模教學(xué),培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的能力,讓學(xué)生體會(huì)數(shù)學(xué)在實(shí)際生活和生產(chǎn)中的應(yīng)用,引導(dǎo)其在學(xué)中用,在用中學(xué),培養(yǎng)其理論聯(lián)系實(shí)際的能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。高中數(shù)學(xué)本身就是一門(mén)理論聯(lián)系實(shí)際的課程,包含了許多數(shù)學(xué)教學(xué)建模的方法,如函數(shù)關(guān)系式、導(dǎo)數(shù)法、微分方程法、多變量積分法等。在教學(xué)中教師應(yīng)注意培養(yǎng)學(xué)生的教學(xué)建模能力。
一、數(shù)學(xué)建模的概念
數(shù)學(xué)建模,旨在培養(yǎng)學(xué)生解決實(shí)際生活問(wèn)題的能力。它的實(shí)際性和創(chuàng)造性被越來(lái)越多的教師所接受。數(shù)學(xué)建模不僅可以讓學(xué)生能夠運(yùn)用所學(xué)數(shù)學(xué)知識(shí)解釋生活難題,而且可以通過(guò)實(shí)際生活的案例來(lái)提高學(xué)生接受數(shù)學(xué)學(xué)習(xí)的興趣,從而提高數(shù)學(xué)教學(xué)效果。因此,數(shù)學(xué)建模教學(xué)應(yīng)被大力推廣。
二、高中數(shù)學(xué)建模教學(xué)的現(xiàn)狀
1.數(shù)學(xué)建模中的情感問(wèn)題:教師對(duì)數(shù)學(xué)建模的感情淡漠,課程標(biāo)準(zhǔn)的出臺(tái)和新課標(biāo)的培訓(xùn)使得培訓(xùn)過(guò)的教師教師認(rèn)識(shí)了數(shù)學(xué)建模,也明白數(shù)學(xué)建模對(duì)學(xué)生將來(lái)生活的作用,但是教師在受教育期間是在題海戰(zhàn)術(shù)中培養(yǎng)出來(lái)的,只重視嚴(yán)謹(jǐn)?shù)倪壿嬎季S,沒(méi)有接觸的數(shù)學(xué)建?;蛘咴谏钪械膽?yīng)用,畢業(yè)以后從事工作,時(shí)間忙碌,整天和高考題打交道,更是無(wú)暇顧及身邊的生活,更別說(shuō)再?gòu)姆菍W(xué)校生活中發(fā)現(xiàn)問(wèn)題。數(shù)學(xué)建模要求教師充分尊重學(xué)生,發(fā)揮學(xué)生的創(chuàng)造性和積極性。數(shù)學(xué)建模由于其特殊性,在建模的過(guò)程中學(xué)生處于主體地位,教師只是學(xué)生的顧問(wèn)。教師對(duì)學(xué)生的建模起指導(dǎo)作用,在這一過(guò)程中只有把學(xué)生當(dāng)成有思想的主體看待,充分尊重學(xué)生,才能讓學(xué)生沿著自己感興趣的問(wèn)題繼續(xù)研究下去,而不是變成老師布置的問(wèn)題。
2.學(xué)生建模能力低:學(xué)生有一定的數(shù)學(xué)應(yīng)用意識(shí),能在現(xiàn)實(shí)生活中識(shí)別出一些數(shù)學(xué)問(wèn)題;學(xué)生有一定的電腦基礎(chǔ),可以使用常用的軟件;了解數(shù)學(xué)建模的意圖,認(rèn)識(shí)到數(shù)學(xué)建模就是用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題;愿意參加數(shù)學(xué)建?;顒?dòng)。這些為我們?cè)趯W(xué)校順利的開(kāi)展數(shù)學(xué)建?;顒?dòng)奠定基礎(chǔ)。但是學(xué)生不能將數(shù)學(xué)問(wèn)題與實(shí)際問(wèn)題恰當(dāng)?shù)幕ハ喾g,這些是建?;顒?dòng)的一個(gè)障礙,在活動(dòng)中應(yīng)特別的指導(dǎo);并且男女生思維方式不同,可在分組時(shí)合理安排;學(xué)生有用數(shù)學(xué)去解決問(wèn)題的熱情,但是沒(méi)有具體的指導(dǎo)和方法,無(wú)從下手。
3.應(yīng)試教育對(duì)建模教學(xué)的影響:改革開(kāi)放以來(lái)高考一直是老師和學(xué)生的指揮棒,確實(shí)這種“一考定終身”的制度無(wú)法不讓人重視,數(shù)學(xué)建模雖說(shuō)在課標(biāo)中得到重視,在將來(lái)的社會(huì)中也大有用處,但是在高考的評(píng)價(jià)體制中沒(méi)有得到有力的體現(xiàn),高考中雖說(shuō)有體現(xiàn)數(shù)學(xué)建模的數(shù)學(xué)應(yīng)用題,但是應(yīng)用題只是數(shù)學(xué)建模的一個(gè)片段,沒(méi)有讓學(xué)生經(jīng)歷相對(duì)完整的數(shù)學(xué)過(guò)程,而且應(yīng)用題也可以在平時(shí)的練習(xí)中掌握做題的技巧,無(wú)需真正的去做數(shù)學(xué)建模。高考評(píng)價(jià)體制中沒(méi)有中重視,就很難調(diào)動(dòng)教師的積極性。目前高中實(shí)行學(xué)分制,但是由于學(xué)生評(píng)價(jià)體系和教師評(píng)價(jià)體系仍然以高考為標(biāo)準(zhǔn),所以大家仍是唯高考馬首是瞻。希望這種學(xué)分制,或者說(shuō)數(shù)學(xué)建模有過(guò)程性評(píng)價(jià)的同時(shí),也有結(jié)果性評(píng)價(jià),或者這種過(guò)程性評(píng)價(jià)在高考中有一定的作用,才能刺激教師對(duì)數(shù)學(xué)建模的重視。
三、加強(qiáng)高中數(shù)學(xué)教學(xué)中建模能力的具體培養(yǎng)方法
1.重視每章前問(wèn)題的教學(xué),讓學(xué)生明白建立數(shù)學(xué)模型的實(shí)際意義。在每一章的數(shù)學(xué)教學(xué)之初,都用一個(gè)實(shí)際問(wèn)題引入,這樣可以使學(xué)生明白,學(xué)了本章的教學(xué)內(nèi)容之后,這個(gè)實(shí)際問(wèn)題就可以用數(shù)學(xué)模型來(lái)解決,如此,學(xué)生就會(huì)產(chǎn)生創(chuàng)新意識(shí)與實(shí)踐意識(shí)。其次,運(yùn)用引入一個(gè)現(xiàn)實(shí)的應(yīng)用問(wèn)題,以突出知識(shí)的實(shí)際背景,激發(fā)學(xué)生的學(xué)習(xí)欲望,增加教學(xué)內(nèi)容的趣味性。這樣,通過(guò)對(duì)章前問(wèn)題的啟發(fā)與引導(dǎo),就會(huì)使學(xué)生明白數(shù)學(xué)就是學(xué)習(xí)、研究和應(yīng)用數(shù)學(xué)模型,同時(shí)培養(yǎng)學(xué)生對(duì)解決問(wèn)題的新方法的追求意識(shí),以及參與實(shí)踐的意識(shí)。因此,要對(duì)章前的問(wèn)題突出重視,另外,還可以根據(jù)市場(chǎng)經(jīng)濟(jì)的建設(shè)與發(fā)展的實(shí)際需要及學(xué)生實(shí)際活動(dòng)中發(fā)現(xiàn)的問(wèn)題做一些實(shí)例補(bǔ)充,強(qiáng)化這方面的教學(xué),使學(xué)生在日常生活和學(xué)習(xí)中重視數(shù)學(xué),培養(yǎng)學(xué)生建立數(shù)學(xué)建模的意識(shí)。
2.通過(guò)幾何、解三角形問(wèn)題及列方程解應(yīng)用題的教學(xué)過(guò)程滲透教學(xué)建模的思想和思維過(guò)程。幾何和三角形測(cè)量問(wèn)題的學(xué)習(xí)使學(xué)生可以多方位地感受數(shù)學(xué)建模思想,讓學(xué)生更多地認(rèn)識(shí)和運(yùn)用數(shù)學(xué)模型,鞏固數(shù)學(xué)建模的思維全過(guò)程。在教學(xué)過(guò)程中,對(duì)學(xué)生展示建立數(shù)學(xué)模型的以下過(guò)程:數(shù)學(xué)模型、數(shù)學(xué)抽象、簡(jiǎn)化原則、演算推理、現(xiàn)實(shí)原形問(wèn)題的解、數(shù)學(xué)模型的解,反映性原則,返回解釋。列方程解應(yīng)用題體現(xiàn)了數(shù)學(xué)模型的思維過(guò)程,要根據(jù)所掌握的信息和資料對(duì)問(wèn)題加以變形,使問(wèn)題簡(jiǎn)單化,以利于解答的思想。解題過(guò)程中的重要步驟是根據(jù)題意列出方程,教學(xué)過(guò)程中,可以讓學(xué)生明白,數(shù)學(xué)建模過(guò)程的重點(diǎn)及難點(diǎn)就是根據(jù)實(shí)際問(wèn)題的特點(diǎn)對(duì)現(xiàn)實(shí)信息進(jìn)行觀察、類比、歸納、分析及概括,建立數(shù)學(xué)模型或變換問(wèn)題構(gòu)造新的數(shù)學(xué)模型來(lái)解決問(wèn)題。
3.通過(guò)對(duì)學(xué)生其他能力的培養(yǎng)完善數(shù)學(xué)建模思想。由于數(shù)學(xué)模型這一思想方法幾乎貫穿于中小學(xué)的整個(gè)學(xué)校過(guò)程,因此,熟練掌握和運(yùn)用這種方法是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題的能力的關(guān)鍵。需要培養(yǎng)學(xué)生以下幾點(diǎn)能力,才能更好地完善教學(xué)建模思想:(1)理解實(shí)際問(wèn)題的能力;(2)洞察問(wèn)題的能力,就是關(guān)于抓住系統(tǒng)要點(diǎn)的能力;(3)抽象問(wèn)題和分析問(wèn)題的能力;(4)“翻譯”能力,就是將一些實(shí)際信息通過(guò)抽象、簡(jiǎn)化來(lái)用數(shù)學(xué)的語(yǔ)文文字和數(shù)學(xué)符號(hào)表達(dá)出來(lái),形成數(shù)學(xué)模型并運(yùn)用數(shù)學(xué)方法進(jìn)行推算或計(jì)算,從而得到相應(yīng)結(jié)果,并用自然語(yǔ)言表達(dá)出來(lái)的能力;(5)運(yùn)用數(shù)學(xué)知識(shí)的能力;(6)在實(shí)踐過(guò)程中,通過(guò)實(shí)際加以檢驗(yàn)的能力。
建模教學(xué)的實(shí)施在促進(jìn)高中數(shù)學(xué)教學(xué)高效進(jìn)行、提高學(xué)生科學(xué)文化水平的同時(shí)還能夠幫助學(xué)生提高實(shí)踐能力和創(chuàng)造能力,推動(dòng)素質(zhì)教育的發(fā)展。建模教學(xué)的推進(jìn)是一個(gè)漫長(zhǎng)的過(guò)程,需要社會(huì)各界的共同努力。希望本文提出的關(guān)于高中數(shù)學(xué)建模教學(xué)的改進(jìn)策略對(duì)于當(dāng)代高中數(shù)學(xué)教學(xué)有所幫助,推進(jìn)國(guó)家高中數(shù)學(xué)素質(zhì)教育進(jìn)程。
參考文獻(xiàn):
[1]中華人民共和國(guó)教育部.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn).北京師范大學(xué)出版社,2003.
[2]李明振,喻平.高中數(shù)學(xué)建模課程實(shí)施的背景、問(wèn)題與策略.數(shù)學(xué)通報(bào),2008,47(11).