国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

甜菜渣纖維素乙醇研究進(jìn)展與展望

2016-09-19 01:25李丹苑琳李猛李冠華
生物工程學(xué)報(bào) 2016年7期
關(guān)鍵詞:甜菜纖維素預(yù)處理

李丹,苑琳,李猛,李冠華

?

甜菜渣纖維素乙醇研究進(jìn)展與展望

李丹,苑琳,李猛,李冠華

內(nèi)蒙古大學(xué) 生命科學(xué)學(xué)院,內(nèi)蒙古 呼和浩特 010021

纖維素乙醇具有清潔、安全、可再生等優(yōu)點(diǎn),是新能源發(fā)展的重要方向,受到各國(guó)政府、企業(yè)的廣泛關(guān)注。論文首先介紹了甜菜生物學(xué)特性,隨后重點(diǎn)闡述甜菜及其副產(chǎn)物甜菜渣在三代生物乙醇開(kāi)發(fā)中的優(yōu)越性及應(yīng)用進(jìn)展。在此基礎(chǔ)上提出了甜菜渣纖維素轉(zhuǎn)化乙醇及組分分離綜合利用的研究思路,認(rèn)為甜菜渣將會(huì)作為一種重要原料在纖維素乙醇開(kāi)發(fā)中發(fā)揮作用。

生物能源,纖維素乙醇,甜菜渣,組分分離

能源分為傳統(tǒng)化石能源和可再生能源。傳統(tǒng)化石能源不可再生,大量使用化石能源會(huì)引起溫室效應(yīng),造成環(huán)境污染,且儲(chǔ)存量已不能滿足人類(lèi)經(jīng)濟(jì)社會(huì)發(fā)展的需求,因此可再生能源逐漸受到人類(lèi)的重視。根據(jù)美國(guó)可再生燃料標(biāo)準(zhǔn) (RFS) 要求,2022年美國(guó)可再生燃料使用量需達(dá)1.4×1011L,其中生物質(zhì)燃料使用量應(yīng)達(dá)到60%左右[1]。

生物質(zhì)燃料是指以生物質(zhì)為原料轉(zhuǎn)化制備得到生物乙醇、沼氣、氫氣、生物柴油等化工產(chǎn)品[2]。生物乙醇以其辛烷值高[3](表1)、安全性好,可作為含氧添加劑替代甲基叔丁基醚、乙基叔丁基醚,也可完全替代汽油作為燃料而備受關(guān)注。隨著各國(guó)社會(huì)經(jīng)濟(jì)的快速發(fā)展及能源結(jié)構(gòu)調(diào)整,生物乙醇開(kāi)發(fā)成為當(dāng)前科學(xué)研究的熱點(diǎn)。

表1 幾種不同燃料的能源含量對(duì)比

Table 1 Energy content of some fuels compared with ethanol

生物乙醇的研究應(yīng)用擁有著悠久的歷史,中國(guó)早在2 000多年前就利用固態(tài)發(fā)酵技術(shù)以谷類(lèi)物質(zhì)為原料制備乙醇,隨后的幾千年中乙醇始終作為酒品供人類(lèi)飲用。直到1925年,Henry Ford首次提出乙醇可以作為未來(lái)主流能源為人類(lèi)服務(wù),同時(shí)大膽預(yù)測(cè)乙醇生產(chǎn)原料將會(huì)由谷類(lèi)物質(zhì)轉(zhuǎn)變成果殼、秸稈、鋸屑、蘋(píng)果渣等廉價(jià)易得的生物質(zhì)原料,由此開(kāi)始了生物乙醇作為能源的研究。近年來(lái)美國(guó)、歐盟、巴西等國(guó)家和地區(qū)紛紛頒布相關(guān)法案,發(fā)展本國(guó)生物乙醇產(chǎn)業(yè),先后發(fā)展出了以糖或淀粉為原料的“第一代生物乙醇”技術(shù)和以農(nóng)林廢棄物為原料的“第二代生物乙醇”技術(shù)[4]。由于“第一代生物乙醇”發(fā)展面臨著“與人爭(zhēng)糧,與糧爭(zhēng)地”的爭(zhēng)議,因此發(fā)展以農(nóng)林廢棄物等非糧作物為原料轉(zhuǎn)化制備纖維素乙醇的“第二代生物乙醇”技術(shù)成為各國(guó)研究的重要方面。

甜菜屬為植物界被子植物門(mén)雙子葉植物綱,其栽培種有4個(gè)變種:糖用甜菜、葉用甜菜、根用甜菜和飼用甜菜[5]。甜菜適宜生長(zhǎng)在溫帶地區(qū),平均重量為0.5?1.0 kg。甜菜葉片繁茂,葉片長(zhǎng)度能達(dá)35 cm,通過(guò)葉片進(jìn)行光合作用生成糖,儲(chǔ)存在根中。甜菜塊根含有高濃度的蔗糖,是目前主要的制糖原料之一[6]。甜菜的含糖量高達(dá)16%,而甘蔗的含糖量只有12%?13%。2009年,甜菜產(chǎn)糖量占全球食糖總產(chǎn)量的20%,并呈逐年上升趨勢(shì)[7]。

1 甜菜渣轉(zhuǎn)化生物乙醇的優(yōu)越性及不足

1.1 甜菜渣轉(zhuǎn)化生物乙醇的優(yōu)越性

1.1.1 甜菜渣產(chǎn)量大

全球甜菜種植總面積達(dá)8×106hm2,在世界農(nóng)產(chǎn)品總產(chǎn)量中排名第10,約占糖料作物的48%,次于甘蔗而居第2位。2009?2013年世界甜菜主產(chǎn)區(qū)的產(chǎn)量見(jiàn)表2。

表2 2009–2013年甜菜產(chǎn)量排名前十的國(guó)家

Table 2 Top ten sugar beet producer during 2009 to 2013

Source: FAOSTAT

我國(guó)甜菜年產(chǎn)量高于世界平均水平,甜菜工業(yè)生產(chǎn)后會(huì)得到大量的甜菜渣。甜菜渣是甜菜提取蔗糖后的剩余廢棄物,有許多綜合利用前景。由加工副產(chǎn)物系數(shù)取值[8],計(jì)算可知我國(guó)2010–2014年的甜菜渣產(chǎn)量分別為4.65×108、5.37×108、5.87×108和4.63×108kg。

1.1.2 甜菜渣木質(zhì)素含量低

甜菜渣干物質(zhì)組成為:纖維素26%、半纖維素28%、木質(zhì)素3%、果膠28%、蛋白5%、灰分3%、其他27%[9]。木質(zhì)素作為胞間層膠黏物質(zhì)起到加固木質(zhì)化植物組織的作用。高含量木質(zhì)素的存在提高植物組織的生物穩(wěn)定性和對(duì)各種化學(xué)試劑作用的穩(wěn)定性。木質(zhì)素阻礙纖維素酶對(duì)纖維素的接觸,或者與纖維素不可逆結(jié)合而阻礙纖維素水解[10]。表3可知,與其他木質(zhì)纖維素原料相比,甜菜渣中纖維素含量較高,而木質(zhì)素含量較低,是制備纖維素乙醇的理想原料。

表3 常見(jiàn)木質(zhì)纖維素原料及其3種組分含量[9]

Table 3 Common lignocellulosic biomass feedstock and their components[9]

1.1.3 甜菜渣集中堆放,易于收集且成本低廉

秸稈等農(nóng)林廢棄物分布分散,產(chǎn)量隨季節(jié)波動(dòng)大,因此原料收集和運(yùn)輸困難,成本較高,制約著纖維素乙醇的發(fā)展。甜菜渣是糖廠利用甜菜榨糖后的剩余副產(chǎn)物,大量集中堆放便于收集利用?;诖?,甜菜渣的收集成本和運(yùn)輸成本顯著降低[11]。建立甜菜制糖和甜菜渣制纖維素乙醇一體化現(xiàn)代制糖模式成為當(dāng)前研究熱點(diǎn)。

1.1.4 甜菜渣持續(xù)利用有利于糖業(yè)可持續(xù)發(fā)展

甜菜渣的傳統(tǒng)利用方式中除少量用為動(dòng)物飼料供給周邊農(nóng)戶外,大部分就地堆放,處理不當(dāng)會(huì)引起積壓與霉?fàn)€,造成資源浪費(fèi)的同時(shí)嚴(yán)重污染周邊環(huán)境。甜菜渣含有26%的纖維素,將其轉(zhuǎn)化制備為生物乙醇,能夠?qū)崿F(xiàn)資源充分利用,提高企業(yè)經(jīng)濟(jì)效益,減少環(huán)境污染,有利于糖業(yè)的可持續(xù)發(fā)展。

1.2 甜菜渣轉(zhuǎn)化生物乙醇的不足

與其他木質(zhì)纖維素原料相比,甜菜渣果膠含量高達(dá)28%,果膠的大量存在使其具有更高強(qiáng)度的黏性和彈性[12],相鄰細(xì)胞黏接在一起,影響纖維素酶的作用效率。預(yù)處理階段果膠分解生成半乳糖醛酸及其衍生物,上述物質(zhì)的存在會(huì)對(duì)酶解與發(fā)酵產(chǎn)生抑制作用[13]。新鮮甜菜渣水分含量可達(dá)90%以上,處理不及時(shí)引起霉菌、酵母菌等微生物生長(zhǎng),導(dǎo)致甜菜渣腐敗。烘干是脫除甜菜渣水分的常用方法,規(guī)?;瘧?yīng)用時(shí)對(duì)設(shè)備和工藝都有較高要求。青貯也是存放甜菜渣的方法,但研究發(fā)現(xiàn)青貯過(guò)程中添加微生物抑制劑等會(huì)影響纖維素轉(zhuǎn)化乙醇的效 率[14]?;谔鸩嗽厥庑越⑾嚓P(guān)配套技術(shù)是開(kāi)發(fā)甜菜渣纖維素乙醇的前提。

2 甜菜及甜菜渣在生物乙醇中的應(yīng)用

2.1 甜菜在第一代生物乙醇中的應(yīng)用

第一代生物乙醇的生產(chǎn)原料主要是淀粉類(lèi)物質(zhì) (小麥、玉米、土豆和木薯) 和糖物質(zhì) (甘蔗汁和糖蜜),原料成本占乙醇生產(chǎn)總成本70%?80%[15]。美國(guó)和巴西已成功實(shí)現(xiàn)了第一代生物乙醇產(chǎn)業(yè)化,二者根據(jù)本國(guó)國(guó)情分別建立了以玉米和甘蔗糖為原料的生物乙醇生產(chǎn)線。巴西生產(chǎn)生物乙醇的原料,69%來(lái)自甘蔗和甜菜[16]。

甜菜富含蔗糖,在第一代生物乙醇中得到廣泛應(yīng)用。2005年,荷蘭首先利用甜菜蔗糖轉(zhuǎn)化制備乙醇[17];Dodi?等提出甜菜原汁生產(chǎn)乙醇的動(dòng)力學(xué)模型,對(duì)糖廠進(jìn)行改造,建立產(chǎn)糖與乙醇發(fā)酵生產(chǎn)線[18];Juan等開(kāi)發(fā)了甜菜原汁保存方法,結(jié)果表明23 ℃,蔗糖汁存放24周后,可用于發(fā)酵生產(chǎn)乙醇的蔗糖仍高達(dá)99%,為甜菜規(guī)?;a(chǎn)乙醇打下基礎(chǔ)[19]。以甜菜作為原料制取生物乙醇的效益日益得到大家的肯定。

2.2 甜菜渣在第二代生物乙醇中的應(yīng)用

第二代生物乙醇以農(nóng)林廢棄物為主要原料,采用酶解-發(fā)酵相結(jié)合的模式制備生物乙醇。纖維素乙醇的生產(chǎn)是一個(gè)復(fù)雜的過(guò)程:纖維素 (半纖維素) 首先酶解生成葡萄糖 (木糖和阿拉伯糖),微生物轉(zhuǎn)化單糖生成乙醇。據(jù)估計(jì),全球每年大約產(chǎn)生51億t (干重) 農(nóng)業(yè)廢棄物和501萬(wàn)t (干重) 林業(yè)廢棄物[20]。學(xué)者以第一代生物乙醇生產(chǎn)技術(shù)為基礎(chǔ),重點(diǎn)研究將農(nóng)林和市政廢棄物轉(zhuǎn)化為乙醇的第二代生物乙醇技術(shù)[21]。

加拿大的Iogen公司擁有先進(jìn)的纖維素乙醇制備技術(shù),早在1982年建立了纖維素乙醇中試裝置,每天能處理1萬(wàn)t木質(zhì)纖維素原料;2004年,建成商業(yè)銷(xiāo)售的纖維素乙醇示范工廠,隨著技術(shù)升級(jí),實(shí)現(xiàn)纖維素乙醇規(guī)模化生產(chǎn);2014年,Iogen公司在巴西開(kāi)展一個(gè)價(jià)值30億美元的纖維素乙醇項(xiàng)目,開(kāi)始建立商業(yè)化纖維素乙醇工廠[22]。瑞典獲得歐盟委員會(huì)5 460萬(wàn)歐元的撥款,建立了以造紙廢棄物為原料的纖維素乙醇生產(chǎn)企業(yè)[23]。美國(guó)能源部國(guó)家可再生能源實(shí)驗(yàn)室 (NREL) 開(kāi)展了多個(gè)纖維素乙醇生產(chǎn)項(xiàng)目[24]。中國(guó)山東澤生公司利用Chen等研究的秸稈纖維素固態(tài)酶解技術(shù),建立了年產(chǎn)3 000 t秸稈纖維素乙醇生產(chǎn)示范工程[25]。國(guó)際能源機(jī)構(gòu)指出,隨著研究的不斷深入纖維素乙醇將逐步取代傳統(tǒng)燃料,成為人類(lèi)賴以生存的新能源。

甜菜制糖和甜菜渣制纖維素乙醇的一體化現(xiàn)代制糖企業(yè)新模式,因甜菜渣獨(dú)特的優(yōu)越性,具有重要的應(yīng)用前景。工藝路線包括:甜菜蔗糖提取、固液分離、糖液濃縮制糖、甜菜渣干燥貯藏、甜菜渣預(yù)處理、甜菜渣纖維素酶解、單糖發(fā)酵和乙醇蒸餾等工藝。但目前上述研究仍多處于實(shí)驗(yàn)室研究階段。Foster等氨爆預(yù)處理甜菜渣,利用纖維素酶、半纖維素酶和果膠酶協(xié)同酶解,顯著提高纖維素的酶解率,但處理后半纖維素酶和果膠酶用量增加,表明氨爆處理促進(jìn)了纖維素的降解,對(duì)半纖維素和果膠的降解沒(méi)有作用[26]。Kühnel等考察了甜菜渣經(jīng)過(guò)不同預(yù)處理后酶解率差異,發(fā)現(xiàn)140 ℃水中熱處理15 min能夠溶解60% (/) 的總碳水化合物,顯著除去果膠,另一方面劇烈條件會(huì)破壞溶液中的糖,生成糖降解產(chǎn)物糠醛、羥甲基糠醛、乙酸和甲酸[12]。Zheng等研究發(fā)現(xiàn)青貯不僅可以實(shí)現(xiàn)甜菜渣貯藏,而且青貯期間破壞甜菜渣理化結(jié)構(gòu),促進(jìn)酶解[27]。甜菜渣為原料,采用基因工程菌株,同步糖化發(fā)酵乙醇。大腸埃希氏菌突變株M. KO11能有效轉(zhuǎn)化阿拉伯糖和半乳糖醛酸為乙醇[28]。Rorick等對(duì)比KO11和釀酒酵母H. YSC2轉(zhuǎn)化甜菜渣為乙醇的效率,分別得到乙醇產(chǎn)量0.144 g/g (乙醇/甜菜渣干重) 和0.092 g/g (乙醇/甜菜渣干重)[29]。Zheng等發(fā)現(xiàn)稀酸預(yù)處理雖然會(huì)生成發(fā)酵抑制物,但甜菜渣的乙醇產(chǎn)量仍會(huì)提高,甜菜渣所含蛋白質(zhì)量較少,不足以支持KO11生長(zhǎng),所以在發(fā)酵過(guò)程中需補(bǔ)充酵母提取物和蛋白胨[30]。Yücel等用樹(shù)干畢赤酵母P. 發(fā)酵甜菜渣的水解液生產(chǎn)乙醇,并利用活性炭吸附乙酸,解除發(fā)酵抑制[31]。Bellido等用拜氏梭菌D. 發(fā)酵甜菜渣酶解液生產(chǎn)丙酮-丁醇-乙醇,發(fā)現(xiàn)預(yù)處理時(shí)pH值和固液比對(duì)終產(chǎn)物產(chǎn)率影響較大[32]。

對(duì)甜菜渣進(jìn)行預(yù)處理是其制備纖維素乙醇必要的步驟,包括化學(xué)處理和生物處理等[33-34]。甜菜渣富含果膠,使其與農(nóng)業(yè)廢棄物、木材等其他木質(zhì)纖維素原料具有顯著不同的組成和結(jié)構(gòu)特征。基于甜菜渣建立新的預(yù)處理方法和酶解工藝是當(dāng)前研究的重要方面。生物法預(yù)處理是利用微生物或微生物產(chǎn)生的酶破壞生物質(zhì)結(jié)構(gòu)的方法。具有條件溫和、能耗低、抑制物少等優(yōu)點(diǎn)。但是生物預(yù)處理時(shí)間長(zhǎng)、效率低、不適宜工業(yè)應(yīng)用。本課題組以生物預(yù)處理為核心建立了組合預(yù)處理工藝,實(shí)驗(yàn)發(fā)現(xiàn)建立的汽爆耦合真菌協(xié)同預(yù)處理是一種有效組合預(yù)處理方法。汽爆破壞玉米秸稈的剛性結(jié)構(gòu),增大表面孔徑和孔隙,暴露纖維素結(jié)晶結(jié)構(gòu),提高真菌作用效率[35]。目前,我們正嘗試建立一種液氨低溫預(yù)浸協(xié)同硬毛粗蓋孔菌預(yù)處理甜菜渣的工藝[36],預(yù)處理過(guò)程條件相對(duì)溫和、發(fā)酵抑制物生成少、化學(xué)腐蝕性小、價(jià)格低,是預(yù)處理甜菜渣的理想方法。

2.3 甜菜渣在第三代生物乙醇中的應(yīng)用

第三代生物乙醇有兩種:一種是指以海藻油為原料生產(chǎn)乙醇,海藻培養(yǎng)和海藻油的萃取是核心步驟[37]。另一種通過(guò)現(xiàn)代分子生物學(xué)技術(shù)構(gòu)建基因工程菌株,將生物質(zhì)預(yù)處理,纖維素酶解,乙醇發(fā)酵通過(guò)同一微生物在單一的工藝步驟中實(shí)現(xiàn)[38-39]。第三代生物乙醇處于實(shí)驗(yàn)階段,能否成功開(kāi)發(fā)第三代生物乙醇,很大程度上取決于對(duì)纖維素分解菌新陳代謝的了解程度。這個(gè)生產(chǎn)系統(tǒng)包括了菌種代謝、基因重組、酶解反應(yīng)以及熱力學(xué)機(jī)制這些復(fù)雜過(guò)程。

研究改造乙醇生產(chǎn)菌株,使其可以集預(yù)處理、酶解及發(fā)酵為一體,是發(fā)展第三代生物乙醇的前提。Shahbazi等誘變里氏木霉S.,突變菌株NRCAM5能夠產(chǎn)生外切葡聚糖酶、內(nèi)切葡聚糖酶、纖維二糖脫氫酶等,這些酶共同作用,提高甜菜渣酶解糖化率[40]。Li等用紫外照射休哈塔假絲酵母B.&U.,獲得突變體Cs3512。Cs3512對(duì)生物質(zhì)進(jìn)行預(yù)處理,還可將葡萄糖和木糖轉(zhuǎn)化為乙醇[41]。Fernández-Sandoval等通過(guò)代謝工程,成功將MG1655改造為乙酸耐受菌株MS04用于生產(chǎn)乙醇[42]。Nakamura等重組,使其表達(dá)BGL基因,實(shí)現(xiàn)木糖/纖維二糖高效共發(fā)酵[43]。中糧集團(tuán)構(gòu)建的工程菌株424A (LNH-ST) 可以同時(shí)轉(zhuǎn)化六碳糖和五碳糖生成乙醇,總糖利用率超過(guò)85.0%,成功實(shí)現(xiàn)500 t/y的纖維素乙醇中試規(guī)模[44]。以甜菜渣為底物生產(chǎn)第三代生物乙醇研究較少,但上述乙醇生產(chǎn)菌株的成功改造,相信可以更好地發(fā)揮甜菜渣的優(yōu)越性。

3 甜菜渣組分分離及綜合利用

甜菜富含蔗糖、纖維素、半纖維素和果膠等。在建立甜菜制糖和甜菜渣制備纖維素乙醇一體化的基礎(chǔ)上,應(yīng)進(jìn)一步對(duì)甜菜其他組分進(jìn)行分離與利用。

圖1可知,甜菜渣中能夠獲得果膠、粗多糖、纖維、甲烷、丙二醇等多種物質(zhì)[45-46]。如甜菜渣中半乳糖醛酸和阿拉伯糖進(jìn)一步轉(zhuǎn)化為酰胺或增塑劑等高價(jià)值化學(xué)品或材料;乳酸還原生產(chǎn)丙二醇;酶解甜菜渣與酒糟混合生產(chǎn)甲烷[47-50]。Ward等從甜菜渣水解液中分離單糖,再將其轉(zhuǎn)化為更高價(jià)值的化學(xué)品和醫(yī)藥中間 體[51]。組分分離及綜合利用提高甜菜渣資源利用率的同時(shí)可以分擔(dān)乙醇生產(chǎn)成本,提高纖維素乙醇市場(chǎng)競(jìng)爭(zhēng)力,促進(jìn)產(chǎn)業(yè)化發(fā)展。

圖1 甜菜各組分及用途

4 展望

甜菜渣產(chǎn)量大,纖維素含量高,易于收集且成本低廉,是制備纖維素乙醇的理想原料。甜菜渣纖維素轉(zhuǎn)化制備乙醇的同時(shí),對(duì)甜菜渣其他組分進(jìn)行分級(jí)分離,各個(gè)組分的綜合利用,可以實(shí)現(xiàn)效益的最大化。甜菜渣轉(zhuǎn)化纖維素乙醇及組分綜合利用涉及原料預(yù)處理技術(shù)、纖維素酶解發(fā)酵技術(shù)、組分分離及轉(zhuǎn)化等。相關(guān)技術(shù)深入研究的同時(shí),應(yīng)進(jìn)一步開(kāi)展集成創(chuàng)新的工作,從工程層面實(shí)現(xiàn)各工藝的最優(yōu)。隨著新理論的提出與技術(shù)的革新,甜菜渣制備纖維素乙醇方面將會(huì)獲得更快發(fā)展。

REFERENCES

[1] Energy sugar beets to biofuel: field to fuel production system and cost estimates [EB/OL]. [2015-11-15]. http://ageconsearch.umn.edu/ bitstream/196777/2/P-Energy%20Beet-SAEA%202015.pdf.

[2] Youngs H, Somerville C. Best practices for biofuels. Science, 2014, 344(6188): 1095–1096.

[3] Ziemiński K, Romanowska I, Kowalska-Wentel M, et al. Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour Technol, 2014, 166: 187–193.

[4] Lennartsson PR, Erlandsson P, Taherzadeh MJ. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol, 2014, 165: 3–8.

[5] Biancardi E, Panella LW, Lewellen RT. Beta Maritima: the origin of beets. New York, NY: Oxford University Press, 2014: 4–6.

[6] McGrath JM, Townsend BJ. Sugar beet, energy beet, and industrial beet//Cruz VMV, Dierig DA, Eds. Industrial Crops. New York: Springer, 2015: 81–99.

[7] Cooke DA, Scott RK. The sugar beet crop. United Kingdom: Chapman & Hall, 1993: 3–7.

[8] Guo LL, Wang XY, Tao GC, et al. Assessment of field crop process residues production among different Provinces in China. J China Agric Univ, 2012, 17(6): 45–55 (in Chinese). 郭利磊, 王曉玉, 陶光燦, 等. 中國(guó)各省大田作物加工副產(chǎn)物資源量評(píng)估. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 17(6): 45–55.

[9] Leijdekkers AGM, Bink JPM, Geutjes S, et al. Enzymatic saccharification of sugar beet pulp for the production of galacturonic acid and arabinose; a study on the impact of the formation of recalcitrant oligosaccharides. Bioresour Technol, 2013, 128: 518–525.

[10] El-Naggar NEA, Deraz S, Khalil A. Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology, 2014, 13(1): 1–21.

[11] Henke S, Bubník Z, Hinková A, et al. Model of a sugar factory with bioethanol production in program Sugars?. J Food Eng, 2006, 77(3): 416–420.

[12] Kühnel S, Schols HA, Gruppen H. Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol Biofuels, 2011, 4: 14.

[13] Edwards MC, Doran-Peterson J. Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol, 2012, 95(3): 565–575.

[14] Dole?al P, Pyrochta V, Dole?al J. Effects of chemical preservative and pressing of ensiled sugar-beet pulp on the quality of fermentation process. Czech J Anim Sci, 2005, 50(12): 553–560.

[15] Taylor MP, Eley KL, Martin S, et al. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol, 2009, 27(7): 398–405.

[16] Jurado M, Prieto A, Martínez-Alcalá á, et al. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol, 2009, 100(24): 6378–6384.

[17] Carere CR, Sparling R, Cicek N, et al. Third generation biofuelsdirect cellulose fermentation. Int J Mol Sci, 2008, 9(7): 1342–1360.

[18] Dodi? JM, Vu?urovi? DG, Dodi? SN, et al. Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl Energy, 2012, 99: 192–197.

[19] Vargas-Ramirez JM, Haagenson DM, Pryor SW, et al. Determination of suitable storage conditions to preserve fermentable sugars in raw thick beet juice for ethanol production. Biomass Bioenergy, 2013, 59: 362–369.

[20] Ho DP, Ngo HH, Guo WS. A mini review on renewable sources for biofuel. Bioresour Technol, 2014, 169: 742–749.

[21] Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. Science, 2006, 311(5760): 484–489.

[22] IOGEN Corporation. History of Iogen [EB/OL]. [2015-11-15]. http://www.iogen.ca/about-iogen/ history. html.

[23] European Commission. State aid: Commission approves Swedish €55 million aid for ?Domsj?? R&D project [EB/OL]. [2015-11-15]. http://europa.eu/rapid/press-release_IP-11-67_en.htm?locale=en.

[24] National Renewable Energy Laboratory. Innovation for Our Energy Future. [EB/OL]. [2015-11-15]. http://www.nrel.gov/biomass/pdfs/ 40742.pdf.

[25] Chen HZ, Li GH. An industrial level system with nonisothermal simultaneous solid state saccharification, fermentation and separation for ethanol production. Biochem Eng J, 2013, 74: 121–126.

[26] Foster BL, Dale BE, Doran-Peterson JB. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol, 2001, 91(1/9): 269–282.

[27] Zheng Y, Yu CW, Cheng YS, et al. Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production. Appl Energy, 2012, 93: 168–175.

[28] Doran JB, Cripe J, Sutton M, et al. Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol//Finkelstein M, Davison BH, Eds. Twenty-First Symposium on Biotechnology for Fuels and Chemicals. United States: Humana Press, 2000: 141–152.

[29] Rorick R, Nahar N, Pryor S. Enzymatic hydrolysis and fermentation of sugar beet pulp. Amer Soc Agric Biol Eng, 2009, 5: 2975.

[30] Zheng Y, Lee C, Yu CW, et al. Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl Energy, 2013, 105: 1–7.

[31] Yücel HG, Aksu Z. Ethanol fermentation characteristics ofyeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel, 2015, 158: 793–799.

[32] Bellido C, Infante C, Coca M, et al. Efficient acetone-butanol-ethanol production byfrom sugar beet pulp. Bioresour Technol, 2015, 190: 332–338.

[33] Dhiman SS, Haw JR, Kalyani D, et al. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour Technol, 2015, 179: 50–57.

[34] Imman S, Arnthong J, Burapatana V, et al. Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw. Bioresour Technol, 2014, 171: 29–36.

[35] Li GH, Chen HZ. Synergistic mechanism of steam explosion combined with fungal treatment byfor the pretreatment of corn stalk. Biomass Bioenergy, 2014, 67: 1–7.

[36] Li GH, Li D, Yuan L. Enhanced enzymatic hydrolysis of lignocellulose by aqueous ammonium pretreatment combined with: CN, 201510120457.0 (in Chinese).李冠華, 李丹, 苑琳. 一種液氨低溫預(yù)浸協(xié)同硬毛粗蓋孔菌預(yù)處理提高木質(zhì)纖維素生物質(zhì)酶解率的方法. 中國(guó), 201510120457.0.

[37] Goh CS, Lee KT. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable Sustainable Energy Rev, 2010, 14(2): 842–848.

[38] Langeveld JWA, van de Ven GWJ, De Vries SC, et al. Ethanol from sugar beet in the Netherlands: energy production and efficiency. Int J Sustain Dev, 2014, 17(1): 78–88.

[39] Kracher D, Oros D, Yao WY, et al. Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J, 2014, 9(4): 483–492.

[40] Shahbazi S, Askari H, Naseripour T. Enzymatic saccharification of sugar beet pulp by novel mutants ofNRCAM 5 for bioethanol production. Int J Agric Crop Sci, 2014, 7(15): 1560–1569.

[41] Li Y, Park JY, Shiroma R, et al. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain ofATCC 22984. Appl Biochem Biotechnol, 2012, 166(7): 1781–1790.

[42] Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, et al. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenicunder non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol, 2012, 96(5): 1291–1300.

[43] Nakamura N, Yamada R, Katahira S, et al. Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilatingvia expression of β-glucosidase on its cell surface. Enzyme Microb Technol, 2008, 43(3): 233–236.

[44] Yue GJ, Wu GQ, Lin X. Insights into engineering of cellulosic ethanol. Chin J Biotech, 2014, 30(6): 816–827 (in Chinese). 岳國(guó)慶, 武國(guó)慶, 林鑫. 纖維素乙醇工程化探討. 生物工程學(xué)報(bào), 2014, 30(6): 816-827.

[45] Ziemiński K, Kowalska-Wentel M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour Technol, 2015, 180: 274–280.

[46] Berlowska J, Binczarski M, Dudkiewicz M, et al. A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp. RSC Adv, 2015, 5(3): 2299–2304.

[47] Li DQ, Du GM, Jing WW, et al. Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohydr Polym, 2015, 129: 108–114.

[48] Yapo BM, Robert C, Etienne I, et al. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem, 2007, 100(4): 1356–1364.

[49] Li M, Wang LJ, Li D, et al. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym, 2014, 102: 136–143.

[50] Chen HM, Fu X, Luo ZG. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem, 2015, 168: 302–310.

[51] Ward DP, Cárdenas-Fernández M, Hewitson P, et al. Centrifugal partition chromatography in a biorefinery context: separation of monosaccharides from hydrolysed sugar beet pulp. J Chromatogr A, 2015, 1411: 84–91.

Progress on cellulosic ethanol produced from beet pulp

Dan Li, Lin Yuan, Meng Li, and Guanhua Li

School of Life Sciences, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China

Cellulosic ethanol, with the advantages of renewable resource, cleanliness and safety, is the mainstream of new energy development and has obtained extensive attention worldwide. In this review, the biological characteristics of beets were introduced, and then the superiority and application progress of beets and its by-product sugar beet pulp in the bioethanol production were stated. At last, cellulosic ethanol production coupled with the component separation and comprehensive utilization of beet pulp was proposed.

bioenergy, cellulosic ethanol, sugar beet pulp, fractionation

September 10, 2015; Accepted: December 21, 2015

綜 述

李丹, 苑琳, 李猛, 等. 甜菜渣纖維素乙醇研究進(jìn)展與展望. 生物工程學(xué)報(bào), 2016, 32(7): 880–888.

Li D, Yuan L, Li M, et al. Progress on cellulosic ethanol produced from beet pulp. Chin J Biotech, 2016, 32(7): 880–888.

Supported by: Desconstruction of Recalcitrance to Enzymatic Hydrolysis of Sugar-beet Pulp: Technology and Mechanism (No. 2015BS0201), Solid State Fermentation of Cellulase (No. 21400-5145138).

Corresponding author: Guanhua Li. Tel/Fax: +86-471-4992476; E-mail: liguanhua1984@126.com

內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目 (No. 2015BS0201),內(nèi)蒙古大學(xué)2014年博士引進(jìn)科研啟動(dòng)經(jīng)費(fèi) (No. 21400-5145138) 資助。

網(wǎng)絡(luò)出版時(shí)間:2016-01-07 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20160107.1444.002.html

(本文責(zé)編 陳宏宇)

猜你喜歡
甜菜纖維素預(yù)處理
求解奇異線性系統(tǒng)的右預(yù)處理MINRES 方法
纖維素基多孔相變復(fù)合材料研究
纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
辣椒甜菜,各有所愛(ài)
基于近紅外技術(shù)的苧麻葉半纖維素、纖維素、木質(zhì)素及Cd含量快速測(cè)定
基于預(yù)處理MUSIC算法的分布式陣列DOA估計(jì)
新疆產(chǎn)區(qū)有機(jī)甜菜栽培技術(shù)探討
專用肥與種植密度對(duì)甜菜的影響
淺談PLC在預(yù)處理生產(chǎn)線自動(dòng)化改造中的應(yīng)用
基于膜過(guò)濾的反滲透海水淡化預(yù)處理