吳慈航,張 超,王鑫海,朱燕燕,李 爽,,邱介山
(1.西北大學(xué) 化工學(xué)院,西安 710069; 2.大連理工大學(xué) 化工學(xué)院,遼寧 大連 116024;3.長(zhǎng)慶油田分公司第一采油廠,陜西 延安 716000)
?
N摻雜功能炭材料的合成、結(jié)構(gòu)與性能*
吳慈航1,張超1,王鑫海3,朱燕燕1,李爽1,2,邱介山2
(1.西北大學(xué) 化工學(xué)院,西安 710069; 2.大連理工大學(xué) 化工學(xué)院,遼寧 大連 116024;3.長(zhǎng)慶油田分公司第一采油廠,陜西 延安 716000)
基于氮摻雜的技術(shù)策略,可以實(shí)現(xiàn)對(duì)炭材料之結(jié)構(gòu)和性能的調(diào)變,進(jìn)而創(chuàng)制出功能獨(dú)特的炭材料。本文介紹N-摻雜功能炭材料的合成機(jī)理、主要技術(shù)方法及其結(jié)構(gòu)與性能,并對(duì)這一技術(shù)領(lǐng)域的發(fā)展趨勢(shì)進(jìn)行展望。
氮摻雜功能炭材料;機(jī)理;合成方法;性能
炭材料以其良好的表面化學(xué)性質(zhì)、優(yōu)良的機(jī)械穩(wěn)定性、豐富的孔道及優(yōu)異的導(dǎo)電性等特點(diǎn),在催化、儲(chǔ)氫、分離和吸附、超級(jí)電容器、燃料電池等方面表現(xiàn)出了巨大優(yōu)勢(shì)和潛力[1]。通過對(duì)表面和結(jié)構(gòu)的改性使炭材料獲得獨(dú)特性能是近年來的研究熱點(diǎn)之一,尤其是對(duì)炭材料摻N以獲得更優(yōu)異的電化學(xué)、催化和吸附性能。
氮具有與碳相似的原子半徑,炭材料中摻N后,N原子使六邊形的碳網(wǎng)絡(luò)局部結(jié)構(gòu)改變,并為sp2雜化的碳骨架中的π電子對(duì)提供電子[2],增加了碳的n-型導(dǎo)電性,改善了炭材料的表面物理化學(xué)性質(zhì)(如表面積[3]、親水性[4]、孔徑及分布[5]等)和導(dǎo)電性[6],使其在超級(jí)電容器[7]、燃料電池[8]、催化劑[9]、吸附材料[10]等方面的應(yīng)用成為可能。本文總結(jié)了近年來N摻雜功能炭材料的合成機(jī)理、合成路線及方法以及材料性能,并展望了未來發(fā)展趨勢(shì)。
關(guān)于N摻雜功能炭材料的合成機(jī)理,目前學(xué)界普遍認(rèn)為:低溫條件下(<600℃),N在炭材料表面形成含氮官能團(tuán),即化學(xué)氮,如氰基(a)、氨基(b)和硝基等;化學(xué)氮不參與C骨架的形成,以官能團(tuán)的形式存在。圖1反映了在NH3氣氛中由粒狀瀝青制得的N摻雜活性炭表面基團(tuán)的變化。
圖1 化學(xué)氮在炭材料表面的可能形成途徑[11]
Fig 1 Proposed formation routes of the chemical-bonded N on the surface of carbon materials[11]
結(jié)果表明,炭材料的表面含氧基團(tuán),如羧基、羥基等與NH3反應(yīng)生成氰基(a)、氨基(b)等含氮基團(tuán)[11]。
中溫條件下(600~800℃),N參與碳骨架中的形成,以吡咯氮(a)、吡啶氮(e)、石墨氮(h)等結(jié)構(gòu)氮形式存在。如圖2(1)給出了N進(jìn)入碳骨架的示意圖,羥基吡啶(b)、吡啶鹽(c)和吡啶氮氧化物(d)首先被轉(zhuǎn)化成吡啶氮(e),繼而生成中間物(f),而吡咯氮(a)可直接轉(zhuǎn)化中間物(f)。中間物發(fā)生聚合反應(yīng),生成的最終產(chǎn)物中N或取代碳原子形成位于石墨烯層的表面的吡啶氮(g),或形成位于石墨烯層內(nèi)部的石墨氮(h),或形成吡啶氮的氧化物(i)[12]。圖2(2)給出了煤熱解過程中N進(jìn)入C 骨架的過程。在NH3的處理下,環(huán)氧基團(tuán)也可發(fā)生取代反應(yīng),進(jìn)而生成吡啶(j)或吖啶類(k)結(jié)構(gòu)。
圖2 N進(jìn)入炭材料骨架過程示意圖[12]
Fig 2 Schematic diagram of the evolution of N functionalties in the frameworks of carbon materials[12]
高溫下的轉(zhuǎn)化機(jī)理,Zhang[13]等認(rèn)為900℃時(shí)吡咯氮(a)完全轉(zhuǎn)化為吡啶氮(b)和石墨氮(c),石墨氮占含氮官能團(tuán)總量57%。繼續(xù)升溫至1 200℃,石墨氮部分轉(zhuǎn)化為吡啶氮(b)和羥基吡啶(d),石墨層結(jié)構(gòu)被破壞,此時(shí)吡啶氮(b)占主導(dǎo)地位,其含量為59%。在整個(gè)轉(zhuǎn)化過程中,氧化含氮官能團(tuán)含量基本維持恒定。圖3給出了高溫下含氮官能團(tuán)的轉(zhuǎn)化歷程。
N摻雜進(jìn)入炭材料,即可形成化學(xué)氮或結(jié)構(gòu)氮,且化學(xué)氮可以轉(zhuǎn)化為結(jié)構(gòu)氮。Su課題組[14]認(rèn)為在較高溫時(shí),NH3和表面的羧酸反應(yīng)先生成酰胺類中間體,隨后酰胺類中間體生成含氮氧化物(c,e)。溫度越高,進(jìn)入炭骨架的氮原子(結(jié)構(gòu)氮)個(gè)數(shù)越多。經(jīng)過中溫處理后,(c,e)分別發(fā)生脫羰基或脫水反應(yīng),形成更穩(wěn)定的雜環(huán)芳香化合物吡咯(g)和吡啶(f)。但當(dāng)摻N處理溫度達(dá)到600℃以上時(shí),炭材料表面含氮官能團(tuán)傾熱解,導(dǎo)致炭材料中氮含量下降,圖4給出了化學(xué)氮可以轉(zhuǎn)化為結(jié)構(gòu)氮的歷程。
圖3 含氮官能團(tuán)在高溫下的轉(zhuǎn)化歷程[13]
Fig 3 Proposed conversion routs of N-containing functionalities under high temperature[13]
圖4化學(xué)氮轉(zhuǎn)化為結(jié)構(gòu)氮的反應(yīng)歷程[14]
Fig 4 Proposed conversion routs of chemical-bonded N into framework N[14]
化學(xué)氮不僅能轉(zhuǎn)化為結(jié)構(gòu)氮,而且兩者可能同時(shí)存在,如同時(shí)存在于石墨烯中[15]。石墨烯的N原子有五種鍵合類型,如圖5所示。吡咯氮(a)帶有兩個(gè)p電子并與π鍵體系共軛的氮原子,酸性條件下材料中含有的吡啶氮原子越多,對(duì)O2還原反應(yīng)的催化效果越好[16];氨基氮(b)是與石墨表面的碳原子相連的氨基中的氮原子;石墨氮(c)與石墨碳骨架中3個(gè)碳原子相連,又被稱為“四位氮”[17];吡啶氮(d)的孤對(duì)電子既在O2還原反應(yīng)中吸附氧分子及其中間體,使得炭材料具有了Lewis堿的性質(zhì),又為共軛π鍵體系提供了一個(gè)電子,與石墨表面結(jié)構(gòu)中兩個(gè)碳原子連接形成六元環(huán);氧化吡啶氮(e)與石墨烯表面結(jié)構(gòu)中的兩個(gè)碳原子相連并被氧原子奪去一個(gè)電子的氮原子。
圖5 N在石墨烯中的5種鍵合類型[15]
Fig 5 The existed 5 bonding types of N in graphene[15]
N摻雜功能炭材料的特定性質(zhì)受炭材料中N的影響[18],而N的位置、種類、數(shù)量等與合成過程中的前驅(qū)體、材料本身、合成工藝、處理手段等密不可分。前人對(duì)N摻雜功能炭材料的制備方法已做了詳盡的總結(jié)[19],目前合成N摻雜功能炭材料方法主要有兩大類:(1)“直接合成法”,即“原位”摻 N法,將含氮碳源熱解得到N摻雜功能炭材料,其結(jié)構(gòu)氮含量較多;(2)“后處理法”,也叫“間接合成法”,即用含 N 前驅(qū)體(如 NH3、雙嘧啶、乙腈)對(duì)合成的炭材料進(jìn)行后處理,其化學(xué)氮含量較多。
2.1原位合成法
原位合成法以含氮物質(zhì)作為前驅(qū)體,在合成炭材料的同時(shí)將氮引入,氮主要以結(jié)構(gòu)氮的形式存在,炭材料形態(tài)主要為碳納米管(carbon nanotubes)、碳納米纖維(carbon nanofibers)和碳干凝膠(carbon xerogels)、碳量子點(diǎn)(carbon quantum dots)等。原位合成法包含活化法、模板法、溶膠-凝膠法、化學(xué)氣相沉積法等。
2.1.1活化法
活化法分為化學(xué)活化法和物理活化法。有研究者認(rèn)為,物理活化法對(duì)改善孔道結(jié)構(gòu)有一定作用[20]。Masinga[21]等用微波加熱作為輔助手段對(duì)含N碳納米管和β納環(huán)糊精聚合物進(jìn)行物理活化,結(jié)果表明,經(jīng)物理活化后的聚合物具有更大的比表面積(如圖6所示),且表面形貌改變較大,該材料可用于水污染處理。
圖6常規(guī)方法和微波活化法合成N摻雜碳納米管與β環(huán)糊精聚合物的表面形貌[21]
Fig 6 SEM images of the N-containing polymer nanocomposites synthesized by the conventional method and microwave method[21]
化學(xué)活化法用活化物質(zhì)(活化劑),如KOH[20]、K2CO3[22]、ZnCl2[23]、H3PO4[24]、水蒸氣[25](又稱水熱法)等,在高溫下直接與原料反應(yīng),在原料的表面造孔,活化后的孔隙結(jié)構(gòu)表現(xiàn)出了良好的吸附性能。其中,KOH造孔效率最高[20],也較為常用。為使N摻雜微孔炭材料的大范圍應(yīng)用成為可能,Liu等[10]將廉價(jià)易得的脲醛樹脂前驅(qū)體以1∶4的比例與KOH混合后,以5℃/min的升溫速率從500℃升溫至800℃,得到了具有微孔結(jié)構(gòu)(<0.8 nm)和高N含量(13.87%,質(zhì)量分?jǐn)?shù))的堿性N摻雜石墨型炭材料,可作為吸附CO2的優(yōu)良材料。Kim等[4]將KOH與碳纖維反應(yīng)得到活性炭,繼續(xù)與尿素固相反應(yīng),引入親水性的含氮官能團(tuán)。結(jié)果表明,由尿素處理過的生物傳感電極比未處理材料的靈敏度要高出2~3倍。Jiang[26]用水蒸氣為活化劑合成了N摻雜碳量子點(diǎn)。由于其表面的含氧官能團(tuán)能與Fe3+螯合,在一定范圍濃度內(nèi)可作為檢測(cè)Fe3+的探針,其合成方法如圖7所示。
Qiu課題組[27]以葡萄糖胺為前驅(qū)體,氧化石墨烯(GO)作為添加劑,在水蒸氣介質(zhì)中制得可用作超級(jí)電容器的N摻雜功能炭材料。在常規(guī)水熱法中,羥甲基糠醛的聚合反應(yīng)為主要反應(yīng)(如圖8(a)所示),添加GO后GO可直接與NH3反應(yīng)(如圖8(b)所示),使材料中N含量增加2.5倍,并將N的存在形式由吡啶氮、吡咯氮和石墨氮改變?yōu)檫拎さ⑦量┑桶被?/p>
圖7 N摻雜碳量子點(diǎn)的合成路線[26]
圖8 經(jīng)石墨烯修飾的N摻雜功能炭材料的合成機(jī)理[27]
2.1.2模板法
模板法是合成N摻雜功能炭材料中使用最廣泛的方法之一,根據(jù)模板劑本身的形態(tài)與結(jié)構(gòu)的不同,分為硬模板法和軟模板法[28]。硬模板法主要是以結(jié)構(gòu)剛性的物質(zhì)作為空間填充物,如炭材料或無機(jī)粒子等。理想狀態(tài)下,除去“硬”模板后產(chǎn)生的孔隙可保持原有模板的結(jié)構(gòu)。硬模板法可實(shí)現(xiàn)對(duì)所得炭材料孔結(jié)構(gòu)和形貌的控制,使N原子均勻摻雜至C的骨架中,因此被廣泛應(yīng)用。常見的模板劑為有序介孔SiO2模板及硅鋁酸鹽物質(zhì),其中SBA-15模板劑[29]最為常見。軟模板法主要是利用氫鍵、親/疏水作用力或離子配位作用力構(gòu)筑分子或其聚集體,如表面活性劑等。軟模板法雖操作方便,但所合成材料的N含量較低[30]。通常來說,構(gòu)成C骨架的物質(zhì)和“軟”模板劑之間較強(qiáng)的相互作用力可使模板劑和C骨架物質(zhì)發(fā)生自組裝過程,形成新型N摻雜功能炭材料。值得注意的是,軟模板法作為1種方法,其合成路徑通常需要水熱合成得以實(shí)現(xiàn)。
前人對(duì)模板法制備N摻雜炭材料已較全面[31]。近期Wang等[3]以煤焦油為原料,三聚氰胺為氮源,利用介孔結(jié)構(gòu)的硬模板劑MgO合成了N摻雜介孔碳納米薄膜。結(jié)果表明,隨著炭化溫度升高,材料石墨化程度增加,缺陷減少,結(jié)構(gòu)更規(guī)整。Liang等[32]對(duì)傳統(tǒng)軟模板法做出改進(jìn),發(fā)現(xiàn)以乙氧基硅烷為軟模板,幾丁聚糖作碳源和氮源時(shí),添加物Ni(NO3)2可促進(jìn)無定形碳向石墨碳的轉(zhuǎn)化,改進(jìn)后所合成出的N摻雜介孔炭材料具有超級(jí)電容器電極材料和電化學(xué)催化劑的雙功能。
近年來,研究人員相繼報(bào)道了模板法與化學(xué)活化法結(jié)合制備N摻雜功能炭材料的方法,圖9總結(jié)了主要制備路線:原料(氮源和碳源)均勻混合后(部分實(shí)驗(yàn)加入添加劑),形成溶液或溶膠,經(jīng)聚合反應(yīng)生成樹脂繼續(xù)炭化即形成N摻雜介孔炭材料(N-doped mesoporous carbon,NMC),利用活化劑的造孔可得到具有多級(jí)結(jié)構(gòu)的N摻雜多孔炭材料(N-doped hiererchically porous carbon)。Zhou[33]、Wang[34]兩位研究者分別以間氨基苯酚和三聚氰胺福爾馬林混合溶液為原料,以納米SiO2和F127為模板劑,加熱聚合生成樹脂,經(jīng)炭化形成的NMC可作為活化后形成NHPC的原料。
圖9模板法和活化法結(jié)合生成N摻雜功能炭材料流程圖[33-34]
Fig 9 General synthesis route of N-doped carbon materials prepared by combinational method[33-34]
2.1.3溶膠-凝膠法
溶膠-凝膠法通常使用金屬醇鹽或無機(jī)物鹽類、配合物、氫氧化物等作前驅(qū)物并摻入氮源,通過水解或醇解反應(yīng),生成溶膠體系,經(jīng)陳化、聚合,將所得凝膠干燥、焙燒得到最終材料。此法雖簡(jiǎn)單易行,但原料價(jià)格較高。Li[35]以蝦殼為原料(富含幾丁質(zhì)),先與KOH回流移除絕大多數(shù)的蛋白質(zhì),然后用鹽酸洗滌回流后的產(chǎn)物以除去礦物鹽,其后再在KOH溶液中徹底除去殘余的蛋白質(zhì)。經(jīng)過NaCl溶液處理除去色素后,利用冷凍-干燥法得到幾丁質(zhì)氣凝膠,并在900℃下煅燒得到具有微孔-介孔雙孔結(jié)構(gòu)的N摻雜碳纖維凝膠,其氮含量可達(dá)5.9%(質(zhì)量分?jǐn)?shù))。 Rasines[36]等以苯二酚—福爾馬林—三聚氰胺混合溶液為前驅(qū)物,經(jīng)聚合(形成凝膠)、老化、炭化等步驟制得了N摻雜碳凝膠單體。研究表明,pH值對(duì)N的存在形式有較大影響,在pH值為6時(shí),石墨氮含量較高;在pH值為8時(shí),吡咯氮含量增加,石墨氮的含量相應(yīng)減少。
2.1.4化學(xué)氣相沉積法(CVD)
化學(xué)氣相沉積法(CVD)是利用表面高溫反應(yīng)將氣/汽態(tài)N源沉積在炭材料表面的方法,該方法沉積速度快,但由于其反應(yīng)溫度通常大于800℃,使炭材料的機(jī)械性能有所降低。CVD法起源于上世紀(jì)60年代,早期用于制備高純度、高性能的固體材料。近些年來,各種納米材料,尤其是碳納米管的制備進(jìn)一步推動(dòng)了CVD法的發(fā)展[37]。在CVD法中,氮源物質(zhì)以乙腈和乙二胺較為常用。Kang[38]課題組以乙腈作為碳源和氮源,在銅的表面制得N摻雜多晶碳薄膜,由于N原子sp2雜化軌道的孤對(duì)電子可起到供電子作用,增強(qiáng)了電導(dǎo)性,因此該材料可用作太陽能電池的材料,其合成路線如圖10所示。Sánchez等[39]認(rèn)為影響N摻雜介孔炭材料的孔隙結(jié)構(gòu)和表面化學(xué)性能的主要因素是C在混合物中的含量,而與乙腈的濃度無關(guān)。金屬的引入可以改善材料的性質(zhì),Pacula研究團(tuán)隊(duì)[40]將乙腈在700℃與含Co水滑石反應(yīng),經(jīng)冷卻、酸洗等得到N摻雜功能炭材料。研究表明,Co可促進(jìn)碳納米管的生成,使多孔炭結(jié)構(gòu)更加有序,但降低了炭材料的比表面積和電容性。Zhang等[41]用鈦酸鈉為鈦源,乙二胺蒸汽為原料,制得了尖晶石型鈦酸鋰N摻雜功能炭材料,由于N及氮化鈦的均勻分布,因此,材料導(dǎo)電性的增加,具有良好的循環(huán)穩(wěn)定性和倍率性能。
圖10N摻雜薄膜的生成機(jī)理示意圖[38]
Fig 10 Proposed mechanism of the formation of N-doped carbon film[38]
2.2后處理法
表1不同原料氨解后的摻N量
Table 1 N content after amination of different raw materials
原料纖維素[42]粉末[43]纖維[43]CNT[44]N/%10.3a10b12b1.7a
注:a:at%,b:wt%
電負(fù)性較強(qiáng)的N進(jìn)入C—C鍵位置的不同(吡啶氮、吡咯氮、石墨氮)及含N官能團(tuán)類型的差異(氰基、氨基、硝基等),改變了材料的電子結(jié)構(gòu),因此對(duì)材料物理化學(xué)性質(zhì),如導(dǎo)電性能、催化性能、電荷存儲(chǔ)性能、機(jī)械性能等有較大影響。常見應(yīng)用有儲(chǔ)氫、超級(jí)電容器、催化劑、傳感器、吸附材料等。
3.1儲(chǔ)氫
與常規(guī)炭材料相比,電負(fù)性較強(qiáng)的N原子吸引周邊的C原子上的電子,使C原子處于缺電子狀態(tài),H2將其電子轉(zhuǎn)移至N周圍處于缺電子狀態(tài)的C后可處于穩(wěn)定狀態(tài),因此N摻雜功能炭材料以其獨(dú)特的物理、化學(xué)性質(zhì)作為儲(chǔ)氫的材料,對(duì)高效、環(huán)保的利用氫能具有重要意義[46]。1種聚苯胺碳納米管[47]在-196℃、5 MPa的條件下對(duì)氫氣的吸附量可達(dá)5.2%(質(zhì)量分?jǐn)?shù))。K.Kang等[46]認(rèn)為氨解溫度的增加有利于提高N摻雜碳凝膠(間苯二酚和甲醛的聚合物)對(duì)H2的吸附量,且950℃時(shí),材料對(duì)H2的吸附可達(dá)3.24%(質(zhì)量分?jǐn)?shù)),大于同溫度下常規(guī)炭材料的吸附量(1.88%,質(zhì)量分?jǐn)?shù))。Badzian[48]等以柔性石墨為原料,利用微波等離子體氣相沉積法使惰性的N2變?yōu)榛罨癄顟B(tài),制得N摻雜碳納米材料。研究表明N的存在對(duì)碳納米結(jié)構(gòu)的生成具有促進(jìn)作用,且N進(jìn)入炭材料石墨網(wǎng)絡(luò)結(jié)構(gòu)中形成的活性位點(diǎn)對(duì)氫氣吸附有重要影響。Chen等[49]以三聚氰胺為原料,在熱解過程中以FeCl3為催化劑得到竹型N摻雜碳納米管。研究表明該材料在室溫下對(duì)氫氣的吸附量較高,可達(dá)到0.17%(質(zhì)量分?jǐn)?shù))。
3.2超級(jí)電容器(super capacitor)
電化學(xué)電容器以其優(yōu)異的倍率性能可短時(shí)間內(nèi)釋放的大量電能,具有廣闊前景。較大的比表面積[50]、良好電導(dǎo)性[51]和較低的成本的N摻雜功能炭材料是雙電層電極(Electrical double layer electrodes)的潛力材料[52]。
在以沸石咪唑酯骨架(zeolitic imidazolate frameworks)為氮源、蔗糖為碳源的多孔球形N摻雜功能炭材料中,微孔-介孔復(fù)合孔道結(jié)構(gòu)使得離子的傳輸速率更快,并有利于電解液在電極的分散。因此,該材料具有較高單位電容,在6 mol/L KOH溶液,0.1 A/g的電流密度下,其數(shù)值可達(dá)285.8 F/g[53]。以生物半焦為原料,經(jīng)水熱、炭化、KOH活化制備的N摻雜功能炭材料在0.05 A/g下的能量密度和功率密度分別達(dá)到12和24.6 W/kg[52]。蘭州化物所的研究人員為了進(jìn)一步提高不對(duì)稱電容器的體積能量密度,提出采用高密度的氮化釩材料替代低密度的多孔炭材料的思路,并開發(fā)出了高體積密度氮化釩-氫氧化鈷水系不對(duì)稱電容器[54]。此外,以煤焦油瀝青和三聚氰胺共炭化制得的N摻雜炭材料在質(zhì)量比為5∶1時(shí)的比表面積高達(dá)2 573 m2/g,電容和電流密度可分別達(dá)228 F/g和1 A/g,在1 000次循環(huán)后其比電容仍保持為原來的94.2%,顯示出良好的循環(huán)能力,是超級(jí)電容器的潛力材料[55]。近來,以石墨烯為載體的N摻雜功能炭材料在儲(chǔ)能方面的應(yīng)用受到研究者的廣泛關(guān)注。Sari[56]等在微波輔助的條件下通過水熱法將氧化石墨(GO)還原為N摻雜石墨烯,其具有較高的能量密度(42.8 Wh/kg),且雙電層電容值可達(dá)241.7 F/g,較未摻雜N的RGO提高54%,循環(huán)使用1 000次后僅有2%的效率損失。Ma[57]等用混酸處理的瀝青和氧化石墨為前驅(qū)體,通過引入含氧及含氮官能團(tuán)改變了材料的表面潤(rùn)濕性,所合成的微孔—介孔復(fù)合結(jié)構(gòu)N摻雜石墨烯具有較高的比表面積(2 196 m2/g)和比電容(296 F/g),可作為超級(jí)電容器的新型電極材料。
吡咯氮、吡啶氮及石墨氮的存在形式對(duì)超級(jí)電容器的電學(xué)性質(zhì)影響較大。Zhou等[33]認(rèn)為指出吡啶氮、吡咯氮增強(qiáng)了材料的法拉第贗電容,而石墨氮?jiǎng)t增強(qiáng)了材料的導(dǎo)電能力,隨活化溫度的上升,石墨氮含量增加,材料的內(nèi)電阻降低。Yen等[58]在前人的基礎(chǔ)上研究表明,吡啶氮具有最大的離子結(jié)合能,可使負(fù)載電極的表面具有更多離子,增強(qiáng)了材料的電容能力,實(shí)驗(yàn)條件下比電容值可達(dá)991.6 F/g。Li等[59]研究發(fā)現(xiàn),吡啶氮和吡咯氮的摻入增加了材料在充放電過程中的離子活性位,增強(qiáng)了材料在電解液中的親水性,改善了電極與電解液相界面間離子傳輸環(huán)境,提高了離子傳輸效率和速率,從而強(qiáng)化了材料的電容能力。
3.3催化劑
聚合物電解質(zhì)膜燃料電池(PEMFC)以其高效率和低排放被認(rèn)為是具有廣闊前景的能量轉(zhuǎn)換裝置。商用PEMFC使用Pt/C作為電極反應(yīng)的催化劑,由于Pt成本較高,且循環(huán)利用性較差、表面分布不規(guī)整,1種廉價(jià)、高效的新型的催化劑呼之欲出,N摻雜功能炭材料恰迎合這一需求,不僅價(jià)格低廉,且表面較規(guī)整。
1種以多壁碳納米管為原料,經(jīng)水熱法合成,由N摻雜炭量子點(diǎn)修飾的新型多壁碳納米管可作為Pt催化劑的優(yōu)良載體,N的摻雜改善了多壁碳納米管的分布,使Pt更加規(guī)整,其對(duì)于甲醇的電氧化反應(yīng)催化活性是常規(guī)Pt催化劑的2.3倍[60]。Shi[61]等報(bào)道了由N、S、Co共同摻雜的介孔炭材料,在酸性條件下半波電位達(dá)到0.68 V,顯示了很強(qiáng)的氧化還原能力。當(dāng)N、S、Co總負(fù)載量為800 μg/cm2時(shí),其電極反應(yīng)催化能力與商用Pt/C催化劑接近(4.24 mA/cm2)。Tao[62]等以尿素為氮源,SiO2為硬模板劑,合成具有介孔-大孔復(fù)合孔道結(jié)構(gòu)的N摻雜功能炭材料的電流密度達(dá)到了4.14 mA/cm2,且該材料穩(wěn)定性較好,對(duì)燃料滲透作用有很好的抵抗性,可用作燃料電池陰極催化劑。近來,1種新型的兩步納米鑄造法合成的N摻雜介孔炭材料對(duì)催化O2還原為H2O2的反應(yīng)具有較強(qiáng)活性。該材料擁有高的比表面積,其晶格結(jié)構(gòu)表現(xiàn)了良好的石墨特性,在最優(yōu)條件下氧化還原的動(dòng)力學(xué)電流密度大于前人所報(bào)道的N摻雜功能炭材料,且易于大規(guī)模生產(chǎn)[63]。馬等[64]以改良Hummers法制備的氧化石墨烯(GO)為原料,尿素為氮源,在高溫下利用2-4-6三硝基苯酚(PA)的爆炸反應(yīng)實(shí)現(xiàn)對(duì)GO的還原及原位摻氮,所制備N摻雜還原石墨烯(N-RGO)可將氧氣還原反應(yīng)的極限擴(kuò)散電流增加近一倍(0.24~0.49 mA),有望代替昂貴的鉑基催化劑,作為燃料電池陰極氧氣還原催化劑。此外,N摻雜功能炭材料作為優(yōu)良載體在催化反應(yīng)中也有不俗的表現(xiàn)。Zhang[65]等以沸石咪唑酯骨架(ZIF-8)為前驅(qū)體,高溫炭化生成N摻雜多孔炭,以其為載體負(fù)載Pd用于Suzuki偶聯(lián)反應(yīng)。研究表明,N的電子親和勢(shì)可提高其載體負(fù)載貴金屬的穩(wěn)定性,有利催化效率的提高,0.5 h內(nèi)硝基溴苯和苯基硼酸的轉(zhuǎn)化率可達(dá)99%,連續(xù)使用6次未見失活。Li[66]等利用硝酸處理的N摻雜碳納米管負(fù)載Fe,研究其在費(fèi)托合成反應(yīng)中的催化性能,結(jié)果表明硝酸的處理增加了載體表面含氧官能團(tuán)的數(shù)量,減少了催化劑中雜質(zhì)炭及無定形炭的數(shù)量,增強(qiáng)了N-CNT的規(guī)整程度,進(jìn)而有利于反應(yīng)物與活性中心間的電子轉(zhuǎn)移。
3.4傳感器
N的摻雜改變了納米炭材料的物理和化學(xué)性質(zhì),在傳感器中,也有較為廣泛的應(yīng)用,如對(duì)離子、有毒氣體的檢測(cè)。在生物領(lǐng)域,對(duì)酶?jìng)鞲衅鱗4]以及無酶過氧化氫傳感器[67]等的報(bào)道也逐漸受到關(guān)注。前文所述的碳量子點(diǎn)作為傳感器對(duì)Fe3+的檢測(cè)具有很強(qiáng)的靈敏性及選擇性[26]。Villalpando-Páez等[68]合成的N摻雜碳納米管中的吡啶N增強(qiáng)了其與氣體分子的相互作用,改變了薄膜電阻,因此對(duì)低濃度的毒性氣體及有機(jī)物(丙酮、乙醇、汽油、氯仿、吡啶等)有快速響應(yīng)(<0.5 s)。Rebollo-Plata[69]報(bào)道了1種可在0.1 s內(nèi)對(duì)丙酮、乙醇、氯仿快速響應(yīng)的N摻雜多壁碳納米管。1種新型的以山藥為碳源和氮源的熒光N摻雜碳量子點(diǎn)可發(fā)射出420 nm的藍(lán)光,同時(shí)具有9.3%的量子產(chǎn)率,可將羧基熒光素基因聚結(jié)在其表面,并以較強(qiáng)的π-π鍵固定,從而對(duì)6-巰基嘌呤具有極強(qiáng)的敏感性[70]。
3.5吸附材料
N摻雜功能碳納米管已經(jīng)被作為吸附劑用作去除Cd[71]、Pb[72]等重金屬離子,CO2[73]、SO2[74]等溫室氣體,以及硝酸鹽[75]、酚類[76]等環(huán)境污染物。Lee[77]在450℃的炭化溫度下以水蒸氣活化聚丙乙烯腈。由于水蒸氣的活化作用,制得N摻雜碳納米纖維對(duì)甲醛的吸附能力是普通吸附劑的兩倍。Gogots[78]等認(rèn)為在其實(shí)驗(yàn)條件下0.8 nm的微孔對(duì)CO2吸附的貢獻(xiàn)最大。Liu等[10]研究表明,以脲醛樹脂為原料,經(jīng)炭化、KOH活化所得N摻雜多孔炭材料對(duì)CO2具有很強(qiáng)的吸附能力,在1個(gè)大氣壓、25℃時(shí)達(dá)到3.26 mmol/g。Xing等[79]指出由于電負(fù)性較大的N活化了其周圍C上的H,與CO2形成弱氫鍵,因此材料對(duì)CO2的吸附能力增加,且對(duì)CO2吸附能力強(qiáng)的多孔炭應(yīng)同時(shí)具有大量的微孔及N官能團(tuán)。近來,1種以乙腈為原料,SBA-15為模板,利用CVD法制備出的N摻雜介孔炭材料可作為吸附亞甲基藍(lán)、酸性品紅及甲基橙等染料的材料。研究表明N原子的摻雜對(duì)陽離子型染料(如亞甲基藍(lán))的吸附具有不利影響,而無論是酸性還是堿性染料,N的摻雜都增大了其吸附動(dòng)力學(xué)常數(shù),并在15 min內(nèi)就達(dá)到最大吸附量[39]。
N摻雜功能炭材料在儲(chǔ)氫、超級(jí)電容器、傳感器、吸附材料、催化劑等方面顯示了優(yōu)異性能,具有廣闊的應(yīng)用前景。總結(jié)了近年來N摻雜功能炭材料的主要合成方法、合成機(jī)理及應(yīng)用。一般來說,模板法易于制得規(guī)整的N摻雜功能炭材料,但需要去除模板劑,步驟較為復(fù)雜;后處理法通常使用NH3、尿素等作為原料,易腐蝕設(shè)備,且原子利用率有待提高;化學(xué)氣相沉積法簡(jiǎn)單易操作,但所需溫度較高;溶膠凝膠法制備成本較高,且所得材料的孔道結(jié)構(gòu)較難控制;活化法有利于得到多孔性炭材料。因此,開發(fā)綠色溫和條件下,形貌、孔徑結(jié)構(gòu)及N含量和存在位點(diǎn)可控的N摻雜功能炭材料的制備方法,是今后的研究熱點(diǎn)之一。深入研究含氮前驅(qū)體的分解、轉(zhuǎn)化及其在C表面和骨架中的遷移路徑,對(duì)于探索高效規(guī)?;闹苽浞椒ň哂兄匾难芯恳饬x。
[2]Fan Y R,Zhao Z B,Qiu J S,et al.Nitrogen-doped carbon microfibers with porous textures[J].Carbon,2013,58:128-133.
[3]Wang H Q,Zhao Z B,Qiu J S,et al.Nitrogen-doped mesoporous carbon nanosheets from coal tar as high performance anode materials for lithium ion batteries[J].New Carbon Materials,2014,29(4):280-286.
[4]Kim J H,Cho S,Bae T S,et al.Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction[J].Sensors and Actuators B:Chemical,2014,197:20-27.
[5]Liu N N,Yin L W,Wang C X,et al.Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template[J].Carbon,2010,48(12):3579-3591.
[6]Zhang B,Yuan X B,Li H,et al.Nitrogen-doped-carbon coated lithium iron phosphate cathode material with high performance for lithium-ion batteries[J].Journal of Alloys and Compounds,2015,627:13-19.
[7]Hao Guangping,Mi Juan,Li Duo,et al.A comparative study of nitrogen-doped hierarchical porous carbon monoliths as electrodes for supercapacitors[J].New Carbon Materials,2011,26(3):197-203.
郝廣平,米娟,李多,等.分等級(jí)孔道含氮多孔炭作超級(jí)電容器電極材料的研究[J].新型炭材料,2011,26(3):197-203.
[8]Kanninen P,Borghei M,Sorsa O,et al.Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell[J].Applied Catalysis B:Environmental,2014,156-157:341-349.
[9]Wang R F,Wang H,Zhou T B,et al.The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction[J].Journal of Power Sources,2015,274:741-747.
[10]Liu Z,Du Z Y,Song H,et al.The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption[J].Journal of Colloid and Interface Science,2014,416:124-132.
[11]St?hr B,Boehm H P,Schl?gl R.Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate[J].Carbon,1991,29(6):707-720.
[12]Pels J R,Kapteijn F,Moulijn J A,et al.Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J].Carbon,1995,33(11):1641-1653.
[13]Zhang Y C,Zhang J,Sheng C D,et al.X-ray photoelectron spectroscopy(XPS)investigation of nitrogen functionalities during coal char combustion in O2/CO2and O2/Ar atmospheres[J].Energy & Fuels,2011,25:240-245.
[14]Arrigo R,Havecker M,Su D S.Tuning the acid base properties of nanocarbons by functionalization via amination[J].Journal of the American Chemical Society,2010,132(28):9616-9630.
[15]Ding Wei,Zhang Xue,Li Wei.Recent progress in heteroatoms doped carbon materials as a catalyst for oxygen reduction reaction [J].Journal of Electrochemistry,2014,20(5):426-438.
丁煒,張雪,李魏.雜原子摻碳材料氧還原催化劑研究進(jìn)展[J].電化學(xué),2014,20(5):426-438.
[16]Rao C V,Cabrera C R,Ishikawa Y.In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J].The Journal of Physical Chemistry Letters,2010,1:2622-2627.
[17]Chen Xu,He Daping,Mu Shichun.Nitrogen-doped graphene [J].Progress in Chemistry,2013,25(8):1292-1301.
陳旭,何大平,木士春.摻氮石墨烯研究[J].化學(xué)進(jìn)展,2013,25(8):1292-1301.
[18]Zhao A,Masa J,Muhler M,et al.N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions[J].Electrochimica Acta,2013,98:139-145.
[19]Chen L F,Zhang X D,Liang H W,et al.Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J].ACS Nano,2012,6(8):7092-7102.
[20]Le?ańska M,Olejniczak A,Pacua A,et al.The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties[J].Catalysis Today,2014,227:223-232.
[21]Masinga S P,Nxumalo E N,Mhlanga S D,et al.Microwave-induced synthesis of β-cyclodextrin/N-doped carbon nanotube polyurethane nanocomposites for water purification[J].Physics and Chemistry of the Earth,Parts A/B/C,2014,67-69:105-110.
[22]Zhang M Y,Jin X J,Zhao Q.Preparation of N-doped activated carbons for electric double-layer capacitors from waste fiberboard by K2CO3activation[J].New Carbon Materials,2014,29(2):89-95.
[23]Meng L Y,Park S J.Effect of ZnCl2activation on CO2adsorption of N-doped nanoporous carbons from polypyrrole[J].Journal of Solid State Chemistry,2014,218:90-94.
[24]Ding L L,Zou B,Li Y N,et al.The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,423:104-111.
[25]Shi W L,Guo F,Chen J B,et al.Hydrothermal synthesis of InVO4/graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B[J].Journal of Alloys and Compounds,2014,612:143-148.
[26]Jiang Y L,Han Q R,Jin C,et al.A fluorescence turn-off chemosensor based on N-doped carbon quantum dots for detection of Fe3+in aqueous solution[J].Materials Letters,2015,141:366-368.
[27]Fan X M,Yu C,Qiu J S,et al.Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors[J].Carbon,2014,70:130-141.
[28]Wang Xiuli,Zeng Yongfei,Bu Xianhe.Templating syntheses of nano-structured materials [J].Chemistry,2005,10:723-730.
王秀麗,曾永飛,卜顯和.模板法合成納米結(jié)構(gòu)材料[J].化學(xué)通報(bào),2005,10:723-730.
[29]Zhao D Y,Feng J L,Stucky G D,et al.Triblock copolymer syntheses of mesoporous silica with Periodic 50 to 300 angstrom pores[J].Science,1998,279:548-552.
[30]Feng C M,Li H X,Wan Y.Fabrication of N-doped highly ordered mesoporous polymers and carbons[J].Nanosci Nanotechnol,2009,9(2):1558-1563.
[31]Yu Zhengfa,Wang Xuzhen,Liu Ning,et al.Recent progress of N-doped porous carbon materials [J].Chemical Industry and Engineering Progress,2013,32(4):824-831.
余正發(fā),王旭珍,劉寧,等.N摻雜多孔碳材料研究進(jìn)展[J].化工進(jìn)展,2013,32(4):824-831.
[32]Liang Q Y,Su H,Yan J,et al.N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors[J].Chinese Journal of Catalysis,2014,35(7):1078-1083.
[33]Zhou J,Zhang Z S,Xing W,et al.Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance[J].Electrochimica Acta,2015,153:68-75.
[34]Wang G Q,Zhang J,Kuang S,et al.Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors[J].Electrochimica Acta,2015,153:273-279.
[35]Li Y B,Zhang H M,Liu P R,et al.Self-supported bimodal-pore structured nitrogen-doped carbon fiber aerogel as electrocatalyst for oxygen reduction reaction[J].Electrochemistry Communications,2015,51:6-10.
[36]Rasines G,Lavela P,Macías C,et al.N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions[J].Carbon,2015,83:262-274.
[37]Ren Wencai,Gao Libo,Cheng Huiming,et al.Preparation of graphene by chemical vapor deposition[J].New Carbon Materilas,2011,26(1):71-80.
任文才,高力波,成會(huì)明,等.石墨烯的化學(xué)氣相沉積法制備[J].新型炭材料,2011,26(1):71-80.
[38]Cui T X,Lv R T,Huang Z H,et al.Synthesis of nitrogen-doped carbon thin films and their applications in solar cells[J].Carbon,2011,49(15):5022-5028.
[39]Sanchez-Sanchez A,Suarez-Garcia F,Martinez-Alonso A,et al.Synthesis,characterization and dye removal capacities of N-doped mesoporous carbons[J].Journal of Colloid and Interface Science,2015,450:91-100.
[41]Zhang J W,Zhang J W,Peng Z,et al.Outstanding rate capability and long cycle stability induced by homogeneous distribution of nitrogen doped carbon and titanium nitride on the surface and in the bulk of spinel lithium titanate[J].Electrochimica Acta,2014,132:230-238.
[42]Luo W,Wang B,Heron C G,et al.Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J].Nano Letters,2014,14(4):2225-2229.
[44]Chen P R,Chew L M,Kostka A,et al.Purified oxygen- and nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation[J].Journal of Energy Chemistry,2013,22:312-320.
[45]Li M,Wu Z S,Ren W C,et al.The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material’s photoluminescence[J].Carbon,2012,50:5286-5291.
[46]Kang K Y,Lee B I,Lee J S.Hydrogen adsorption on nitrogen-doped carbon xerogels[J].Carbon,2009,47:1171-1180.
[47]Chen Y Z,Zhu H Y,Liu Y N.Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption[J].International Journal of Hydrogen Energy,2011,36(18):11738-11745.
[48]Badzian A.Nanostructured,nitrogen-doped carbon materials for hydrogen storage[J].Thin Solid Films,2001,398-399:170-174.
[49]Chen L,Xia K S,Huang L Z,et al.Facile synthesis and hydrogen storage application of nitrogen-doped carbon nanotubes with bamboo-like structure[J].International Journal of Hydrogen Energy,2013,38(8):3297-3303.
[50]Hu S X,Zhang S L,Pan N,et al.High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes[J].Journal of Power Sources,2014,270:106-112.
[51]Xu X Z,Zhou J,Jiang L,et al.Lignin-based carbon fibers:carbon nanotube decoration and superior thermal stability[J].Carbon,2014,80:91-102.
[52]Gao F,Shao G H,Qu J Y,et al.Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes[J].Electrochimica Acta,2015,155:201-208.
[53]Zhong S,Zhan C X,Cao D P.Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials[J].Carbon,2015,85:51-59.
[54]Wang R T,Yan X B,Lang J W,et al.A hybrid supercapacitor based on flower-like Co(OH)2and urchin-like VN electrode materials[J].Journal of Materials Chemistry A,2014,2:12724-12732.
[55]Zhong C G,Gong S L,Jin L E,et al.Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors[J].Materials Letters,2015,156:1-6.
[56]Sari F N I,Ting J M.One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor[J].Applied Surface Science,2015,355:419-428.
[57]Ma Y,Ma C,Sheng J,et al.Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors[J].Journal of Colloid and Interface Science,2016,461:96-103.
[58]Yen H F,Horng Y Y,Hu M S,et al.Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors[J].Carbon,2015,82:124-134.
[59]Li M,Zhang Y Q,Yang L L,et al.Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors[J].Electrochimica Acta,2015,166:310-319.
[60]Zhang J J,Wang Z B,Li C,et al.Multiwall-carbon nanotube modified by N-doped carbon quantum dots as Pt catalyst support for methanol electrooxidation[J].Journal of Power Sources,2015,289:63-70.
[61]Shi J J,Zhou X J,Xu P,et al.Nitrogen and sulfur Co-doped mesoporous carbon materials as highly efficient electrocatalysts for oxygen reduction reaction[J].Electrochimica Acta,2014,145:259-269.
[62]Tao G,Zhang L X,Chen L S,et al.N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction[J].Carbon,2015,86:108-117.
[63]Sheng X,Daems N,Geboes B,et al.N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2to H2O2[J].Applied Catalysis B:Environmental,2015,176-177:212-224.
[64]Ma Guixiang,Zhao Jianghong,Zhu Zhenping.Synthesis of nitrogen-doped graphene and its catalytic activity for the oxygen reduction reaction in fuel cells[J].New Carbon Materials,2012,27(4):258-265.
馬貴香,趙江紅,朱珍平,等.氮摻雜石墨烯的制備及其電催化氧氣還原性能[J].新型炭材料,2012,27(4):258-265.
[65]Zhang L,Dong W H,Shang N Z,et al.N-doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction(in press)[J].Chinese Chemical Letters,2015.
[66]Li Z H,Liu R J,Xu Y,et al.Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs[J].Applied Surface Science,2015,347:643-650.
[67]Liu S,Yu B,Fei T,et al.Low temperature thermal treatment of hexamethylenetetramine to synthesize nitrogen-doped carbon for non-enzymatic H2O2sensing[J].Sensors and Actuators B:Chemical,2014,201:240-245.
[68]Villalpando-Páez F,Romero A H,Muoz-Sandoval E,et al.Fabrication of vapor and gas sensors using films of aligned CNx nanotubes[J].Chemical Physics Letters,2004,386(1-3):137-143.
[70]Li Z,Ni Y N,Kokot S.A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg(Ⅱ)[J].Biosensors & Bioelectronics,2015,74:91-97.
[71]Andrade-Espinosa G,Muoz-Sandoval E,Terrones M,et al.Acid modified bamboo-type carbon nanotubes and cup-stacked-type carbon nanofibres as adsorbent materials:cadmium removal from aqueous solution[J].Journal of Chemical Technology & Biotechnology,2009,84(4):519-524.
[72]Ren X M,Shao D D,Zhao G X,et al.Plasma induced multiwalled carbon nanotube grafted with 2-vinylpyridine for preconcentration of Pb(Ⅱ)from aqueous solutions[J].Plasma Processes and Polymers,2011,8(7):589-598.
[73]Qian Dan,Hao Guangping,Li Wencui.Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2capture[J].New Carbon Materials,2013,28(4):267-272.
錢旦,郝廣平,李文翠.含氮多孔炭的制備及其在二氧化碳吸附中的應(yīng)用[J].新型炭材料,2013,28(4):267-272.
[74]Chen A B,Yu Y F,Zhang Y,et al.Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases[J].Carbon,2014,80:19-27.
[75]Tofighy M A,Mohammadi T.Nitrate removal from water using functionalized carbon nanotube sheets[J].Chemical Engineering Research and Design,2012,90:1815-1822.
[76]Gao G D,Vecitis C D.Doped carbon nanotube networks for electrochemical filtration of aqueous phenol:electrolyte precipitation and phenol polymerization[J].ACS Applied Materials & Interfaces,2012,4(3):1478-1489.
[77]Lee K J,Shiratori N,Lee G H,et al.Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent[J].Carbon,2010,48(15):4248-4255.
[78]Presser V,McDonough J,Gogotsi Y,et al.Effect of pore size on carbon dioxide sorption by carbide derived carbon[J].Energy & Environmental Science,2011,4:3059-3066.
[79]Xing W,Liu C,Zhou Z,et al.Superior CO2uptake of N-doped activated carbon through hydrogen-bonding interaction[J].Energy & Environmental Science,2012,5:7323-7327.
N-doped carbon materials:synthesis,structure and properties
WU Cihang1,ZHANG Chao1,WANG Xinhai3,ZHU Yanyan1,LI Shuang1,2,QIU Jieshan2
(1.School of Chemical Engineering,Northwest University,Xi’ an 710069,China; 2.Faculty of Chemical Engineering,Dalian University of Technology,Dalian 116024,China; 3.The First Oil Production Factory Changqing Oilfield Branch Company,Yan’an 716000,China)
Functional carbon materials with tuned structure and properties can be created by incorporating N atoms into the carbon matrix,which holds great promise in a number of fields and has drawn much attention around the world.This review has addressed the mechanism involved in the preparation of N-doped carbon materials,the strategies for making the N-doped carbon materials and their applications in hydrogen storage,supercapacitor,fuel cells,sensors and adsorption.The future trends are also briefly discussed.
N-doped carbon materials; synthesis mechanism; preparation; properties
1001-9731(2016)09-09041-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(21376004,21303137);博士后科學(xué)基金第六批特別資助項(xiàng)目(2013T60285);52批中國(guó)博士后科學(xué)基金面上資助項(xiàng)目(2012M520627);陜西省科技計(jì)劃資助項(xiàng)目(11JK0593);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃資助項(xiàng)目(2014JQ2047);陜西省教育廳自然科學(xué)專項(xiàng)資助項(xiàng)目(2013JK0695)
2015-09-01
2015-11-11 通訊作者:李爽,E-mail:shuangli722@126.com,邱介山
吳慈航(1994-),男,安徽安慶人,主要從事新型炭材料研究。
O613.71
ADOI:10.3969/j.issn.1001-9731.2016.09.009