趙 丹,趙文閣,劉 鵬
(哈爾濱師范大學(xué))
?
320)我國蜥蜴微衛(wèi)星標(biāo)記的開發(fā)及其應(yīng)用*
趙 丹,趙文閣,劉 鵬**
(哈爾濱師范大學(xué))
微衛(wèi)星屬于短串聯(lián)重復(fù)序列,微衛(wèi)星標(biāo)記是近年來分子生物學(xué)研究的重要課題之一.蜥蜴是爬行綱動物種類繁多的類群,在自然生態(tài)系統(tǒng)中具有重要的地位和作用.目前GenBank上公布我國共有15種蜥蜴開發(fā)出278個(gè)微衛(wèi)星標(biāo)記.通過分析和探討這些微衛(wèi)星標(biāo)記的開發(fā)方式及應(yīng)用前景,旨在為今后其他蜥蜴微衛(wèi)星標(biāo)記的開發(fā)和應(yīng)用提供參考依據(jù).
蜥蜴;微衛(wèi)星標(biāo)記;基因組;開發(fā)方式
微衛(wèi)星又稱簡單重復(fù)序列(Simple sequences repeats,SSRs)[1]或短串聯(lián)重復(fù)(Short tandem repeats,STRs)[2],每個(gè)重復(fù)單位一般只有1~6個(gè)堿基.微衛(wèi)星標(biāo)記作為一種重要的分子遺傳標(biāo)記,具有探針序列可直接人工合成、多態(tài)性和雜合性較高、重組率低、遺傳方式簡單等優(yōu)勢,能較好地反映物種的遺傳結(jié)構(gòu)和遺傳多樣性變化,為種群生物學(xué)研究提供了豐富的遺傳信息,因而比其他分子標(biāo)記的應(yīng)用更為廣泛,在動物體中以雙核苷酸(CA/GT)n最為常見[3].
微衛(wèi)星標(biāo)記主要有三種開發(fā)方法:第一種是從已發(fā)表的文獻(xiàn)或公共數(shù)據(jù)庫(如NCBI、EST等)中查找微衛(wèi)星位點(diǎn)或引物,但該方法只限于已開發(fā)出微衛(wèi)星引物的物種,局限性較大;第二種是跨物種擴(kuò)增,即利用遺傳距離相近物種的微衛(wèi)星引物進(jìn)行擴(kuò)增,但成功率較低,盲目性較大;第三種是在基因組DNA中篩選微衛(wèi)星位點(diǎn)并開發(fā)引物,這也是目前獲取微衛(wèi)星位點(diǎn)最好的途徑[4].
我國蜥蜴共有9科39屬156種[5].截止到2016年9月11日,通過NCBI檢索,已開發(fā)微衛(wèi)星標(biāo)記的我國蜥蜴有5科9屬15種(GenBank上的公布時(shí)間從1999年7月6日至2016年8月25日),占我國蜥蜴總數(shù)的9.6%,包括蜥蜴科3屬6種,即胎生蜥蜴(Lacertavivipara)、捷蜥蜴(Lacertaagilis)、密點(diǎn)麻蜥(Eremiasmultiocellata)、快步麻蜥(E.velox)、臺灣草蜥(Takydromusformosanus)和白條草蜥(T.wolteri),壁虎科2屬4種,即大壁虎(Gekkogecko)、多疣壁虎(G.japonicus)、無蹼壁虎(G.swinhonis)和哀磷趾虎(Lepidodactyluslugubris),鬣蜥科2屬3種,分別為青海沙蜥(Phrynocephalusvlangalii)、荒漠沙蜥(P.przewalskii)、蠟皮蜥(Leiolepisreevesii),鱷蜥科和巨蜥科各1屬1種,分別為鱷蜥(Shinisauruscrocodilurus)和圓鼻巨蜥(Varanussalvator)(見表1).這些蜥蜴共開發(fā)了278個(gè)微衛(wèi)星標(biāo)記,其中大壁虎開發(fā)的微衛(wèi)星標(biāo)記個(gè)數(shù)最多,為47個(gè),白條草蜥開發(fā)的微衛(wèi)星標(biāo)記個(gè)數(shù)最少,為9個(gè)(見表1).
表1 GenBank上已經(jīng)公布的我國蜥蜴微衛(wèi)星標(biāo)記
2.1 聚合酶鏈?zhǔn)椒磻?yīng)
聚合酶鏈?zhǔn)椒磻?yīng)是一種利用PCR技術(shù)擴(kuò)增特定DNA片段來開發(fā)微衛(wèi)星標(biāo)記的技術(shù)[6],它是我國蜥蜴應(yīng)用最早的開發(fā)微衛(wèi)星標(biāo)記的方法(1999年),首先通過 PAPD引物隨機(jī)擴(kuò)增獲得DNA片段,然后選出其中帶型集中大小適于克隆的擴(kuò)增產(chǎn)物進(jìn)行克隆.整個(gè)過程以PCR為基礎(chǔ),易于操作.我國蜥蜴類動物中的胎生蜥蜴[7]、哀磷趾虎[8]和大壁虎[9]使用該方法進(jìn)行了微衛(wèi)星標(biāo)記的開發(fā).但這種方法的應(yīng)用前提是RAPD 產(chǎn)物必須與微衛(wèi)星位點(diǎn)相關(guān)聯(lián),所以具有較大的局限性.
2.2 尼龍膜富集法
1993年,Karagyozov首次將微衛(wèi)星探針固定在尼龍膜上并與基因組文庫進(jìn)行雜交,用于微衛(wèi)星的富集[10].尼龍膜富集法的過程,首先用限制性內(nèi)切酶酶切基因組DNA構(gòu)建小片段基因文庫,并與接頭連接,隨后接頭序列進(jìn)行PCR擴(kuò)增,擴(kuò)增片段需在沸水中熱變性,最后變性DNA通過與吸附在尼龍膜上的許多微衛(wèi)星探針雜交來富集基因組中的微衛(wèi)星片段[11].在我國蜥蜴中,臺灣草蜥[12]和青海沙蜥[13]使用尼龍膜富集法進(jìn)行微衛(wèi)星標(biāo)記開發(fā).
2.3 磁珠富集法
磁珠富集法是指用生物素標(biāo)記的探針與基因組DNA片段雜交,再將親和素或生物素與其雜交,兩者相互結(jié)合附在磁性小珠上,經(jīng)過后續(xù)的洗脫、變性等操作過程,完成對重復(fù)序列目的片段的富集,從而建立微衛(wèi)星富集文庫.磁珠富集法中探針與基因組 DNA 的雜交反應(yīng)在液體介質(zhì)中完成[14],與探針固定在尼龍膜上相比反應(yīng)更加充分,因而,磁珠富集法與尼龍膜富集法相比分離效率較高.在我國蜥蜴中,大壁虎[15,16]、鱷蜥[17]、無蹼壁虎[18]、荒漠沙蜥[19]、圓鼻巨蜥[20]、快步麻蜥[21]和捷蜥蜴[22]使用磁珠富集法進(jìn)行微衛(wèi)星標(biāo)記開發(fā),是我國蜥蜴微衛(wèi)星標(biāo)記開發(fā)中運(yùn)用最多的方法,也是當(dāng)前應(yīng)用于大規(guī)模開發(fā)微衛(wèi)星標(biāo)記最為常用的一種方法.
2.4 AFLP富集法
在我國蜥蜴中,蠟皮蜥[23]、密點(diǎn)麻蜥[24]和白條草蜥[25]使用AFLP富集法進(jìn)行微衛(wèi)星標(biāo)記開發(fā).在AFLP富集過程中基因組DNA被限制性內(nèi)切酶隨機(jī)酶切并與AFLP接頭連接,連接產(chǎn)物適當(dāng)稀釋后用作PCR擴(kuò)增模板,PCR擴(kuò)增產(chǎn)物需純化,最后轉(zhuǎn)化到大腸桿菌感受態(tài)細(xì)胞,建成基因組微衛(wèi)星富集文庫[26,27].
2.5 454測序
454測序首先需要提取基因組DNA,送到可進(jìn)行454測序的生物學(xué)公司測序,獲得測序結(jié)果及其報(bào)告,然后進(jìn)行數(shù)據(jù)分析和引物設(shè)計(jì).該方法無需建庫、克隆及篩選,操作過程簡單,大大節(jié)省時(shí)間.但是,454測序技術(shù)所讀基因組片段長度較短,微衛(wèi)星沒有足夠的側(cè)翼序列用于引物設(shè)計(jì),且適合引物設(shè)計(jì)的微衛(wèi)星序列較少,與其他開發(fā)方法相比,成本較高[28].在我國蜥蜴中,胎生蜥蜴[29]使用該方法進(jìn)行了微衛(wèi)星標(biāo)記開發(fā).
2.6 基因組文庫法
基因組文庫法是一種傳統(tǒng)的方法,首先提取基因組DNA,用限制性內(nèi)切酶將其切割成小片段,回收100~1000bp的片段,然后用標(biāo)記探針進(jìn)行雜交、克隆、測序,從而證實(shí)重復(fù)片段的存在,并對其進(jìn)行引物設(shè)計(jì),用PCR擴(kuò)增進(jìn)行檢驗(yàn),對小量樣本進(jìn)行預(yù)實(shí)驗(yàn),最終挑選重復(fù)性好、多態(tài)性高的微衛(wèi)星位點(diǎn),從而進(jìn)行微衛(wèi)星標(biāo)記的開發(fā).近幾年,應(yīng)用該方法開發(fā)微衛(wèi)星標(biāo)記的物種中,大部分都是已有基因組文庫或部分基因組文庫發(fā)表,在此基礎(chǔ)上進(jìn)行微衛(wèi)星標(biāo)記的開發(fā).在我國蜥蜴中,多疣壁虎的微衛(wèi)星標(biāo)記開發(fā)較晚(2015年),因此并未建立基因文庫,而是在已有的部分基因組文庫基礎(chǔ)上,運(yùn)用SSR Hunter微衛(wèi)星位點(diǎn)鑒定軟件[30],最終開發(fā)出12個(gè)微衛(wèi)星標(biāo)記[31].
目前,我國蜥蜴微衛(wèi)星標(biāo)記的開發(fā)主要用于不同物種、不同種群間的遺傳多樣性、遺傳結(jié)構(gòu)和親子關(guān)系等遺傳學(xué)分析[32],以及利用近緣物種的微衛(wèi)星標(biāo)記進(jìn)行跨種擴(kuò)增,對物種進(jìn)行分類,從而作為確立有效物種的依據(jù)之一[33].另外,人們還利用微衛(wèi)星標(biāo)記對蜥蜴的洞穴分配、種群婚配制度及父權(quán)狀況[34]、個(gè)體與社會互動所存在的潛在聯(lián)系[35]以及生境隔離對種群的影響[36]等方面進(jìn)行探討.
我國蜥蜴科動物微衛(wèi)標(biāo)記的開發(fā)和報(bào)道工作還不夠全面,開發(fā)更多物種的微衛(wèi)星標(biāo)記將對蜥蜴的遺傳演化和系統(tǒng)發(fā)育具有重要意義.由于微衛(wèi)星中存在無效等位基因[37],這些等位基因在PCR不能成功擴(kuò)增,從而影響遺傳學(xué)分析和親權(quán)關(guān)系鑒定的準(zhǔn)確性[38].但是隨著分子生物學(xué)技術(shù)和生物信息學(xué)的飛速發(fā)展, 高通用性微衛(wèi)星標(biāo)記必將有著更為廣闊的應(yīng)用前景.
[1] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Res, 1989, 17(16): 6463-71.
[2] Edwards A, Civitello A, Hammond HA, et al. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats[J]. Am J Hum Genet, 1991, 49(4): 749-56.
[3] Maguire T L, Edwards KJ, Saenger P, et al. Characterization and analysis of microsatellite loci in mangrove species, Avicennia marina (Fork.) Vierh. (Avicenniaceae)[J]. Theor Appl Genet, 2000, 101(1): 279-85.
[4] 曾慶國, 陳藝燕.微衛(wèi)星位點(diǎn)篩選方法綜述[J]. 生態(tài)科學(xué), 2005, 24(4): 368-372.
[5] 趙爾宓, 趙肯堂, 周開亞, 等. 中國動物志: 爬行綱有鱗目蜥蜴亞目[M]. 北京: 科學(xué)出版社, 1999.15-358.
[6] Lunt D H, Hutchinson W F, Carvalho GR. An efficient method for PCR-based isolation of microsatellite arrays (PIMA)[J]. Mol Ecol, 1999, 8(1): 891-894.
[7] Boudjemadi K, Martin O, Simon JC, et al. Development and cross-species comparison of microsatellite markers in two lizard species, Lacerta vivipara and Podarcis muralis[J]. Mol Ecol, 1999, 8(3): 518-520.
[8] Wilmhoff C D, Csepeggi C E, Petren K. Characterization of dinucleotide microsatellite markers in the parthenogenetic mourning gecko (Lepidodactylus lugubris)[J]. Molecular Ecology Notes, 2003,3(3):400-402.
[9] Peng Q K, Wang G C,Yang D,et al.Genetic variability of the tokay gecko based on microsatelliteanalysis[J].Biochemical Systematics and Ecology, 2010,38(1): 23-28.
[10] Karagyozov L, Kalcheva I D, Chapman VM. Construction of random smallinsert genomic libraries highly enriched for simple sequence repeats[J]. Nucleic Acids Research, 1993,21(16): 3911-3912.
[11] Armour J A, Neumann R, Gobert S, et al. Isolation of human simple repeat loci by hybridization selection[J]. Human Mol Genet, 1994, 3 (4): 599-605.
[12] Lin S M, Wang C J, Hsu Y, et al. Isolation and characterization of 12 tetrarepeated microsatellite loci from the Formosan grass lizard (Takydromus formosanus)[J]. Molecular ecology notes, 2006, 1(6): 57-59.
[13] Zhen A B, Fu J Z. Microsatellite DNA markers for three toad-headed lizard species (Phrynocephalus vlangalii, P. przewalskii and P. guttatus)[J]. Molecular ecology notes, 2000,9(2): 535-538.
[14] Kandpal R P, Kandpal G, Weissman SM. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for regionspecific markers[J]. Proc Natl Acad Sci USA, 1994, 91(1):88-92.
[15] Gao S F, Yu D M, Peng J J, et al. Isolation and characterization of novel microsatellitemarkers in Gekko gecko(Reptilia: Gekkonidae)[J]. Conservation Genetics Resources, 2011, 3(3): 46-48.
[16] Peng Q K, Wang G C, Tan S,et al. Isolation and characterization of thirteen polymorphic tetranucleotide microsatellite markers in the Tokay gecko(Gekkogecko)[J]. Conservation Genet Resour, 2011, 3(4):617-619.
[17] Bei R B, Liu H Y, Wu Z J, et al. Isolation and characterization of 12 microsatellite loci in the Chinese crocodile lizard (Shinisaurus crocodilurus)[J]. Conservation Genetics Resources, 2012, 4(3):743-745.
[18] Li J J, Zhou K Y. Isolation and characterization of microsatellite markers in the gecko Gekko swinhonis and cross-species amplification in other gekkonid species[J]. Molecular Ecology Notes, 2007, 7(4):674-677.
[19] Urquhart J, Bi K, Gozdzik A, et al. Isolation and characterization of microsatellite DNA loci in the toad-headed lizards, Phrynocephalus przewalskii complex[J]. Molecular Ecology Notes, 2005, 5:928-930.
[20] Fu M L, Yu D M, Peng J J, et al. Isolation and characterization of novel microsatellite markers in Water monitor (Varanus salvator)[J]. Conservation Genet Resour, 2011, 3(4):777-779.
[21] Li H, Zhou Z S, Guo J, et al. Polymorphic microsatellite loci in the rapid racerunner Eremias velox (Squamata: Lacertidae)[J]. GenetMol Res, 2012, 11(4):4707-4710.
[22] Schwartz T S, Olsson M. Microsatellite markers developed for a Swedish population of sand lizard (Lacerta agilis)[J].Conserv Genet, 2008, 9(3):715-717.
[23] Lei H, Mao L X, Chen C, et al. Isolation and characterization of microsatellite loci in the Reevese’s butterfly lizard Leiolepis reevesii (Agamidae)[J]. Conservation Genet Resour, 2012, 1(4): 791-794.
[24] Chen L, Guo L, Li H, et al. Microsatellite markers developed for the multiocellated racerunner, Eremias multiocellata (Lacertidae)[J]. Conservation Genetics Resources,2012, 4(3): 711-713.
[25] 羅來高,吳義蓮,耿軍,等. 白條草蜥多態(tài)性微衛(wèi)星位點(diǎn)的分離與鑒定[J].動物學(xué)雜志, 2013, 48(3): 367-370.
[26] Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review[J]. Molecular Ecology, 2002, 11(1): 1-16.
[27] 薛輝, 吳孝兵, 晏鵬. 微衛(wèi)星標(biāo)記在分子生態(tài)學(xué)中的應(yīng)用及其位點(diǎn)的分離策略[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(2): 385-389.
[28] 程曉鳳, 黃福江, 劉明典, 等. 454測序技術(shù)開發(fā)微衛(wèi)星標(biāo)記的研究進(jìn)展[J]. 生物技術(shù)通報(bào), 2011, 27(8): 82-90.
[29] Virginie MS, Murielle R, Colin B, et al. Twelve new polymorphic microsatellite loci for the common lizard, Zootoca vivipara. Molecular Ecology Resources, 2011, 11: 586-589.
[30] 李強(qiáng), 萬建民,Hunter S S R ,一個(gè)本地化的SSR位點(diǎn)搜索軟件的開發(fā)[J]. 遺傳, 2005, 27(5): 808-810.
[31] Wei L, Shao W W,Zhou H B, et al. Rapid microsatellite development in Gekko japonicus using sequenced restrictionsite associated DNA markers. Genetics and Molecular Research, 2015, 14(4): 14119-14122.
[32] 駱?biāo)? 劉廼發(fā).西藏高原兩種沙蜥遺傳結(jié)構(gòu)及三種沙蜥親子鑒定[D]. 甘肅: 蘭州大學(xué), 2009.
[33] Daniel W A Noble, Qi Y, Fu J Z. Species delineation using Bayesian model-based assignment tests: a case study using Chinese toad-headed agamas (genus Phrynocephalus)[J]. BMC Evol Biol, 2010, 10: 197.
[34] Qi Y, Daniel W A Noble, Fu J Z, et al. Spatial and social organization in a burrow-dwelling lizard (Phrynocephalus vlangalii) from China [J]. PLoS One, 2012, 7(7): e41130.
[35]Qi Y, Yang W Z, Lu B, et al. Genetic evidence for male-biased dispersal in the Qinghaitoad-headed agamid Phrynocephalus vlangalii and its potential link to individual social interactions[J]. Ecol Evol, 2013, 3(5): 1219-1230.
[36] Hu D, Fu J Z, Zou F D, et al. Impact of the Qinghai-Tibet railwayon population genetic structure of the toad-headed lizard,Phrynocephalus vlangalii[J]. Asian Herpetological Research, 2012, 3(4): 280-287.
[37] Oddou-Muratorio S, Vendramin G G, Buiteveld J, et al.Population estimators or progeny tests: what is the best method to assess null allele frequencies at SSR loci?[J]. ConservationGenetics, 2009, 10(5): 1343-1347.
[38] Wagner A P, Creel S, Kalinowski S T. Estimating relatedness and relationships using microsatellite loci with null alleles[J]. Heredity, 2006, 97(5): 336-345.Development and Application of Microsatellite Markers in Chinese Lizards
(責(zé)任編輯:季春陽)
Zhao Dan, Zhao Wenge, Liu Peng
(Harbin Normal University)
Microsatellites are known as Short Tandem Repeats (STR).Microsatellite markers become one of the important research topics in molecular biology. With abundant species in Reptilia, lizards have the important status and functions in the ecosystem. At present, there are 278 microsatellite markers developed in 15 species of Chinese lizards published on GenBank. The development methods and application prospect of microsatellite markers were also analyzed and discussed in this paper, aiming to provide reference for the future development and application of microsatellite markers in lizards.
Lizards; Microsatellite marker; Genome; Development method
2016-03-24
*黑龍江省自然科學(xué)基金項(xiàng)目(C2016035);國家自然科學(xué)基金項(xiàng)目(31172079)
Q959.6
A
1000-5617(2016)03-0083-04
**通訊作者:liupeng111111@163.com