国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

聯(lián)合用藥靶向膠質(zhì)母細(xì)胞瘤樣干細(xì)胞的治療進(jìn)展

2017-01-12 13:58:55李浩詣
腫瘤基礎(chǔ)與臨床 2017年1期
關(guān)鍵詞:莫唑胺母細(xì)胞膠質(zhì)

李浩詣,汪 云,黃 科

(第三軍醫(yī)大學(xué)基礎(chǔ)部組織學(xué)與胚胎學(xué)教研室,重慶 400038)

聯(lián)合用藥靶向膠質(zhì)母細(xì)胞瘤樣干細(xì)胞的治療進(jìn)展

李浩詣,汪 云,黃 科

(第三軍醫(yī)大學(xué)基礎(chǔ)部組織學(xué)與胚胎學(xué)教研室,重慶 400038)

腫瘤干細(xì)胞;膠質(zhì)母細(xì)胞瘤;聯(lián)合用藥;惡性膠質(zhì)瘤;腫瘤靶向治療

膠質(zhì)母細(xì)胞瘤作為常見(jiàn)的惡性膠質(zhì)瘤,其等級(jí)系數(shù)高,致死性強(qiáng)。隨著腫瘤干細(xì)胞理論的提出,為腫瘤靶向治療提供了新的途徑。通過(guò)聯(lián)合用藥抑制生長(zhǎng)機(jī)制,阻止膠質(zhì)母細(xì)胞瘤樣干細(xì)胞的增殖,從而為靶向治療惡性膠質(zhì)瘤提供了可能。本文就聯(lián)合用藥靶向膠質(zhì)母細(xì)胞瘤樣干細(xì)胞進(jìn)行簡(jiǎn)要綜述。

1 介紹

腫瘤的發(fā)生是一群失控的同質(zhì)性的腫瘤細(xì)胞所組成,每個(gè)腫瘤細(xì)胞都具有獨(dú)立無(wú)限增殖的能力,并且通過(guò)轉(zhuǎn)移侵入其他機(jī)體組織造成腫瘤細(xì)胞的擴(kuò)散[1]。近年來(lái),由于有些腫瘤細(xì)胞與干細(xì)胞具有相似的特性包括信號(hào)傳導(dǎo)通路、轉(zhuǎn)錄因子、細(xì)胞表面受體等,并提出了腫瘤干細(xì)胞的假說(shuō)。該學(xué)說(shuō)認(rèn)為,腫瘤的發(fā)生與腫瘤干細(xì)胞有關(guān),為腫瘤靶向治療提供了新的突破點(diǎn)。傳統(tǒng)意義上的腫瘤治療包括手術(shù)切除、化療和放療,針對(duì)性并不強(qiáng),惡性腫瘤的預(yù)后較差,術(shù)后生存率不高,復(fù)發(fā)的可能性也較大[2-4]。并且腫瘤細(xì)胞伴有較強(qiáng)的耐藥性機(jī)制,對(duì)傳統(tǒng)療法并不敏感[5]。因此,聯(lián)合靶向療法為腫瘤治療提供了新的途徑。

2 干細(xì)胞與腫瘤干細(xì)胞

2.1 干細(xì)胞 干細(xì)胞具有持續(xù)自我更新并能夠促使同類細(xì)胞的成熟以及暫時(shí)擴(kuò)增細(xì)胞子代數(shù)量的潛能和相應(yīng)機(jī)體細(xì)胞的增殖能力。另外,這類干細(xì)胞擁有分化潛能,可以分化成體內(nèi)的各類組織,主要負(fù)責(zé)組織的再生和修復(fù)[6-8]。總之,干細(xì)胞是一類高等動(dòng)物體內(nèi)未充分分化、具有自我更新和多向分化潛能的細(xì)胞。

2.2 腫瘤干細(xì)胞 在CD34+/CD38-表型的人急性髓性白血病、乳腺癌以及各細(xì)胞層次間都發(fā)現(xiàn)了一類具有自我更新、增殖能力,并與腫瘤細(xì)胞有相似特性的異質(zhì)性細(xì)胞[8-10]。在惡性腫瘤初期的生長(zhǎng)發(fā)育中,由一群在形態(tài)和表型方面具有致瘤性潛能的細(xì)胞亞群所構(gòu)成[11-15],在一定程度上具由自我更新、不定向分化潛能[16-17]、異位再生性及高度耐藥性。腫瘤干細(xì)胞通過(guò)不對(duì)稱分裂方式進(jìn)行增殖,在不同的環(huán)境內(nèi)具有成瘤特性,其細(xì)胞膜表面的ABC轉(zhuǎn)運(yùn)體異常的發(fā)達(dá),抗藥性較強(qiáng)[18]。同樣,腫瘤干細(xì)胞是一群具有異質(zhì)性的細(xì)胞群體,其細(xì)胞膜表面抗原、細(xì)胞漿內(nèi)的蛋白、生物效應(yīng)、增殖速率、代謝程度以及系統(tǒng)抗藥性各不相同[8,19-20]。多數(shù)信號(hào)級(jí)聯(lián)因子和能夠介導(dǎo)正常生理干細(xì)胞行為的基質(zhì)原件間相互作用及其正常發(fā)展過(guò)程都已被認(rèn)為在腫瘤生長(zhǎng)初期和發(fā)展過(guò)程中扮演了不可缺少的角色[21]。目前對(duì)于膠質(zhì)瘤干細(xì)胞的研究表明,膠質(zhì)瘤干細(xì)胞常用的標(biāo)志物是CD133+和CD15+,而CD15+是膠質(zhì)母細(xì)胞瘤具有膠質(zhì)母細(xì)胞瘤樣干細(xì)胞的特征且具有更高的致瘤性[22-24]。根據(jù)目前已達(dá)成的共識(shí)定論,腫瘤干細(xì)胞是一類在腫瘤組織內(nèi)擁有自我更新、不對(duì)稱分化并具有致瘤潛能的異質(zhì)性干細(xì)胞[25],其結(jié)果是維持腫瘤干細(xì)胞數(shù)目穩(wěn)定并產(chǎn)生腫瘤。

2.3 干細(xì)胞與腫瘤干細(xì)胞的異同 腫瘤干細(xì)胞與干細(xì)胞之間的相似點(diǎn):1)干細(xì)胞與腫瘤干細(xì)胞之間具有相似的表面抗原;2)兩者生長(zhǎng)發(fā)育都具有較高的端粒酶活性;3)干細(xì)胞與腫瘤干細(xì)胞都具有自我更新、無(wú)限增殖和不對(duì)稱分化的能力;4)具有相似的信號(hào)轉(zhuǎn)導(dǎo)通路,其代表性的通路包括Wnt、Notch、Sonic Hedgehog、EGFR等通路,這些都是目前認(rèn)為在干細(xì)胞生長(zhǎng)發(fā)育及分化中其重要作用的信號(hào)轉(zhuǎn)導(dǎo)途徑;5)兩者具有多數(shù)相同的轉(zhuǎn)錄因子,包括Sox2、Oct4、Nanog等,對(duì)維持干細(xì)胞的干性,調(diào)節(jié)干細(xì)胞的生長(zhǎng)發(fā)育具有重要的意義[26-27];6)干細(xì)胞與腫瘤干細(xì)胞有相似的重力密度。但兩者之間依然存在不同的特點(diǎn):1)腫瘤干細(xì)胞通過(guò)不對(duì)稱分化,增殖產(chǎn)生異質(zhì)性的腫瘤細(xì)胞;2)腫瘤干細(xì)胞在腫瘤中含量非常低,但其致瘤性強(qiáng)[28-29];而在機(jī)體各個(gè)組織中,都存在干細(xì)胞,其作用一般是對(duì)機(jī)體損傷進(jìn)行一定的修復(fù)作用;3)腫瘤干細(xì)胞的細(xì)胞膜表面ABCG2異?;钴S,其耐藥機(jī)制較強(qiáng)[18]。

2.4 膠質(zhì)母細(xì)胞瘤 膠質(zhì)母細(xì)胞瘤被WHO組織認(rèn)定為第4級(jí)星形膠質(zhì)瘤,即使通過(guò)外科手術(shù)切除,放療和化療的方式來(lái)抑制膠質(zhì)母細(xì)胞瘤的增殖,然而其治療效果并不明顯[5,30]。早期研究[31-32]證明膠質(zhì)母細(xì)胞瘤樣干細(xì)胞對(duì)傳統(tǒng)化療及放療都有一定的抵抗特性。由于膠質(zhì)母細(xì)胞瘤樣干細(xì)胞可能與膠質(zhì)母細(xì)胞瘤復(fù)發(fā)有一定的內(nèi)在聯(lián)系[33-36]。因此,傳統(tǒng)療法已經(jīng)不能滿足治療的需求。

3 聯(lián)合靶向治療膠質(zhì)母細(xì)胞瘤樣干細(xì)胞

3.1 阿司匹林聯(lián)合替莫唑胺靶向治療膠質(zhì)母細(xì)胞瘤樣干細(xì)胞 目前,在臨床膠質(zhì)母細(xì)胞瘤治療中,廣泛使用且能夠抑制膠質(zhì)母細(xì)胞瘤增殖的藥物是替莫唑胺。替莫唑胺的用藥標(biāo)準(zhǔn)是每周期28 d以內(nèi),每次持續(xù)用藥5 d,每天使用150~200 mg·m-2[37]。然而惡性膠質(zhì)瘤的多抗藥性較強(qiáng),替莫唑胺半壽期短,不良反應(yīng)較明顯,對(duì)腫瘤的殺傷力較弱,靶向治療并不明顯。在膠質(zhì)瘤樣干細(xì)胞中,Wnt、STAT3通路活性較為明顯。因此,Shi等[38]提出利用阿司匹林聯(lián)合替莫唑胺用藥通過(guò)抑制Wnt通路治療膠質(zhì)母細(xì)胞瘤。有研究[39-40]通過(guò)poly誘導(dǎo)合成微球,利用噴霧干燥技術(shù),將膠質(zhì)母細(xì)胞瘤細(xì)胞毒性分別注入含有阿司匹林、替莫唑胺以及阿司匹林聯(lián)合替莫唑胺的微球中,結(jié)果發(fā)現(xiàn):利用阿司匹林微球治療通過(guò)抑制Wnt通路的轉(zhuǎn)錄活性,可誘導(dǎo)體外具有活性的Ln229和U87細(xì)胞輕微的凋亡,并抑制其輕微的增殖。然而,與替莫唑胺單獨(dú)治療膠質(zhì)母細(xì)胞瘤相比,阿司匹林與替莫唑胺的聯(lián)合用藥對(duì)于膠質(zhì)母細(xì)胞瘤的抑制更加明顯。其可誘導(dǎo)Ln229和U87細(xì)胞較明顯的凋亡并抑制其增殖,對(duì)β-catenin信號(hào)、β-catenin/TCF4轉(zhuǎn)錄活性的抑制應(yīng)答、STAT3熒光素酶都具有較強(qiáng)的抑制作用以及下游的靶基因在一定程度上具有下調(diào)的趨勢(shì),在腫瘤干細(xì)胞中β-catenin/tcf4轉(zhuǎn)錄活性較高。

3.1.1 阿司匹林與替莫唑胺用藥與信號(hào)轉(zhuǎn)導(dǎo)通路

3.1.1.1 Wnt信號(hào)轉(zhuǎn)導(dǎo)通路 Wnt信號(hào)通路在多數(shù)器官組織中具有高度的保守性,對(duì)胚胎學(xué)的發(fā)展具有重要的意義,并且在控制細(xì)胞自我更新、調(diào)節(jié)干細(xì)胞以及腫瘤干細(xì)胞的生長(zhǎng)發(fā)育中維持相對(duì)穩(wěn)定的平衡[41-43]。Wnt信號(hào)通路通常被Wnt信號(hào)配體激活,Wnt蛋白可與細(xì)胞表面Frizzled家族特殊受體及LRP家族相關(guān)的低密度脂蛋白受體復(fù)合物結(jié)合。促使細(xì)胞質(zhì)中的松散蛋白聚集至細(xì)胞膜下,松散蛋白可誘導(dǎo)GSK-3β發(fā)生磷酸化,使其與Axin脫離,拮抗Axin/GSK-3β復(fù)合物的形成,進(jìn)而阻斷β-catenin的磷酸化、泛素化降解,使得大量游離的β-catenin在細(xì)胞質(zhì)聚集并進(jìn)入細(xì)胞核內(nèi)。在細(xì)胞核內(nèi),β-catenin將會(huì)與TCF/LEF家族的轉(zhuǎn)錄因子相結(jié)合,并啟動(dòng)激活下游的靶基因[43]。轉(zhuǎn)錄相關(guān)蛋白,調(diào)節(jié)細(xì)胞的增殖及分化。在阿司匹林與替莫唑胺聯(lián)合用藥的治療中,阿司匹林可抑制Wnt通路中β-catenin/tcf4的轉(zhuǎn)導(dǎo)活性,同時(shí)能夠提高替莫唑胺對(duì)β-catenin轉(zhuǎn)錄活性的抑制效應(yīng)。通過(guò)測(cè)定Ln229和U87細(xì)胞,不難發(fā)現(xiàn),阿司匹林通過(guò)抑制β-catenin轉(zhuǎn)錄活性,從而抑制膠質(zhì)瘤細(xì)胞的增殖,并誘導(dǎo)其凋亡[38]。

3.1.1.2 STAT3信號(hào)轉(zhuǎn)導(dǎo)通路 STAT3在神經(jīng)干細(xì)胞、星形膠質(zhì)細(xì)胞的生長(zhǎng)發(fā)育中具有重要的作用[44],其依據(jù)腫瘤的基因型,在膠質(zhì)母細(xì)胞瘤致瘤和抑瘤方面扮演著重要的角色[45]。在神經(jīng)細(xì)胞中,STAT3能夠被睫狀節(jié)神經(jīng)細(xì)胞營(yíng)養(yǎng)因子家族細(xì)胞活素受體激活,目的是STAT3能夠激活與絡(luò)氨酸激酶相關(guān)的JAK細(xì)胞活素受體。隨后,STAT3被募集到細(xì)胞活素受體上,當(dāng)?shù)?05號(hào)Tyr殘基被磷酸化后,STAT3被激活[44]。STAT3也可以被具有絡(luò)氨酸激酶活性的生長(zhǎng)因子受體直接激活,例如EGFR。在膠質(zhì)母細(xì)胞瘤中STAT3的mRNA的水平與患者無(wú)進(jìn)展生存期以及總存活數(shù)有關(guān)[46]。STAT3也可與誘導(dǎo)的一氧化氮合成酶和EGFR相互作用提高膠質(zhì)瘤的形成[47]。在膠質(zhì)母細(xì)胞瘤樣干細(xì)胞中,STAT3信號(hào)通路是非?;钴S的,其能夠保持細(xì)胞的存活,增殖能力以及多功能干性,并對(duì)膠質(zhì)母細(xì)胞瘤的生長(zhǎng)有著重要的作用[48-50]。在膠質(zhì)母細(xì)胞瘤樣干細(xì)胞中通過(guò)誘導(dǎo)G1期阻滯并造成Cyclin D1下調(diào)和p21WAF1/CIP1上調(diào)來(lái)抑制STAT3通路,從而調(diào)節(jié)細(xì)胞周期。STAT3的抑制也可造成在膠質(zhì)母細(xì)胞瘤樣干細(xì)胞中CD133+和c-Myc表達(dá)下調(diào),并造成細(xì)胞凋亡[51]。

3.1.2 阿司匹林與替莫唑胺聯(lián)合用藥對(duì)腫瘤干細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路的影響 惡性膠質(zhì)瘤的表型源于與細(xì)胞生長(zhǎng)發(fā)育調(diào)節(jié)通路有內(nèi)在關(guān)系的多能機(jī)制障礙[52],其中對(duì)膠質(zhì)瘤干細(xì)胞生長(zhǎng)最具影響的通路之一是Wnt/β-catenin信號(hào)通路,其通過(guò)β-catenin/TCF4轉(zhuǎn)錄復(fù)合體激活并作為下游相關(guān)效應(yīng)物激活的中心信號(hào)轉(zhuǎn)導(dǎo)通路,包括AKT1[53]、AKT2[54]、和STAT3[55]。β-catenin的過(guò)度表達(dá),不僅能維持惡性膠質(zhì)瘤細(xì)胞的表型,也能通過(guò)抑制惡性膠質(zhì)細(xì)胞的凋亡從而提高細(xì)胞的活性并提升細(xì)胞的多抗藥性能力[56-57]。

阿司匹林不僅對(duì)β-catenin信號(hào)有較明顯的抑制,而且也是作為臨床上廣泛使用的抗炎類藥物。服用阿司匹林能夠減少某些長(zhǎng)期腺癌的發(fā)病率,并且在藥理學(xué)方面能證明,阿司匹林對(duì)腫瘤細(xì)胞遠(yuǎn)端轉(zhuǎn)移有一定的阻礙作用[58]。因此選用阿司匹林治療惡性膠質(zhì)瘤,目的是為了提高替莫唑胺的藥效,對(duì)β-catenin通路的靶向抑制,從而提高惡性膠質(zhì)瘤的治療效果。

通過(guò)研究膠質(zhì)瘤干細(xì)胞的表型發(fā)現(xiàn),AKT信號(hào)的過(guò)度表達(dá),能抵抗替莫唑胺的藥性[59-60],在膠質(zhì)母細(xì)胞瘤和惡性黑素瘤中,敲除PI3K/AKT信號(hào)因子能夠提高替莫唑胺的治療效果[61-62]。STAT3在膠質(zhì)母細(xì)胞瘤中存在一定程度的表達(dá),其是致瘤的關(guān)鍵轉(zhuǎn)錄因子,能夠提高惡性膠質(zhì)瘤細(xì)胞的增殖和侵入力,亦能提高血管的再生能力,為惡性腫瘤的生長(zhǎng)提供豐富的血供[63]。Bcl-2是調(diào)節(jié)細(xì)胞凋亡的關(guān)鍵因子,其表達(dá)與惡性腫瘤的發(fā)展與多抗藥性有關(guān)[64], AKT與STAT3的表達(dá)下調(diào),同樣可抑制Bcl-2的表達(dá)[57,65]。因此通過(guò)阿司匹林和替莫唑胺微球?qū)嶒?yàn)后,發(fā)現(xiàn)AKT的表達(dá)在Ln229和U87膠質(zhì)細(xì)胞中表達(dá)都有下調(diào),STAT3對(duì)替莫唑胺烷基化能力下降,說(shuō)明STAT3在一定程度上減少。阿司匹林和替莫唑胺微球?qū)嶒?yàn)證明,通過(guò)敲除β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路,從而介導(dǎo)減少Bcl-2的表達(dá)、降低膠質(zhì)母細(xì)胞瘤樣干細(xì)胞的多抗藥性、抑制其增殖并促進(jìn)凋亡,提高替莫唑胺的治療效果。

3.2 Anti- galectin-1 siRNA與Anti-EGFR siRNA聯(lián)合降低膠質(zhì)母細(xì)胞瘤樣干細(xì)胞對(duì)替莫唑胺的抗藥性 EGFR在腫瘤的發(fā)展中起到了關(guān)鍵的因素,能夠提高腫瘤干細(xì)胞的生長(zhǎng)及對(duì)藥物的抗性,galectin-1是一種細(xì)胞表面的糖蛋白,在肝腫瘤干細(xì)胞中的表達(dá)可能較活躍[66-67]。因此,Danhier等[68]提出利用Anti-galectin-1 siRNA和Anti-EGFR siRNA聯(lián)合,以殼聚糖接枝脂質(zhì)納米膠囊為載體,通過(guò)CED方式將藥物注入到小鼠體內(nèi)以及U87細(xì)胞培養(yǎng)基中,再將替莫唑胺注入,結(jié)果發(fā)現(xiàn),腫瘤生長(zhǎng)明顯被抑制,從腫瘤干細(xì)胞學(xué)說(shuō)角度說(shuō)明,此聯(lián)合用藥對(duì)腫瘤干細(xì)胞的增殖起到了明顯的抑制。

3.2.1 siRNA與殼聚糖接枝脂質(zhì)納米膠囊靶向腫瘤干細(xì)胞的特點(diǎn) siRNA是由21~23個(gè)核苷酸組成的雙鏈RNA,其能夠激發(fā)與之互補(bǔ)的目標(biāo)mRNA的沉默。單獨(dú)使用siRNA治療是有幾個(gè)不利的條件:1)siRNA帶負(fù)電荷,無(wú)法穿過(guò)細(xì)胞膜與胞漿內(nèi)的靶分子結(jié)合[69-71];2)siRNA被注入到血液中后,呈現(xiàn)在血液和細(xì)胞漿中的核酸酶會(huì)使siRNA快速變性失活;3)血液中的免疫作用可能也會(huì)使siRNA變性失活[72]。殼聚糖接枝脂質(zhì)納米膠囊作為EGFR抗體和galectin-1抗體siRNA的載體,其有利條件:1)移接的幾丁聚糖具有正電性;2)無(wú)毒性并具有生物學(xué)適應(yīng)性[73]。目前,siRNA治療成為現(xiàn)今醫(yī)學(xué)抑制腫瘤增殖的熱點(diǎn),利用siRNA靶向治療腫瘤干細(xì)胞,干擾其細(xì)胞漿內(nèi)具有分裂,增殖表達(dá)的mRNA,從而達(dá)到對(duì)腫瘤治療的目的。

3.2.2 Anti-galectin-1 siRNA與Anti-EGFR siRNA聯(lián)合替莫唑胺治療膠質(zhì)母細(xì)胞瘤 在腫瘤細(xì)胞中,過(guò)表達(dá)的EGFR和galectin-1能夠?qū)е聦?duì)替莫唑胺明顯的抗藥性[74]。在40%~70%的腫瘤患者中,腫瘤細(xì)胞內(nèi)的EGFR都存在過(guò)表達(dá)和較活躍的特性。這說(shuō)明特異性的突變EGFR形成和表達(dá)將提高腫瘤的增殖能力[75-76]。同樣,EGFR在膠質(zhì)瘤干細(xì)胞中也起到了關(guān)鍵性的因素,其在膠質(zhì)瘤干細(xì)胞中的mRNA分子水平較高[75]。利用siRNA治療后,將腫瘤中EGFR和galactin-1敲除,我們發(fā)現(xiàn),siRNA的活性效應(yīng)持續(xù)近1周,這說(shuō)明了siRNA活性的短暫特性[66]。因此,依據(jù)腫瘤是否被治療,腫瘤細(xì)胞內(nèi)的組成成分不盡相同[77]。

利用Anti-galactin-1 siRNA與Anti-EGFR siRNA聯(lián)合治療膠質(zhì)母細(xì)胞瘤,發(fā)現(xiàn)膠質(zhì)母細(xì)胞瘤的增殖抑制較明顯,通過(guò)上述研究得知,膠質(zhì)母細(xì)胞瘤細(xì)胞中g(shù)alactin-1與EGFR的mRNA表達(dá)水平明顯降低[68]??傊?,Anti-galectin-1 siRNA與Anti-EGFR siRNA聯(lián)合能夠降低膠質(zhì)瘤干細(xì)胞對(duì)替莫唑胺的抗藥性,從而達(dá)到抑制膠質(zhì)母細(xì)胞瘤增殖的目的。

4 聯(lián)合用藥靶向膠質(zhì)母細(xì)胞瘤樣干細(xì)胞的治療意義

聯(lián)合用藥治療膠質(zhì)母細(xì)胞瘤樣干細(xì)胞是當(dāng)今的腫瘤醫(yī)學(xué)熱點(diǎn)。Zhao等[78]通過(guò)鹽酸厄洛替尼與紫草醌聯(lián)合降低EGFR的磷酸化,從而有可能降低膠質(zhì)母細(xì)胞瘤對(duì)鹽酸厄洛替尼的抗藥性,達(dá)到治療膠質(zhì)母細(xì)胞瘤的療效。EGFR在腫瘤干細(xì)胞中表達(dá)較高,很可能是降低腫瘤干細(xì)胞表面的EGFR,來(lái)抑制腫瘤干細(xì)胞的增殖,導(dǎo)致腫瘤生長(zhǎng)停滯。聯(lián)合用藥靶向治療惡性腫瘤的意義:1)從根源上抑制腫瘤的增殖;2)對(duì)腫瘤干細(xì)胞細(xì)胞表面的標(biāo)志物靶向性更強(qiáng);3)通過(guò)聯(lián)合用藥能夠增加腫瘤干細(xì)胞及腫瘤細(xì)胞表面的通透性,降低其抗藥能力,利于藥物的吸收;4)聯(lián)合用藥能夠提高藥物的藥效特性,對(duì)惡性膠質(zhì)瘤干細(xì)胞的殺傷力更強(qiáng)。目前,聯(lián)合用藥治療針對(duì)膠質(zhì)母細(xì)胞瘤樣干細(xì)胞治療依然處于基礎(chǔ)醫(yī)學(xué)研究中,尚未在臨床中施行。

5 問(wèn)題與展望

隨著目前腫瘤干細(xì)胞學(xué)說(shuō)的興起,對(duì)于膠質(zhì)母細(xì)胞瘤的治療也不僅局限于單一的藥物。雖然如此,但仍有許多關(guān)鍵問(wèn)題尚未解決,如聯(lián)合用藥是否對(duì)血腦屏障起到一定的損傷作用,對(duì)機(jī)體的毒副反應(yīng)是否更強(qiáng),以及靶點(diǎn)是否有效等問(wèn)題,目前還尚未研究清楚,因此,聯(lián)合用藥治療腫瘤干細(xì)胞可以說(shuō)打破了傳統(tǒng)的治療方式,但是更多的機(jī)制需要進(jìn)一步的研究才有可能從根本上找到治療腫瘤的方法。

[1]KOZOVSKA Z,GABRISOVA V,KUCEROVA L,et al.Colon cancer: cancer stem cells markers,drug resistance and treatment[J].Biomed Pharmacother, 2014,68(8):911-916.

[2]ADAMSON C,KANU OO,MEHTA AI,et al.Glioblastoma multiforme: a review of where we have been and where we are going[J].Expert Opin Investig Drugs, 2009,18(8):1061-1083.

[3]LIMA FR,KAHN SA,SOLETTI RC,et al.Glioblastoma: therapeutic challenges,what lies ahead[J].Biochim Biophys Acta, 2012,1826(2):338-349.

[4]TOBIAS A,AHMED A,MOON KS,et al.The art of gene therapy for glioma: a review of the challenging road to the bedside[J].J Neurol Neurosurg Psychiatry, 2013,84(2):213-222.

[5]STUPP R,HEGI ME,MASON WP,et al.Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study: 5-year analysis of the EORTC-NCIC trial[J].Lancet Oncol, 2009,10(5):459-466.

[6]DONOVAN PJ,GEARHART J.The end of the beginning for pluripotent stem cells[J].Nature, 2001,414(6859):92-97.

[7]MORRISON SJ,KIMBLE J.Asymmetric and symmetric stem-cell divisions in development and cancer[J].Nature, 2006,441(7097):1068-1074.

[8]REYA T,MORRISON SJ,CLARKE MF,et al.Stem cells,cancer,and cancer stem cells[J].Nature, 2001,414(6859):105-111.

[9]BONNET D,DICK JE.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J].Nat Med, 1997,3(7):730-737.

[10]LAPIDOT T,SIRARD C,VORMOOR J,et al.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J].Nature, 1994,367(6464):645-648.

[11]BRUCE WR,VAN DER GAAG H.A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo[J].Nature, 1963,199:79-80.

[12]GRIFFIN JD,L?WENBERG B.Clonogenic cells in acute myeloblastic leukemia[J].Blood, 1986,68(6):1185-1195.

[13]HAMBURGER AW,SALMON SE.Primary bioassay of human tumor stem cells[J].Science, 1977,197(4302):461-463.

[14]PARK CH,BERGSAGEL DE,MCCULLOCH EA.Mouse myeloma tumor stem cells: a primary cell culture assay[J].J Natl Cancer Inst, 1971,46(2):411-422.

[15]SABBATH KD,BALL ED,LARCOM P,et al.Heterogeneity of clonogenic cells in acute myeloblastic leukemia[J].J Clin Invest, 1985,75(2):746-753.

[16]FIDLER IJ,HART IR.Biological diversity in metastatic neoplasms: origins and implications[J].Science, 1982,217(4564):998-1003.

[17]HANAHAN D,WEINBERG RA.The hallmarks of cancer[J].Cell, 2000,100(1):57-70.

[18]XU ZY,WANG K,LI XQ,et al.The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells[J].Ultrasonics, 2013,53(1):232-238.

[19]FULAWKA L,DONIZY P,HALON A.Cancer stem cells-the current status of an old concept: literature review and clinical approaches[J].Biol Res, 2014,47(1):66.

[20]MARUSYK A,POLYAK K.Tumor heterogeneity: causes and consequences[J].Biochim Biophys Acta, 2010,1805(1):105-117.

[21]DING M,LI J,YU Y,et al.Integrated analysis of miRNA,gene,and pathway regulatory networks in hepatic cancer stem cells[J].J Transl Med, 2015,13:259.

[22]SON MJ,WOOLARD K,NAM DH,et al.SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma[J].Cell Stem Cell, 2009,4(5):440-452.

[23]MAO XG,ZHANG X,XUE XY,et al.Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15[J].Transl Oncol, 2009,2(4):247-257.

[24]CHEN R,NISHIMURA MC,BUMBACA SM,et al.A hierarchy of self-renewing tumor-initiating cell types in glioblastoma[J].Cancer Cell, 2010,17(4):362-375.

[25]CLARKE MF,DICK JE,DIRKS PB,et al.Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells[J].Cancer Res, 2006,66(19):9339-9344.

[26]LI Z,WANG H,EYLER CE,et al.Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways[J].J Biol Chem, 2009,284(25):16705-16709.

[27]TAKAHASHI K,YAMANAKA S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell, 2006,126(4):663-676.

[28]SELL S.Cancer and stem cell signaling: a guide to preventive and therapeutic strategies for cancer stem cells[J].Stem Cell Rev, 2007,3(1):1-6.

[29]BARNHART BC,SIMON MC.Metastasis and stem cell pathways[J].Cancer Metastasis Rev, 2007,26(2):261-271.

[30]STUPP R,MASON WP,VAN DEN BENT MJ,et al.Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].N Engl J Med, 2005,352(10):987-996.

[31]BEIER D,SCHULZ JB,BEIER CP.Chemoresistance of glioblastoma cancer stem cells--much more complex than expected[J].Mol Cancer, 2011,10:128.

[32]KANG MK,KANG SK.Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma[J].Stem Cells Dev, 2007,16(5):837-847.

[33]BAO S,WU Q,MCLENDON RE,et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature, 2006,444(7120):756-760.

[34]CHEKENYA M,KRAKSTAD C,SVENDSEN A,et al.The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling[J].Oncogene,2008,27(39):5182-5194.

[35]JOHANNESSEN TC,WANG J,SKAFTNESMO KO,et al.Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype[J].Neuropathol Appl Neurobiol, 2009,35(4):380-393.

[36]LIU G,YUAN X,ZENG Z,et al.Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma[J].Mol Cancer, 2006,5:67.

[37]KHAN RB,RAIZER JJ,MALKIN MG,et al.A phase Ⅱ study of extended low-dose temozolomide in recurrent malignant gliomas[J].Neuro Oncol, 2002,4(1):39-43.

[38]SHI ZD,QIAN XM,LIU CY,et al.Aspirin-/TMZ-coloaded microspheres exert synergistic antiglioma efficacy via inhibition of β-catenin transactivation[J].CNS Neurosci Ther, 2013,19(2):98-108.

[39]ASTETE CE,SABLIOV CM.Synthesis and characterization of PLGA nanoparticles[J].J Biomater Sci Polym Ed, 2006,17(3):247-289.

[40]MAKADIA HK,SIEGEL SJ.Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier[J].Polymers (Basel), 2011,3(3):1377-1397.

[41]CHENG L,BAO S,RICH JN,et al.Potential therapeutic implications of cancer stem cells in glioblastoma[J].Biochem Pharmacol, 2010,80(5):654-665.

[42]CLEVERS H.Wnt/beta-catenin signaling in development and disease[J].Cell, 2006,127(3):469-480.

[43]GRIGORYAN T,WEND P,KLAUS A,et al.Deciphering the function of canonical Wnt signals in development and disease: conditional loss-and gain-of-function mutations of beta-catenin in mice[J].Genes Dev, 2008,22(17):2308-2341.

[44]DE LA IGLESIA N,PURAM SV,BONNI A.STAT3 regulation of glioblastoma pathogenesis[J].Curr Mol Med, 2009,9(5):580-590.

[45]DE LA IGLESIA N,KONOPKA G,PURAM SV,et al.Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway[J].Genes Dev, 2008,22(4):449-462.

[46]TELEVANTOU D,KARKAVELAS G,HYTIROGLOU P,et al.DARPP32,STAT5 and STAT3 mRNA expression ratios in glioblastomas are associated with patient outcome[J].Pathol Oncol Res, 2013,19(2):329-343.

[47]PURAM SV,YEUNG CM,JAHANI-ASL A,et al.STAT3-iNOS Signaling Mediates EGFRvⅢ-Induced Glial Proliferation and Transformation[J].J Neurosci, 2012,32(23):7806-7818.

[48]CAO Y,LATHIA JD,EYLER CE,et al.Erythropoietin Receptor Signaling Through STAT3 Is Required For Glioma Stem Cell Maintenance[J].Genes Cancer, 2010,1(1):50-61.

[49]WANG H,LATHIA JD,WU Q,et al.Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth[J].Stem Cells, 2009,27(10):2393-2404.

[50]WEI J,BARR J,KONG LY,et al.Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway[J].Mol Cancer Ther, 2010,9(1):67-78.

[51]SAI K,WANG S,BALASUBRAMANIYAN V,et al.Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193,a novel small molecule inhibitor of the JAK2/STAT3 pathway[J].J Neurooncol, 2012,107(3):487-501.

[52]SORMANI MP.Modeling the distribution of new MRI cortical lesions in multiple sclerosis longitudinal studies by Sormani MP,Calabrese M,Signori A,Giorgio A,Gallo P,De Stefano N [PLoS One 2011;6(10):e26712.Epub 2011 October 20] [J].Mult Scler Relat Disord, 2012,1(3):108.

[53]CHEN L,HUANG K,HAN L,et al.β-catenin/Tcf-4 complex transcriptionally regulates AKT1 in glioma[J].Int J Oncol, 2011,39(4):883-890.

[54]ZHANG J,HUANG K,SHI Z,et al.High β-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression[J].Neuro Oncol, 2011,13(6):600-609.

[55]YUE X,LAN F,YANG W,et al.Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells[J].Brain Res, 2010,1366:27-37.

[56]ROSSI M,MAGNONI L,MIRACCO C,et al.β-catenin and Gli1 are prognostic markers in glioblastoma[J].Cancer Biol Ther, 2011,11(8):753-761.

[57]WANG Y,CHEN L,BAO Z,et al.Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways[J].Oncol Rep, 2011,26(5):1173-1180.

[58]ROTHWELL PM,WILSON M,PRICE JF,et al.Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials[J].Lancet, 2012,379(9826):1591-1601.

[59]CAPORALI S,LEVATI L,STARACE G,et al.AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition[J].Mol Pharmacol, 2008,74(1):173-183.

[60]GASPAR N,MARSHALL L,PERRYMAN L,et al.MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature[J].Cancer Res, 2010,70(22):9243-9252.

[61]PRASAD G,SOTTERO T,YANG X,et al.Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide[J].Neuro Oncol, 2011,13(4):384-392.

[62]SINNBERG T,LASITHIOTAKIS K,NIESSNER H,et al.Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide[J].J Invest Dermatol, 2009,129(6):1500-1515.

[63]LO HW,CAO X,ZHU H,et al.Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators[J].Clin Cancer Res, 2008,14(19):6042-6054.

[64]DAI Y,GRANT S.Targeting multiple arms of the apoptotic regulatory machinery[J].Cancer Res, 2007,67(7):2908-2911.

[65]LI X,LU X,XU H,et al.Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on "oxidation therapy"[J].Mol Pharm, 2012,9(2):222-229.

[66]KIM EJ,KIM SO,JIN X,et al.Epidermal growth factor receptor variant Ⅲ renders glioma cancer cells less differentiated by JAGGED1[J].Tumour Biol, 2015,36(4):2921-2928.

[67]ZHANG P,SHI B,GAO H,et al.An EpCAM/CD3 bispecific antibody efficiently eliminates hepatocellular carcinoma cells with limited galectin-1 expression[J].Cancer Immunol Immunother, 2014,63(2):121-132.

[68]DANHIER F,MESSAOUDI K,LEMAIRE L,et al.Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation[J].Int J Pharm, 2015,481(1/2):154-161.

[69]AAGAARD L,Rossi JJ.RNAi therapeutics: principles,prospects and challenges[J].Adv Drug Deliv Rev, 2007,59(2/3):75-86.

[70]KIM DH,ROSSI JJ.Strategies for silencing human disease using RNA interference[J].Nat Rev Genet, 2007,8(3):173-184.

[71]REISCHL D,ZIMMER A.Drug delivery of siRNA therapeutics: potentials and limits of nanosystems[J].Nanomedicine, 2009,5(1):8-20.

[72]VOLKOV AA,KRUGLOVA NS,MESCHANINOVA MI,et al.Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect[J].Oligonucleotides, 2009,19(2):191-202.

[73]MALMO J,S?RG?RD H,V?RUM KM,et al.siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing[J].J Control Release, 2012,158(2):261-268.

[74]FRIEDMAN HS,KERBY T,CALVERT H.Temozolomide and treatment of malignant glioma[J].Clin Cancer Res, 2000,6(7):2585-2597.

[75]HATANPAA KJ,BURMA S,ZHAO D,et al.Epidermal growth factor receptor in glioma: signal transduction,neuropathology,imaging,and radioresistance[J].Neoplasia, 2010,12(9):675-684.

[76]VERREAULT M,WEPPLER SA,STEGEMAN A,et al.Combined RNAi-mediated suppression of Rictor and EGFR resulted in complete tumor regression in an orthotopic glioblastoma tumor model[J].PLoS One, 2013,8(3):e59597.

[77]XUE HY,LIU S,WONG HL.Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine[J].Nanomedicine (Lond), 2014,9(2):295-312.

[78]ZHAO Q,KRETSCHMER N,BAUER R,et al.Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically killglioblastoma cells in combination with erlotinib[J].Int J Cancer, 2015,137(6):1446-1456.

李浩詣(1995-),男,學(xué)士在讀,參與膠質(zhì)瘤干細(xì)胞增殖分化相關(guān)研究。E-mail:627269051@qq.com

汪云(1980-),女,博士,講師,主要從事膠質(zhì)瘤干細(xì)胞增殖分化相關(guān)研究。E-mail:yunwang30@hotmail.com

10.3969/j.issn.1673-5412.2017.01.029

R739.4;R730.54

A

1673-5412(2017)01-0088-06

2015-07-23)

猜你喜歡
莫唑胺母細(xì)胞膠質(zhì)
成人幕上髓母細(xì)胞瘤1例誤診分析
白花丹素調(diào)節(jié)MEK/ERK通路增加腦膠質(zhì)瘤U87細(xì)胞對(duì)替莫唑胺的敏感性研究
頂骨炎性肌纖維母細(xì)胞瘤一例
人類星形膠質(zhì)細(xì)胞和NG2膠質(zhì)細(xì)胞的特性
談?wù)勀讣?xì)胞瘤
預(yù)防小兒母細(xì)胞瘤,10個(gè)細(xì)節(jié)別忽視
視網(wǎng)膜小膠質(zhì)細(xì)胞的研究進(jìn)展
側(cè)腦室內(nèi)罕見(jiàn)膠質(zhì)肉瘤一例
磁共振成像(2015年1期)2015-12-23 08:52:21
替莫唑胺對(duì)小細(xì)胞肺癌H446細(xì)胞的凋亡誘導(dǎo)作用
替莫唑胺輔助治療惡性膠質(zhì)瘤43例臨床療效評(píng)價(jià)
金山区| 兴安盟| 西峡县| 安仁县| 山东省| 临澧县| 镇江市| 成都市| 海林市| 松潘县| 武夷山市| 黑龙江省| 周口市| 大渡口区| 锡林浩特市| 松潘县| 洱源县| 襄汾县| 宁波市| 正镶白旗| 青冈县| 延庆县| 昭平县| 海口市| 惠东县| 鄂托克旗| 额尔古纳市| 临城县| 红河县| 普安县| 郎溪县| 北流市| 青龙| 五莲县| 乐山市| 山阴县| 罗源县| 高州市| 新兴县| 湘乡市| 巴林右旗|