李 潔,魏振宇,彭 坤,張少麗,黨瑞華,雷初朝,陳 宏,藍(lán)賢勇
(1.西北農(nóng)林科技大學(xué)動物科技學(xué)院,陜西 楊凌 712100;2. 西北農(nóng)林科技大學(xué)創(chuàng)新實(shí)驗(yàn)學(xué)院,陜西 楊凌 712100)
朊蛋白基因(PRNP)不僅與動物傳染性海綿樣腦病(TSEs)密切相關(guān),還與反芻家畜的表型性狀密切相關(guān)。已有研究表明:牛、水牛、牦牛、綿羊、山羊等反芻家畜PRNP基因具有豐富的多態(tài)性,同時,這些遺傳變異位點(diǎn)在這些物種中又具有顯著差異性;其中,牛、綿羊和山羊PRNP基因多態(tài)性與BSE、瘙癢病顯著相關(guān);牛、綿羊和山羊PRNP基因多態(tài)性與生產(chǎn)性能有密切相關(guān)性。為此,本文從反芻家畜PRNP基因結(jié)構(gòu)比較、反芻家畜PRNP基因多態(tài)性研究、反芻家畜PRNP多態(tài)性與疾病的關(guān)系、反芻家畜PRNP多態(tài)性與生產(chǎn)性能的關(guān)系等四方面進(jìn)行綜述,以期為反芻家畜優(yōu)良個體及品種的高效選育提供理論參考。
反芻家畜;朊蛋白基因(PRNP);多態(tài)性;遺傳效應(yīng);性狀
作為人獸共患疾病的典型代表,傳染性海綿樣腦病(transmissible spongiform encephalopathies,TSEs)因其高傳染性與致死性對畜牧產(chǎn)業(yè)乃至整個社會造成了極大的危害[1]。作為調(diào)控哺乳動物TSEs的主要基因,朊蛋白基因(prion protein gene,PRNP)突變或其編碼蛋白構(gòu)象改變,會引起朊病毒疾病的發(fā)生。目前,已有研究證實(shí)反芻家畜PRNP基因存在豐富的遺傳多態(tài)性,同時這些遺傳變異位點(diǎn)在這些物種中又具有顯著差異性;其中牛[2]、山羊[3]和綿羊[4]的PRNP基因多個多態(tài)性位點(diǎn)與TSEs的易感性及潛伏期有顯著的相關(guān)關(guān)系。典型的朊病毒病包括人的克雅氏病、吉斯特曼斯特勞斯綜合征、致死性家族性失眠癥、散發(fā)型致死性失眠病、庫魯病、變異型克雅氏病、牛傳染性海綿狀腦病或稱瘋牛病和羊瘙癢病等[5]。疾病的發(fā)生會影響家畜的生長速度,產(chǎn)子數(shù)以及其他生產(chǎn)性能等,從而造成了嚴(yán)重的經(jīng)濟(jì)生產(chǎn)損失[6]。隨著研究的逐漸深入,也有研究發(fā)現(xiàn)PRNP基因多態(tài)性可以影響未感染TSEs的健康動物的表型性狀[7,8],因此,研究PRNP基因多態(tài)性對家畜生產(chǎn)性能的提高具有重要意義。
為此,本文對反芻家畜PRNP基因結(jié)構(gòu)比較、反芻家畜PRNP基因多態(tài)性研究、反芻家畜PRNP多態(tài)性與疾病的關(guān)系、反芻家畜PRNP多態(tài)性與生產(chǎn)性能的關(guān)系等方面進(jìn)行綜述,以期為分子標(biāo)記輔助優(yōu)良個體選擇及家畜育種研究提供了重要思路與理論支持。
由于PRNP基因廣泛存在于動物體內(nèi),目前研究人員已對多種動物的PRNP基因進(jìn)行了研究。在常見反芻家畜中,例如山羊、綿羊、家牛、瘤牛、水牛、牦牛等,PRNP基因大多被定位于家畜13號染色體(牦牛未定位),大多含有三個或五個外顯子,PRNP 基因的開放閱讀框(ORF)都編碼一個約由250個氨基酸組成的PrP蛋白,基因結(jié)構(gòu)較簡單(表1)。此外,在已研究的哺乳動物中,PRNP基因ORF中的DNA序列和PrP氨基酸序列的相似性分別達(dá)到90%和95%以上[9]。由此可見,PRNP基因具有高度保守性,這也為朊蛋白跨物種傳播提供了分子基礎(chǔ)。
表1 常見反芻家畜PRNP基因結(jié)構(gòu)統(tǒng)計表
雖然PRNP基因在反芻家畜之間具有高度同源性,但該基因在不同物種之間多態(tài)性卻具有很大差異性,這也是PRNP基因多態(tài)性一直是研究熱點(diǎn)的原因之一。目前,反芻家畜PRNP基因已被報道的多態(tài)性位點(diǎn)包括單核苷酸多態(tài)性(SNPs)和插入/缺失(indel)突變,拷貝數(shù)變異(CNV)卻未見報道。
反芻家畜PRNP基因中存在大量的SNP位點(diǎn),且不同品種間的SNP多態(tài)性差異較大。早在2010年,Shimogiri等通過對mythun,日本黑牛以及蒙古牛群體進(jìn)行檢測,發(fā)現(xiàn)K3T和S154N兩個無義突變[10]。Xi等通過對125頭大額牛的PRNP基因編碼區(qū)序列進(jìn)行檢測,共發(fā)現(xiàn)10個SNP位點(diǎn),包括6個同義突變(C60T,G75A,A108T,G126A,C357T和C678T)和4個非同義突變(C8A,G145A,G461A和C756G),相對應(yīng)的氨基酸上的改變(T3K,G49S9,N154S和I252M)也得到了驗(yàn)證[11]。與此同時,Choi等首次對300頭Hanwoo牛(韓國),澤西牛,日本黑牛等群體的PRNP基因編碼區(qū)序列進(jìn)行檢測,發(fā)現(xiàn)4個同義突變(G234A,C555T,C576T,和C630T) 和2個非同義突變[12]。在中國延邊牛和中國草原紅牛群體中,PRNP基因也存在3個非同義突變造成了氨基酸的改變(K119N,S154N和 M177V)和一個沉默突變(A234G)[13]。
在安托利亞水牛及摩拉水牛PRNP基因編碼區(qū)檢測到3個同義突變(126,234及285位)與一個非同義突變(322位,G108S)。其中,126位存在G/A/T三種堿基[14];水牛PRNP基因也具有較高多態(tài)性,但牦牛PRNP基因多態(tài)性的相關(guān)研究還未見報道。
綿羊PRNP基因中有大量SNP位點(diǎn),例如,密碼子85 (G/R),112 (M/T/I),116 (A/P),127(G/A/V/S),136 (A/V/T),137 (M/T),138 (S/N),141(L/F),143 (H/R),151 (R/C),152 (Y/F),154 (R/H),167 (R/S),168 (P/L),171 (Q/R/H/K),175 (Q/E),176(K/N),180 (H/Y),189 (G/L/R),195 (T/S),196 (T/S),211 (R/Q)和161 (P/S)[15-19]。Lan等對來自中國16個地方品種的486只綿羊進(jìn)行了檢測,共檢測到154位密碼子(R或H)和171 位密碼子(具有4種突變,分別編碼Q,R,H或K)具有多態(tài)性。在所有檢測品種中,136位密碼子均為純合AA,未檢測到A/V突變。此外,在所有檢測品種中,密碼子21,101,112,127,138,141,143,146,153和189 均具有多態(tài)性。密碼子171位的優(yōu)勢等位基因?yàn)镼(頻率高達(dá)88.68%)[20]。
在山羊群體中,有大量SNP位點(diǎn),分別位于密碼子:V21A,G22C,L23P,G37V,G42A,G49S,P63L,W102G,T110N,T110P,G127S,L133Q,M137I,I142M,I142T,H143R,N146S,N146D,R151H,R154H,P168Q,T194P,F(xiàn)201L,R211Q,R211G,I218L,T219I,Q220H,Q222K和P240S[21-31]。Zhou等對來自中國11個地方品種的337只山羊羊進(jìn)行了檢測,共在山羊PRNP基因上檢測到10種氨基酸的多態(tài)性(分別位于密碼子102,127,143,146,154,211,218,219,222和240)[32]。
反芻家畜PRNP基因中除了存在大量的SNPs位點(diǎn),還存在一些indel位點(diǎn),如表2所示。
目前,關(guān)于人類PRNP基因CNV研究有極少報道,例如:Ana等[33]通過對1147名克雅氏病人進(jìn)行PRNP CNV掃描,經(jīng)多重檢驗(yàn)后發(fā)現(xiàn)CNVs >100,>500,或者 >1000 kb,與人克雅氏疾病的發(fā)生并無顯著關(guān)聯(lián)性。但關(guān)于反芻家畜PRNP基因拷貝數(shù)變異(CNV)卻未見報道,反芻動物PRNP 是否存在CNV變異及其遺傳效應(yīng)仍有待挖掘。
表2 常見反芻家畜PRNP基因indel位點(diǎn)統(tǒng)計表
朊蛋白基因(prion protein gene,PRNP)突變或其編碼蛋白構(gòu)象發(fā)生改變,是引發(fā)哺乳動物TSEs的主要原因。Sander等[34,35]分析了43頭已感染BSE的德國肉牛與48頭健康的德國肉牛,也是第一次比較了23-bp indel和12-bp indel這兩個indel多態(tài)性位點(diǎn)與BSE抗病性的相關(guān)關(guān)系,結(jié)果發(fā)現(xiàn)PRNP基因多態(tài)性與BSE有顯著相關(guān),并且也可以調(diào)節(jié)BSE的潛伏期,與瘋牛病的易感性相關(guān)聯(lián)。并且,他們發(fā)現(xiàn)這兩個indel位點(diǎn)可以影響轉(zhuǎn)錄因子RP58和Sp1的結(jié)合位點(diǎn)。Xue等通過對日本黑牛的研究,發(fā)現(xiàn)轉(zhuǎn)錄因子Sp1和RP58可能對PRNP基因的表達(dá)有負(fù)反饋調(diào)節(jié)作用[36]。同時,Kashkevich等(2007)研究PRNP基因啟動區(qū)域的多態(tài)性,發(fā)現(xiàn)通過降低PRNP基因的表達(dá)可以增強(qiáng)瘋牛病的抗性[37]。而Neibergs等[38]報道了開放閱讀框并不影響瘋牛病的易感性。Hreko等研究發(fā)現(xiàn),PRNP基因啟動子區(qū)的23-bp缺失的純合子插入基因型似乎已經(jīng)對瘋牛病起保護(hù)作用[39]。此外,由于水牛與家牛PrP的表達(dá)量不同,因此牛與水牛對瘋牛病的易感性也明顯不同[40-41]。至今還未在水牛群體中見到爆發(fā)瘋牛病。大量研究表明牛PRNP啟動子區(qū)23-bp及第一內(nèi)含子12-bp的多態(tài)性與瘋牛病感染性及抗性密切相關(guān),但在安納托利亞水牛及摩拉水牛中只發(fā)現(xiàn)了插入/插入(II)型,未檢測到突變型,推測II型為抗性基因型[42]。
綿羊PRNP基因多態(tài)性研究多集中于外顯子區(qū)域,尤其是第三外顯子且突變多以單核苷酸突變?yōu)橹鳌?36[43],141[44],146[45],154[46]和171[47]位密碼子的變異被證實(shí)與綿羊瘙癢病的發(fā)生或病癥密切相關(guān)。研究表明,在患有TSE的病羊中,其136 位點(diǎn)(A-V)154 位點(diǎn)(R-H)和171 位點(diǎn)(Q-R/H)均會發(fā)生突變。其中,Q171R多態(tài)性對羊瘙癢病的感染具有很強(qiáng)的抗性而A136V多態(tài)性則極易感染。并且,基因型ARR/ARR 或ARR/ARQ 是抗性基因型,而ARQ/ARQ、VRQ/ARQ、AHQ/VRH 等其它基因型羊則為敏感型[48-51]。同時,一些非編碼區(qū)域的突變也被報道影響綿羊瘙癢病的易感性[52]。
類似地,山羊PRNP基因的多態(tài)性,如I142M,H143R,N146S/D,R154H,R211Q和Q222K也對羊瘙癢病的感染表現(xiàn)出明顯的抗性[5]。自2001年開始,歐盟各國開始培育有抗性基因的羊,其中ARR/ARR純合子具有最高的抗羊瘙癢病的能力,并且這些純合子綿羊的產(chǎn)量、生長、繁殖和健康都和其他羊沒有明顯的差異[53]。隨著家畜抗TSEs分子育種工作在歐盟各國成功開展,這些著名的致病性位點(diǎn)經(jīng)過人工選擇逐漸被淘汰,綿羊瘙癢病和瘋牛病等神經(jīng)退行性疾病的爆發(fā)也基本已得到控制。
生產(chǎn)性能是決定畜牧養(yǎng)殖業(yè)效益的主要指標(biāo),包括家畜生長性狀及繁殖性能。除了參與調(diào)控TSEs疾病,PRNP基因多態(tài)性也被證實(shí)與動物的一些表型性狀顯著相關(guān)。例如,綿羊PRNP基因的VRQ和ARQ等位基因變異體(在密碼子136、154和171的多態(tài)性位點(diǎn))與綿羊瘙癢病的高易感性呈顯著相關(guān),導(dǎo)致綿羊的生產(chǎn)性能顯著降低從而造成了嚴(yán)重的經(jīng)濟(jì)生產(chǎn)損失[6]。與此同時,也有研究表明PRNP基因多態(tài)性可以影響未感染TSEs的健康動物的表型性狀。
在健康牛群體中,PRNP八肽重復(fù)序列多態(tài)性被報道與荷斯坦奶牛的產(chǎn)奶性狀密切相關(guān)[54]。在我國地方黃牛群體中,PRNP基因多樣性與生產(chǎn)性能的關(guān)系也被揭示。Yang[7-8]等首次在中國良種黃牛(秦川牛,南陽牛,郟縣紅牛,吉安牛,夏南牛和皮南牛)群體中,驗(yàn)證了PRNP基因3′ UTR區(qū)14-bp indel,啟動子區(qū)23-bp indel和第一內(nèi)含子12-bp indel突變與牛的生長性狀顯著相關(guān)。例如,3′ UTR區(qū)14-bp indel與秦川牛的體長,夏南牛的體重和腰圍顯著相關(guān)(P<0.05)。南陽牛在23-bp indel位點(diǎn)上基因型為缺失/缺失(DD)基因型的個體以及12-bp indel位點(diǎn)基因型為插入/插入(II)基因型的個體表現(xiàn)出了更優(yōu)良的表型性狀,在六個研究的牛品種中南陽牛具有較低的雜合子(ID)單倍型頻率[8]。此外,PRNP啟動子區(qū)23-bp indel顯著影響南陽牛的體長和胸圍,第一內(nèi)含子12-bp indel突變也與吉安牛的管圍密切相關(guān)[7]。
在健康綿羊群體中,PRNP基因多態(tài)性被報道影響羔羊生長性狀[55-57],母綿羊的繁殖力[58-60]和產(chǎn)奶量[61-62]等生產(chǎn)性能。Sawalha等研究發(fā)現(xiàn),攜帶ARQ等位基因的蘇格蘭黑面母綿羊往往具有較強(qiáng)的季節(jié)性脂肪組織動員能力[63]。同時,他們也發(fā)現(xiàn)171位密碼子的多態(tài)性與薩??司d羊的產(chǎn)羔性狀顯著相關(guān)[25]。Allais-Bonnet[64]等人也發(fā)現(xiàn)PRNP基因型的差異(例如,ARQ/ARQ和 ARR/ARQ)及八肽重復(fù)序列多態(tài)性可以導(dǎo)致Latxa綿羊產(chǎn)奶性能(產(chǎn)奶量,奶蛋白,奶脂含量)的差異。還有研究表明PRNP基因型與Texel羊的產(chǎn)仔數(shù)和135日齡的體重有顯著相關(guān)[65]。先前我們課題組在來自中國和蒙古5個品種的768名健康綿羊個體PRNP基因中共發(fā)現(xiàn)了四種新的indel多態(tài)性:第一內(nèi)含子7-bp(I1-7bp),第二內(nèi)含子15-bp(I2-15 bp),第二內(nèi)含子19-bp(I2-19 bp)和3 'UTR-7 bp(3'UTR-7 bp)。并且,這4種indel與13個不同的生長性狀(例如,毛長,背高,胸圍等)呈顯著相關(guān)(P<0.05)[66]。尤其是I2-15 bp對小尾寒羊(母羊)的胸寬(P= 0.001,DD為優(yōu)勢基因型),3'UTR-7 bp對湖羊的胸圍(P= 0.003,DD為優(yōu)勢基因型),12-19 bp 對小尾寒羊(公羊)的胸圍指數(shù)(P=1.122E-4,DD為優(yōu)勢基因型)以及同羊的尾長(P= 0.001,II為優(yōu)勢基因型),呈現(xiàn)極顯著關(guān)聯(lián)性(P<0.01)[66]。
在健康山羊群體中,山羊PRNP基因啟動子區(qū)28-bp的indel突變與內(nèi)蒙古白絨山羊的平均體重,1歲羊平均體重以及3歲羊毛厚度顯著相關(guān),并且II型均為這三種性狀的優(yōu)勢基因型[67]。此外,該 indel 突變也與西農(nóng)薩能奶山羊的平均產(chǎn)奶量密切相關(guān),II型個體產(chǎn)奶量顯著高于雜合型(ID)個體,但I(xiàn)D型個體夜間總固體量要顯著高于II型個體[67]。此外,Lan等通過對來自4個綿羊品種(西農(nóng)薩能奶山羊,內(nèi)蒙古白絨山羊,新疆絨山羊,陜北白絨山羊)2002只綿羊的PRNP基因進(jìn)行多態(tài)性位點(diǎn)掃描,發(fā)現(xiàn)第42位密碼子的SNP位點(diǎn)(42CCG>42CCA)與7歲內(nèi)蒙古白絨山羊的體重顯著相關(guān),并且GG型個體體重要顯著優(yōu)于AA基因型個體[68]。與此同時,該位點(diǎn)還與內(nèi)蒙古白絨山羊的產(chǎn)絨量和毛長顯著相關(guān)。此外,在西農(nóng)薩能奶山羊中,GG型個體的早、晚奶密度以及奶中非脂質(zhì)固體含量要顯著優(yōu)于其他基因型。總體而言,GG型薩能奶山羊所產(chǎn)奶質(zhì)量往往要優(yōu)于其他基因型[68]。
對于PRNP基因多態(tài)性與TSEs發(fā)病機(jī)理的關(guān)系,Telling等(1996年)學(xué)者認(rèn)為PRNP基因點(diǎn)突變的發(fā)生增加了不穩(wěn)定的中間分子的數(shù)量,同時加快了PrPc向PrPsc的轉(zhuǎn)換速率,從而形成穩(wěn)定性更好的PrPsc構(gòu)象[69]。此外,有研究證明Pr P在形成二級結(jié)構(gòu)過程中,該區(qū)域很容易發(fā)生α螺旋轉(zhuǎn)變?yōu)棣?折疊,增加了發(fā)病機(jī)率[70]解釋了PRNP 多態(tài)性與TSEs發(fā)病機(jī)理的關(guān)系。
在醫(yī)學(xué)領(lǐng)域中已有報道稱PrPc參與胚胎自我修復(fù),組織分化和癌干細(xì)胞的生成等過程[71-72],這為朊蛋白基因調(diào)控動物的生產(chǎn)性狀提供了理論基礎(chǔ)。先前研究報道DNA序列上堿基的突變可能會改變mRNA的穩(wěn)定性,以及mRNA加工和成熟過程,進(jìn)一步影響等位基因的表達(dá)和翻譯后肽鏈的折疊[73]。因此,我們預(yù)測PRNP這些indel突變序列中可能存在其他生長主效基因轉(zhuǎn)錄因子的結(jié)合位點(diǎn),使得這些生長基因的表達(dá)受到影響[74]。另外,有報道稱PRNP基因3′ UTR區(qū)的indel多態(tài)性可以通過微小RNA介導(dǎo)的轉(zhuǎn)錄后機(jī)制來調(diào)控性狀或疾病易感性[75]。此外,基因間的相互作用也可能是PRNP基因調(diào)控生長性狀的原因之一。已有研究證明在綿羊群體中,PRNP多態(tài)性位點(diǎn)往往與其臨近同源基因-疊朊蛋白基因(PRND)的多態(tài)性位點(diǎn)相互關(guān)聯(lián)[76],而我們先前的研究結(jié)果表明,綿羊PRND基因編碼區(qū)上游的20-bp indel突變與湖羊的管圍指數(shù)顯著相關(guān)[77]。此外,綿羊PRNP和GnRH基因也被報道可能存在連鎖關(guān)系,影響綿羊性成熟時的體重,對乳腺分化、母性行為、免疫特征及細(xì)胞凋亡都存在影響[78]。然而,這其中確切的分子調(diào)控機(jī)制還需要繼續(xù)探究。
迄今為止,我國還未見有關(guān)瘋牛病和瘙癢病大規(guī)模爆發(fā)的報道,且相關(guān)研究表明我國部分地方品種感染TSEs的可能性較低[79],因此如何在健康群體中高效準(zhǔn)確的篩選優(yōu)良個體及培育優(yōu)良畜種成為養(yǎng)殖業(yè)的關(guān)鍵。因DNA標(biāo)記具有標(biāo)記范圍廣,標(biāo)記數(shù)量不受限制,遺傳相對穩(wěn)定等優(yōu)點(diǎn),分子標(biāo)記輔助選擇(MAS)在畜牧業(yè)被廣泛的應(yīng)用,發(fā)展也十分迅速。目前已有應(yīng)用的DNA分子標(biāo)記包括:RFLP標(biāo)記、SSR標(biāo)記、indel 標(biāo)記以及SNP標(biāo)記等多種標(biāo)記方法,這些方法能夠加快育種改良進(jìn)程、減少生產(chǎn)成本。與此同時,上述大量研究已表明PRNP基因在反芻家畜中具有較高的多態(tài)性,可作為MAS選擇靶向基因。伴隨著畜牧產(chǎn)業(yè)的快速發(fā)展,相信未來會有更多的研究關(guān)注PRNP的遺傳多樣性與動物經(jīng)濟(jì)性狀的關(guān)系,從而為分子標(biāo)記輔助選擇(MAS)在畜牧業(yè)中的廣泛應(yīng)用提供新思路與理論依據(jù),加快家畜優(yōu)良經(jīng)濟(jì)品種的選育進(jìn)程。
[1] 席冬梅,劉 情,于虹漫,等. 牛羊朊蛋白基因( PRNP) 多態(tài)性與抗病性的研究進(jìn)展[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報, 2011, 26(3): 418-425.
[2] Goldmann W, Martin T, Foster J, et al. Novel polymorphisms in the caprine prp gene. A codon 142 mutation associated with scrapie incubation period [J]. Gen Virol, 1996, 77 (11): 2885-2891.
[3] Goldmann W. PrP genetics in ruminant transmissible spongiform encephalopathies[J]. Vet Res. 2008, 39(4): 30.
[4] Goldmann W, Hunter N, Smith G, et al. PrP genotype and agent effects in scrapie: change in allelicinteraction with different isolates of agents in sheep, a natural host of scrapie [J]. Gen Virol. 1994, 75 (5): 989-995.
[5] 張會俠,師 潤,李朝陽. 朊病毒疾病將如何發(fā)展[J]. 科學(xué)通報, 2017, 62: 16-24.
[6] Ioannides IM, Mavrogenis AP, Papachristoforou C. Analysis of PrP genotypes in relation to reproductive and production traits in Chios sheep [J]. Livest Sci, 2009, 122(2-3): 296-301.
[7] Yang Q, Zhang SH, Liu LL, et al. The evaluation of 23-bp and 12-bp insertion /deletion within the PRNP gene and their effects on growth traits in healthy Chinese native cattle breeds[J]. Journal of Applied Animal Research, 2017, dio: 10.1080/09712119.2017.1348950.
[8] Yang Q, Zhang SH, Liu LL, et al. Application of mathematical expectation (ME) strategy for detecting low frequency mutations: an example for evaluating 14 bp insertion/deletion (indel) within the bovine PRNP gene[J]. Prion, 2016, 10: 409-419.
[9] Lee IY, Westaway D, Smit AF, et al. Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Research, 1998, 8 (10): 1022-1037.
[10] Shimogiri T, Msalya G, Myint SL, et al. Allele distributions and frequencies of the six prion protein gene (PRNP) polymorphisms in Asian native cattle, Japanese breeds, and mythun (Bos frontalis)[J]. Biochem Genet, 2010, 48(9-10):829-839.
[11] Xi D, Liu Q, Guo J, et al. Genetic variability of the coding region for the prion protein gene (PRNP) in gayal (Bos frontalis) [J]. Mol Biol Rep, 2012, 39(2):2011-2020.
[12] Choi S, Woo HJ, Lee J. Sequence variations of the bovine prion protein gene (PRNP) in native Korean Hanwoo cattle[J]. J Vet Sci, 2012, 13(2):127-137.
[13] Qin LH, Zhao YM, Bao YH, et al. Polymorphism of the prion protein gene (PRNP) in two Chinese indigenous cattle breeds[J]. Mol Biol Rep, 2011, 38(6):4197-4204.
[14] Yaman Y, ün C. Nucleotide and octapeptide-repeat variations of the prion protein coding gene (PRNP) in Anatolian, Murrah, and crossbred water buffaloes[J]. Trop Anim Health Prod, 2017, doi: 10.1007/s11250-017-1471-9.
[15] Heaton MP, Leymaster KA, Freking BA, et al. Prion gene sequence variation within diverse groups of U.S. sheep, beef cattle, and deer[J]. Mamm Genome: Off J Int Mamm Genome Soc, 2003, 14(11):765-777.
[16] Belt PB, Muileman IH, Schreuder BE, et al. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie[J]. J Gen Virol, 1995, 76(3):509-517.
[17] Billinis C, Psychas V, Leontides L, et al. Prion protein gene polymorphisms in healthy and scrapie-affected sheep in Greece[J]. J Gen Virol, 2004, 85(2):547-554.
[18] Zhang L, Li N, Fan B, et al. PRNP polymorphisms in Chinese ovine, caprine and bovine breeds[J]. Anim Genet, 2004, 35(6):457-461.
[19] Lan Z, Wang ZL, Liu Y, et al. Prion protein ene (PRNP) polymorphisms in Xinjiang local sheep breeds in China[J]. Arch Virol, 2006, 151(10):2095-2101.
[20] Lan Z, Li J, Sun C, et al. Allelic variants of PRNP in 16 Chinese local sheep breeds[J]. Arch Virol, 2014, 159(8):2141-2144.
[21] Goldmann W, Martin T, Foster J, et al. Novel polymorphisms in the caprine PrP gene: a codon 142 mutation associated with scrapie incubation period[J]. J Gen Virol, 1996, 77(11):2885-2891.
[22] Goldmann W, Chong A, Foster J, et al. The shortest known prion protein gene allele occurs in goats, has only three octapeptide repeats and is non-pathogenic[J]. J Gen Virol, 1998, 79(12): 3173-3176.
[23] Goldmann W, Perucchini M, Smith A, et al. Genetic variability of the PrP gene in a goat herd in the UK[J]. Vet Rec, 2004, 155(6):177-178.
[24] Goldmann W, Ryan K, Stewart P, et al. Caprine prion gene polymorphisms are associated with decreased incidence of classical scrapie in goat herds in the United Kingdom[J]. Vet Res, 2011, 42(1):110.
[25] Billinis C, Panagiotidis CH, Psychas V, et al. Prion protein gene polymorphisms in natural goat scrapie[J]. J Gen Virol,2002, 83(3): 713-721.
[26] Kurosaki Y, Ishiguro N, Horiuchi M, et al. Polymorphisms of caprine PrP gene detected in Japan[J]. J Vet Med Sci, 2005, 67(3):321-323.
[27] Acutis PL, Bossers A, Priem J, et al. Identification of prion protein gene polymorphisms in goats from Italian scrapie outbreaks[J]. J Gen Virol,2006, 87(4):1029-1033.
[28] Acutis PL, Colussi S, Santagada G, et al. Genetic variability of the PRNP gene in goat breeds from Northern and Southern Italy[J]. J Appl Microbiol. 2008; 104(6):1782-1789.
[29] Babar ME, Abdullah M, Nadeem A, et al. Prion protein gene polymorphisms in four goat breeds of Pakistan[J]. Mol Biol Rep, 2009, 36(1):141-144.
[30] Hussain A, Babar ME, Imran M, et al. Detection of four novel polymorphisms in PrP gene of Pakistani sheep (Damani and Hashtnagri) and goats (Kamori and Local Hairy) breeds[J]. Virol J, 2011, 8:246.
[31] Papasavva-Stylianou P, Windl O, Saunders G, et al. PrP gene polymorphisms in Cyprus goats and their association with resistance or susceptibility to natural scrapie[J]. Vet J, 2011, 187(2):245-250.
[32] Zhou R, Li X, Xi J, et al. Genetic variability of PRNP in Chinese indigenous goats[J]. Biochem Genet, 2013, 51(3-4):211-22.
[33] Lukic A, Uphill J, Brown CA, et al. Rare structural genetic variation in human prion diseases[J]. Neurobiol Aging, 2015, 36(5):2004.e1-8.
[34] Sander P, Hamann H, Pfeiffer I, et al. Analysis of sequence variability of bovine prion protein gene (PRNP) in German cattle breeds[J]. Neurogenetics, 2004, 5(1): 19-25.
[35] Sander P, Hamann H, Drgemüller C, et al. Bovine prion protein (PRNP): promoter polymorphisms modulated PRNP expression and may be responsible for differences in bovine spongiform encephalopathy susceptibility[J]. Biol Chem, 2005, 280(45): 37408-37414.
[36] Xue G, Sakudo A, Kim CK, et al. Coordinate regulation of bovine prion protein gene promoter activity by two Sp1 binding site polymorphisms[J]. Biochem Biophys Res Commun, 2008, 372(4):530-535.
[37] Kashkevich K, Humeny A, Ziegler U, et al. Fuctional relevance of DNA polymorphisms within the promoter region of the prion protein gene and their association to BSE infection[J]. FASEB J, 2007, 21(7):1547-1555.
[38] Neibergs HL, Ryan AM, Womack JE, et al. Polymorphism analysis of the prion gene in BSE-affected and unaffected cattle[J]. Anim Genet, 1994, 25(5): 313-317.
[39] Hresko S, Mojzis M, Tkacikova L. Prion protein gene polymorphism in healthy and BSE-affected Slovak cattle[J]. Journal of Applied Genetics, 2009, 50(4): 371-374.
[40] Zhao H, Wang S, Guo L, et al. Fixed differences in the 3'UTR of buffalo PRNP gene provide binding sites for miRNAs post-transcriptional regulation[J]. Oncotarget, 2017, 8(28):46006-46019.
[41] Zhao H, Du Y, Chen S, et al. The prion protein gene polymorphisms associated with bovine spongiform encephalopathy susceptibility differ significantly between cattle and buffalo[J]. Infect Genet Evol, 2015, 36:531-538.
[42] Yaman Y, Karada O, ün C. Investigation of the prion protein gene (PRNP) polymorphisms in Anatolian, Murrah, and crossbred water buffaloes (Bubalus bubalis)[J]. Trop Anim Health Prod, 2017, 49(2):427-430.
[43] Caroline P. de Andrade, Laura L, et al. Development of a real-time polymerase chain reaction assay for single nucleotide polymorphism genotyping codons 136, 154, and 171 of the prnp gene and application to Brazilian sheep herds[J]. Journal of Veterinary Diagnostic Investigation, 2013, 25(1): 120-124.
[44] Konold T, Phelan LJ, Donnachie BR, et al. Codon 141 polymorphisms of the ovine prion protein gene affect the phenotype of classical scrapie transmitted from goats to sheep[J]. BMC Veterinary research, 2017, 13(1): 122.
[45] Papasavva-Stylianou P, Simmons MM, Ortiz-Pelaez A, et al. The effect of polymorphisms at codon 146 of the goat PRNP gene on susceptibility to challenge with classical scrapie by different routes[J]. Journal of Virology, 2017, doi: 10.1128/JVI.01142-17.
[46] Seabury CM, Derr JN. Identification of a novel ovine PrP polymorphism and scrapie-resistant genotypes for St. Croix White and a related composite breed[J]. Cytogenetic and Genome Research,2003, 102: 85-88.
[47] Zabavnik J, Cotman M, Juntes P, et al. A decade of using small-to-medium throughput allele discrimination assay to determine prion protein gene (Prnp) genotypes in sheep in Slovenia[J]. Journal of Veterinary Diagnostic Investigation, 2017, doi: 10.1177/1040638717723946.
[48] Buschmann A,Lühken G,Schultz J,et al. Neuronal accumulation of abnormal prion protein in sheep carrying a scrapie-resistant genotype(PrPARR/ARR)[J]. J Gen Virol, 2004, 85(9): 2727-2733.
[49] Hamir A N, Kunkle R A, Richt J A, et al. Experimental transmission of sheep scrapie by intracerebral and oral routes to genetically susceptible Suffolk sheep in the United States[J]. J Vet Diagn Invest, 2005, 17(1): 3-9.
[50] Baylis M,McIntyre K M. Transmissible spongiform encephalopathies: scrapie control under new strain[J]. Nature, 2004, 432(7019): 810-811.
[51] 肖妍,董志珍,欒慎順,等. 我國部分地區(qū)傳染性羊癢病基因型的分布情況調(diào)查[J]. 中國動物檢疫, 2011, 28(12); 45-47.
[52] Saunders GC, Cawthraw S, Mountjoy SJ, et al. Ovine PRNP untranslated region and promoter haplotype diversity[J]. Journal of General Virology, 2009, 90: 1289-1293.
[53] Mesquita P, Batista M, Marques MR, et al. Prion-liked Doppel gene polymorphisms and scrapie susceptibility in portuguese sheep breeds[J]. Animal Genetics, 2010, 41(3): 311-314.
[54] Walawski K, Czarnik U. Prion octapeptide-repeat polymorphism in Polish Black-and-White cattle [J]. Appl Genet, 2003, 44(2): 191-195.
[55] Isler BJ, Freking BA, Thallman RM, et al. Evaluation of associations between prion haplotypes and growth, carcass, and meat quality traits in a Dorset x Romanov sheep population[J]. Journal of Animal Science, 2006, 84: 783-788.
[56] Sawalha RM, Brotherstone S, Man WYN, et al. Associations of polymorphisms of the ovine prion protein gene with growth, carcass, and computerized tomography traits in Scottish Blackface lambs[J]. Journal of Animal Science, 2007, 85: 632-640.
[57] Sawalha RM, Villanueva B, Brotherstone S, et al. Prediction of prion protein genotype and association of this genotype with lamb performance traits of Suffolk sheep[J]. American Society of Animal Science, 2010, 88(2): 428-434.
[58] Ponz R, Tejedor MT, Monteagudo LV, et al. Scrapie resistance alleles are not associated with lower prolificity in Rasa Aragonesa sheep[J]. Research in Veterinary Science, 2006, 81: 37-39.
[59] Casellas J, Caja G, Bach R, et al. 2007. Association analyses between the prion protein locus and reproductive and lamb weight traits in Ripollesa sheep[J]. Journal of Animal Science, 2007, 85: 592-597.
[60] Guan F, Pan L, Li J, et al. Polymorphisms of the prion protein gene and their effects on litter size and risk evaluation for scrapie in Chinese Hu sheep[J]. Virus Genes, 2011, 43(1): 147-152.
[61] álvarez L, Gutiérrez-Gil B, San Primitivo F, et al. Influence of prion protein genotypes on milk production traits in Spanish Churra sheep[J]. Journal of Dairy Science, 2006, 89: 1784-1791.
[62] Psifidi A, Basdagianni Z, Dovas CI, et al. Characterization of the PRNP gene locus in Chios dairy sheep and its association with milk production and reproduction traits[J]. Animal Genetics, 2011,42(4): 406-414.
[63] Sawalha RM, Brotherstone S, Lambe NR, et al. Association of the prion protein gene with individual tissue weights in Scottish Blackface sheep[J]. Journal of Animal Science, 2008, 86: 1737-1746.
[64] Allais-Bonnet A, Castille J, Pannetier M, et al. A specific role for PRND in goat foetal Leydig cells is suggested by prion family gene expression during gonad development in goats and mice[J]. FEBS Open Bio, 2016, 6(1): 4-15.
[65] Brandsma JH, Janss LLG, Visscher AH. Association between PrP genotypes and littersize and 135 days weight in Texel sheep [J]. Liv. Produc Sci, 2004, 85: 59-64.
[66] Jie Li, Sarantsetseg Erdenee, Shaoli Zhang, et al. Genetic effects of PRNP gene insertion/deletion (indel) on phenotypic traits in sheep[J]. Prion, 2017, doi: 10.1080/19336896.2017.1405886.
[67] Lan XY, Zhao HY, Li ZJ, et al. A novel 28-bp insertion-deletion polymorphism within goat PRNP gene and its association with production traits in Chinese native breeds [J]. Genome, 2012, 55(7): 547-552.
[68] Lan X, Zhao H, Wu C, et al.Analysis of genetic variability at codon 42 within caprine prion protein gene in relation to production traits in Chinese domestic breeds[J]. Mol Biol Rep, 2012 ,39(4):4981-4988.
[69] Telling G C, Parchi P, DeArmond S J, et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity[J]. Science, 1996, 274(5295):2079-2082.
[70] 楊建民,趙德明,郝永新,等. 奶牛朊病毒基因克隆與序列分析[J]. 畜牧獸醫(yī)學(xué)報, 2004, 35(6): 685-688.
[71] Rousset M, Leturque A, Thenet S. The nucleo-junctional interplay of the cellular prion protein: A new partner in cancer-related signaling pathways? [J] Prion, 2016, 10(2): 143-152.
[72] Santos TG, Lopes MH, Martins VR. Targeting prion protein interactions in cancer[J]. Prion, 2015, 9(3): 165-173.
[73] Komar AA. Genetics. SNPs, silent but not invisible[J]. Science. 2007, 315: 466-467.
[74] Hou JX, An XP, Song YX, et al. Two mutations in the caprine MTHFR 3’ UTR regulated by microRNAs are associated with milk production traits[J]. PLoS One, 2015, 10(7): e0133015.
[75] Peletto S, Bertolini S, Maniaci MG, et al. Association of an indel polymorphism in the 3’UTR of the caprine SPRN gene with the scrapie positivity in the central nervous system[J]. Journal of General Virology, 2012, 93: 1620-1623.
[76] Mesquita P, Garcia V, Marques MR, et al. The prion-related protein (testis-specific) gene (PRNT) is highly polymorphic in Portuguese sheep[J]. Animal Genetics, 2015, 47: 128-132.
[77] Li J, Zhu XC, Ma L, et al. Detection of a new 20bp insertion/deletion (indel) within sheep PRND gene using mathematical expectation (ME) method. Prion. 2017,11(2): 143-150.Sweeney T, Hanrahan JP. The evidence of associations between prion protein genotype and production, reproduction, and health traits in sheep[J]. Vet Res, 2008, 39(4): 28?46.
[78] Sweeney T, Hanrahan JP. The evidence of associations between prion protein genotype and production, reproduction, and health traits in sheep[J]. Vet Res, 2008, 39(4): 28-46.
[79] 朱慶豐,刁俊超,潘 磊,等. 湖羊PRNP 多態(tài)性及其對產(chǎn)羔數(shù)影響和抗癢病風(fēng)險評價[J]. 中國預(yù)防獸醫(yī)學(xué)報,2012, 34(10):802-806.
[80] Uchida L, Heriyanto A, Thongchai C, et al. Genetic diversity in the prion protein gene (PRNP) of domestic cattle and water buffaloes in Vietnam, Indonesia and Thailand[J]. J Vet Med Sci, 2014 , 76(7): 1001-1008.
[81] Oztabak K, Ozkan E, Soysal I, et al. Detection of prion gene promoter and intron1 indel polymorphisms in Anatolian water buffalo (Bubalus bubalis)[J]. J Anim Breed Genet, 2009, 126(6): 463-467.
[82] Imran M, Mahmood S, Babar ME, et al. PRNP gene variation in Pakistani cattle and buffaloes[J]. Gene, 2012, 505(1): 180-185.
[83] Hills D, Comincin S, Schlaepfer J, et al. Complete genomic sequence of the bovine prion gene (PRNP) and its polymorphism in its promoter region [J]. Animal Genetics, 2001, 32(4): 231-232.