連大衛(wèi) ,任文康,扶麗君,許藝飛,黃萍,操紅纓
(廣州中醫(yī)藥大學(xué)中藥學(xué)院,廣州 510405)
幽門螺桿菌感染細胞炎癥模型的建立及評價
連大衛(wèi) ,任文康,扶麗君,許藝飛,黃萍,操紅纓*
(廣州中醫(yī)藥大學(xué)中藥學(xué)院,廣州 510405)
目的建立和評價幽門螺桿菌(H.pylori)感染的2種細胞感染模型,為進一步研究H.pylori感染及其相關(guān)機制奠定基礎(chǔ)。方法培養(yǎng)人胃癌細胞株MKN45細胞,與H.pylori共孵育6h、12h和24h建立MKN45細胞H.pylori感染模型,臺盼藍染色和乳酸脫氫酶(LDH)法測定感染細胞存活率,熒光顯微鏡照相和流式細胞儀檢測Rhodamine123染色的細胞線粒體膜電位;培養(yǎng)小鼠巨噬細胞株RAW 264.7細胞,與H.pylori共孵育6h、12h和24h建立RAW 264.7細胞H.pylori感染模型,Griess法檢測感染細胞上清液中NO的含量變化,RT-qPCR法檢測感染細胞中Tnf-α,Inos和Cox-2基因表達變化。結(jié)果在MKN45細胞H.pylori感染模型中,感染12h和24h均可顯著降低細胞存活率并降低細胞線粒體膜電位,即H.pylori作用于MKN45細胞12h即產(chǎn)生明顯的細胞毒性作用;在RAW 264.7細胞H.pylori感染模型中,感染6h、12h和24h均可增加細胞上清液中NO含量和細胞Tnf-α,Inos和Cox-2基因表達,即H.pylori作用于巨噬細胞后可明顯增加其促炎因子的表達,并隨著時間的延長而加強。結(jié)論H.pylori 感染MKN45細胞和RAW 264.7巨噬細胞可作為理想的H.pylori感染細胞模型。
幽門螺桿菌;細胞模型;細胞毒性;促炎因子
幽門螺桿菌(Helicobacter pylori, H.pylori)是世界范圍內(nèi)常見的、具有強傳染性的病原菌之一,全球有超過50%的人群感染此菌[1],通過對我國大量人群調(diào)查,H.pylori感染率為60%,兒童H.pylori感染率為 54.76%,并且以每年0.5%~1%的速度遞增[2,3]。H.pylori感染可以誘發(fā)包括慢性胃炎、消化性潰瘍在內(nèi)等常見胃部疾病的發(fā)生,其中以損傷胃上皮細胞與激活免疫細胞產(chǎn)生炎癥反應(yīng)和免疫應(yīng)答為主要誘因[4,5]。因此建立H.pylori感染細胞模型對于探討其致病機理、篩選治療藥物與研究藥物作用靶點等具有重要意義。本實驗將H.pylori與不同的細胞株共同孵育,觀察細胞的生存狀態(tài)和感染情況,為建立和優(yōu)化H.pylori感染細胞模型奠定基礎(chǔ)。
1 主要試劑
Brain-Heart Infusion(Oxoid,Lot:1677862);Campylobacter agar base (Oxoid,Lot:1589242);革蘭氏染色液試劑盒(海博生物,Lot:HB8278);細菌基因組DNA提取試劑盒(天根生物,Lot:DP302-2);RPM I Medium 1640 basic(Gibco,Lot:8115250);胎牛血清(Gibco,Lot:730840);Super Real Pre M ix × Plus(SYBR Green)(天根生物,Lot:03120);FastQuant RT Kit (With gDNase)(天根生物,Lot:03326);Trizol Reagent(Thermo Life technology,Lot:28218); 乳酸脫氫酶(LDH)測試盒(南京建成,Lot:20160406);一氧化氮試劑盒(碧云天,Lot:S0021);臺盼藍(sigma,Lot:T6146); Rhodam ine 123(碧云天,Lot:C2007)
2 實驗細胞和細菌
MKN45細胞和RAW 264.7巨噬細胞廣東省中醫(yī)院饋贈;H.pylori(SS1)由澳大利亞莫納什大學(xué)Richard Ferrero教授饋贈。
3 細菌培養(yǎng)與鑒定
3.1 幽門螺桿菌的復(fù)蘇和傳代
將H.pylori(SS1)復(fù)蘇于彎曲桿菌瓊脂培養(yǎng)基為基礎(chǔ)、含7% 脫纖維新鮮羊血及聯(lián)合抗生素( 萬古霉素10mg/L,甲氧芐氨嘧啶5mg/L、頭孢磺啶5mg /L、兩性霉素5mg/L) 的平板上。倒置平板置于37 ℃、5%O2、10%CO2、85%N2的培養(yǎng)箱中復(fù)蘇48~72 h。待細菌長滿平板后,傳代于新的培養(yǎng)基上,再生長48~72 h。
3.2 幽門螺桿菌菌株的鑒定
使用革蘭染色試劑盒染色細菌,于顯微鏡下使用油鏡觀察細菌形態(tài)。油鏡下觀察H. pylori形態(tài)呈紅色彎曲桿狀,無球變(圖1A)。同時,取少量菌液置于快速脲素酶試劑里,1m in后觀察試劑顏色變化(變?yōu)樽霞t色,圖1B)。
圖1 幽門螺桿菌鑒定。A,H.pylori革蘭染色;比例尺,10μm;B,快速尿素酶試驗(空白對照為黃色,紅色為細菌陽性反應(yīng))Fig. 1 Identif cation of H. pylori. A, Gram staining of H. pylori; scale bar, 10μm; B, rapid urease test; yellow, control group; red, positive reaction
4 細胞培養(yǎng)與傳代
將RAW 264.7和MKN45細胞株從液氮罐取出后置于37 ℃水浴中迅速震搖解凍后, 1000 r/m in、5 m in離心,棄上清,加入含有雙抗(青霉素100U/m l和鏈霉素100U/m l)和10% FBS的1640培養(yǎng)液轉(zhuǎn)移至培養(yǎng)瓶中,置于37 ℃、5% CO2的培養(yǎng)箱中培養(yǎng)24h~48h。待細胞鋪滿瓶底后,傳代于新的培養(yǎng)瓶中,在37 ℃、5% CO2培養(yǎng)24h~48 h。
5 造模方法及檢測
5.1 細胞分組及造模
取對數(shù)生長期的MKN45和RAW 264.7細胞消化后,調(diào)節(jié)細胞濃度至2×106/孔種于6孔板中,分為空白對照組、模型6h組、12h組和24h組,每組3個復(fù)孔。無血清1640培養(yǎng)4h,模型組再加入2×108的H.pylori(MOI=100)共同孵育6h、12h和24h。
5.2 細胞存活率和線粒體膜電位檢測
按說明書配制0.4%臺盼藍染色液,將各組MKN45細胞消化之后與染色液混合,在顯微鏡下分別計數(shù)活細胞和死細胞的數(shù)量,計算細胞活力[細胞活力(%)=活細胞數(shù)量/(活細胞數(shù)量+死細胞數(shù)量)×100%]。取各組MNK45細胞上清液12000r/min離心5min,取上清液按說明書檢測上清LDH;同時向各孔中加入細胞裂解液,冰上裂解10m in后12000r/min離心5m in,取上清液檢測細胞內(nèi)LDH,并計算LDH釋放率[LDH釋放率(%)=細胞上清液中LDH/(細胞內(nèi)LDH+細胞上清液LDH)×100%]。按說明書配制5mmol/L Rhodam ine 123染色液,棄去各組MKN45細胞上清液后,用PBS輕輕清洗3次,加入染色液37℃培養(yǎng)箱孵育20m in,再用PBS輕輕洗滌3次立即在熒光顯微鏡下觀察、攝片。選取3個不同的視野用Image J圖像分析軟件分析熒光強度/細胞;同時消化收集染色液孵育后的細胞,用預(yù)冷的無血清培養(yǎng)液漂洗2次,充分除去細胞外的染料,加入流式細胞儀中檢測細胞熒光強度(激發(fā)波長為507nm,發(fā)射波長為529nm),實驗重復(fù)3 次。
5.3 RAW 264.7細胞炎癥因子檢測
取各組RAW 264.7細胞上清液,按照Griess法檢測NO含量變化,NO含量(%)=模型組NO含量/空白對照組NO含量。棄去各組RAW 264.7細胞上清液后,用PBS輕輕清洗3次,加入Trizol裂解細胞,提取細胞總RNA,檢測D(λ) 260nm/280nm比值合格后,按逆轉(zhuǎn)錄試劑盒操作方法得到cDNA,再分別檢測tnf-α,inos和cox-2的mRNA表達,實驗重復(fù)3 次。
引物序列:
GAPDH:上 游 引 物5′- AGGTTGTCTCCTGCGACTTCA -3’,下游引物5’- CCAGGAAATGAGCTTGACAAAG -3’;
iNOS:上 游 引 物 5’- GGCAGCCTGTGAGACCTTTG -3’,下游引物5’- CGTTTCGGGATCTGAATGTGA -3’;
COX-2:上游引物5’- CAGGAAGTCTTTGGTCTGGTGCC -3’,下游引物5’- GCTGGTTTGGAATAGTTGCTCATCA -3’;
TNF-α:上游引物5’- GCACCACCATCAAGGACTCA -3’,下游引物5’- TCGAGGCTCCAGTGAATTCG -3’
在Bio-rad熒光定量PCR儀(CFX 96)上進行實時熒光定量PCR(RT-qPCR)擴增(熒光定量檢測試劑盒:Super Real Pre M ix × Plus,天根公司)。擴增條件:95℃預(yù)變性10m in,95℃變性15s,60℃延伸60s,40個循環(huán)。分析結(jié)果,得出各組內(nèi)參基因和目的基因Ct值,運用2-△△Ct公式計算。
6 統(tǒng)計方法
1 幽門螺桿菌感染降低MKN45細胞活力和增加LDH釋放率
臺盼藍染色顯示,MKN45細胞感染H.pylori菌12h后,其活細胞比例明顯降低,感染24h后降低更為明顯(圖2A)。LDH檢測顯示,MKN45細胞感染H.pylori菌12 h后,其LDH釋放率較未感染細胞明顯增加,感染24h后增加更加顯著(圖2B)。
圖2 幽門螺桿菌感染對MKN45細胞活力的影響。A,臺盼藍染色檢測細胞活力的統(tǒng)計學(xué)分析;B,LDH檢測細胞活力的統(tǒng)計學(xué)分析;ΔΔ,與未感染細胞比較,P<0.01;**,與感染12h的細胞比較,P<0.01;n=9Fig. 2 The ef ect of H. pylori on MKN45 cell viability. A, statistical analysis of cell viability detected by trypan blue staining; B, statistical analysis of cell viability measured by LDH method;ΔΔ, P<0.01, compared w ith control group;**, P<0.01, compared w ith 12h model group; n=9
2 幽門螺桿菌感染降低MKN45細胞線粒體膜電位
對感染H.pylori菌的MKN45細胞以Rhodam ine 123染料染色后進行熒光顯微鏡觀察和流式細胞術(shù)分析顯示,與未感染的對照細胞相比,感染12 h后的Rhodam ine 123熒光強度/ 細胞和總熒光強度均顯著下降,24 h后其下降程度更加明顯(圖3),說明感染細胞的線粒體膜電位降低程度隨著時間的延長而加重。
圖3 幽門螺桿菌對MKN45細胞的線粒體膜電位的影響。A,幽門螺桿菌感染MKN45細胞后Rhodam ine123染色的熒光顯微鏡觀察(比例尺,50μm);B,幽門螺桿菌感染MKN45細胞后Rhodam ine123染色熒光強度/ 細胞的統(tǒng)計學(xué)分析;C,幽門螺桿菌感染MKN45細胞后Rhodamine123染色總熒光強度的流式細胞術(shù)檢測;D,流式細胞術(shù)檢測幽門螺桿菌感染MKN45細胞后Rhodamine123染色總熒光強度的統(tǒng)計學(xué)分析;與未處理組比較:Δ, 0.01<P<0.05;ΔΔ,P<0.01;與感染6h組比較:*,0.01<P<0.05;**,P<0.01;與感染12h組比較:#,0.01<P<0.05;##,P<0.01;n=9Fig. 3 The ef ect of H. pylori infection on the MMP of MKN45 cells. A, representative fuorescent images of H. pylori-infected MKN45 cells stained w ith Rhodam ine123; scale bar, 50μm; B, statistical analysis of the f uorescent intensity per cell of H. pylori-infected MKN45 cells stained w ith Rhodam ine123; C, fow cytometry detection of the total f uorescent intensity of H. pylori-infected MKN45 cells stained w ith Rhodam ine123; D, quantitative analysis of the total fuorescent intensity of H. pylori-infected MKN45 cells stained w ith Rhodamine123 detected by fow cytometry. Compared w ith control group:Δ, 0.01<P<0.05;ΔΔ, P<0.01; compared w ith 6h model group:*, 0.01<P<0.05;**, P<0.01; compared w ith 12h model group:#, 0.01<P<0.05;##, P<0.01; n=9
4 幽門螺桿菌感染上調(diào)RAW 264.7細胞的促炎因子表達
Griess法檢測顯示,幽門螺桿菌感染可時間依賴性上調(diào)RAW 264.7細胞NO含量(圖4A)。定量PCR檢測顯示,幽門螺桿菌感染可顯著上調(diào)RAW 264.7細胞Cox-2,Inos基因表達,并隨著時間增加而逐漸上升(圖4B,圖4C);幽門螺桿菌感染可顯著上調(diào)Tnf-α基因表達,但未見明顯時間依賴性(圖4D)。
圖4 幽門螺桿菌感染對RAW 264.7細胞促炎因子表達的影響。A,幽門螺桿菌感染RAW 264.7細胞后6h、12h和24h時NO含量;B,幽門螺桿菌感染RAW 264.7細胞后6h、12h和24h時Cox-2表達水平;C,幽門螺桿菌感染RAW 264.7細胞后6h、12h和24h時Inos基因表達水平;D,幽門螺桿菌感染RAW 264.7細胞后6h、12h和24h時Tnf-α表達水平;與未處理組比較:Δ,0.01<P<0.05;ΔΔ,P<0.01;與感染6h組比較:*,0.01<P<0.05;**,P<0.01;與感染12h組比較:#,0.01<P<0.05;##,P<0.01;n=9Fig. 4 The ef ect of H. pylori infection on the expression of proinf ammatory factor in RAW 264.7 cells. A, NO contents in RAW 264.7 cells co-cultured w ith H. pylori for 6h, 12h and 24h, respectively; B, the levels of Cox-2 gene expression in RAW 264.7 cells co-cultured w ith H. pylori for 6h, 12h and 24h, respectively; C, the levels of Inos gene expression in RAW 264.7 cells co-cultured w ith H. pylori for 6h, 12h and 24h, respectively; D, the levels of Tnf-α gene expression in RAW 264.7 cells co-cultured w ith H. pylori for 6h, 12h and 24h, respectively. Compared w ith control group:Δ, 0.01<P<0.05;ΔΔ, P<0.01; compared w ith 6h model group:*, 0.01<P<0.05;**, P<0.01; compared w ith 12h model group:#, 0.01<P<0.05;##, P<0.01; n=9
H.pylori的長期感染可以導(dǎo)致發(fā)生胃黏膜萎縮和腸化生等相關(guān)慢性胃炎的主要誘因之一[6,7],這些病變的發(fā)生不僅是由于H.pylori自身可產(chǎn)生毒力因子,例如細胞毒性相關(guān)蛋白A和空泡細胞毒素A等,會使宿主細胞在增殖,細胞骨架重排,細胞連接,形態(tài)延伸與散射等方面的改變,進而損傷胃粘膜上皮細胞,而且由于其具有特殊的逃逸機制使機體免疫系統(tǒng)無法徹底清除[8],導(dǎo)致過度累積活性氧/活性氮及各類促炎因子造成炎癥的持續(xù)發(fā)生,繼而引發(fā)慢性炎癥反應(yīng)[9,10]。
本實驗探討了兩種感染H.pylori(SS1)的細胞模型,其中感染MKN45細胞模型模擬細菌入侵機體黏附于細胞后產(chǎn)生的毒性作用,感染RAW 264.7巨噬細胞模型模擬了機體固有免疫抵抗細菌的作用。MKN45細胞感染H.pylori 12h即出現(xiàn)明顯的存活率下降,線粒體膜電位下降的現(xiàn)象;24h后產(chǎn)生的細胞毒性更加嚴重。巨噬細胞通常在感染部位聚集并吞噬細菌,分泌TNF-α、COX-2,iNOS等促炎因子介導(dǎo)免疫反應(yīng),同時生成NO參與清除入侵的細菌[11]。模型感染6h后即可出現(xiàn)NO含量和促炎因子COX-2,iNOS,TNF-α的基因表達均增加,并且隨著時間的延長而增加,表現(xiàn)出更嚴重的炎癥程度。
因此H.pylori 感染MKN45細胞和RAW 264.7巨噬細胞24h后可分別出現(xiàn)顯著的細胞毒性和明顯炎癥表達,可考慮作為理想的H.pylori感染細胞模型。
[1] Kusters JG, van V liet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin M icrobiol Rev, 2006, 19(3): 449-490.
[2] Handa O, Naito Y, Yoshikawa T. Helicobacter pylori: a ROS-inducing bacterial species in the stomach. Inflamm Res, 2010, 59(12): 997-1003.
[3] Parsonnet J. The incidence of Helicobacter pylori inefection. Aliment Pharmacol Ther, 1995, 9(suppl 2): 45-51.
[4] Peek RJ, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer, 2002, 2(1): 28-37.
[5] Covacci A, Telford JL, Del GG, et al. Helicobacter pylori virulence and genetic geography. Science, 1999, 284(5418): 1328-1333.
[6] 李慕然,劉艷迪,唐濤,等.幽門螺桿菌和慢性胃炎胃黏膜病理變化的關(guān)系研究.天津醫(yī)藥,2015,43(1):54-56.
[7] Park YH, Kim N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. Cancer Prev, 2015, 20(1): 25-40
[8] Salama NR, Hartung ML, Muller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev M icrobiol, 2013, 11(6): 385-399.
[9] Lazaraki G, Kountouras J, Metallidis S, et al. Helicobacter pylori infection upregulates endothelial nitric oxide synthase expression and induces angiogenesis in gastric mucosa of dyspeptic patients. Eur J Gastroenterol Hepatology, 2008, 20(5): 441-449.
[10] Xu H, Chaturvedi R, Cheng Y, et al. Sperm ine Oxidation Induced by Helicobacter pylori Results in Apoptosis and DNA Damage Implications for Gastric Carcinogenesis. Cancer Res, 2004, 64(23): 8521-8525.
[11] Kuwahara H, M iyamoto Y, Akaike T, et al. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun. 2000, 68:4378-4383.
Establishment and evaluation of infammation models induced by Helicobacter pylori in culture
Lian Dawei, Ren Wenkang, Fu Lijun, Xu Yifei, Huang Ping, Cao Hongying*
(College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine,Guangzhou 510405, China)
ObjectiveTo establish and evaluate two infammation models infected w ith Helicobacter pylori (H. pylori) in 2 cell lines to provide a basis method for further studying H. pylori infection and its mechanism.M ethodsH. pylori-infected MKN45 cell models were established by co-culturing MKN45 cells and H. pylori for 6h, 12h and 24h, respectively. The cell viability was measured by trypan blue staining and lactate dehydrogenase (LDH) method; the m itochondrial membrane potential (MMP) was detected by rhodamine123 staining w ith fuorescent m icroscopy and fow cytometry. H. pylori-infected RAW 264.7 cell models were established by the same procedures as above. The content of nitric oxide (NO) in the supernate was measured by Griess method; the expression of Tnf-α, Inos and Cox-2 genes in the cells was detected by RT-qPCR.ResultsIn MKN45 models, 12h and 24h co-culture w ith H. pylori signif cantly reduced cell viability and MMP, suggesting that 12h H. pylory infection could generate remarkable cytotoxic ef ect. In RAW 264.7 models, co-cultured w ith H. Pylori for 6h, 12h and 24h, the NO content in the supernate and the expression of Tnf-α, Inos and Cox-2 all increased, suggesting that H. pylori infection promoted the expression of proinfammatory factors in macrophages and this ef ect strengthened w ith time.ConclusionH. pylori-infected MKN45 cells and RAW 264.7 macrophages are ideal cell models for studying H. pylori infection and its mechanism.
Helicobacter pylori; cell model; cytotoxicity; proinfammatory factor
R573
A
10.16705/ j. cnki. 1004-1850.2017.03.006
2016-12-23
2017-06-02
廣東省科技計劃資助項目(2016A020217019);廣州市科技計劃資助項目(201607010336)資助;國家自然科學(xué)基金資助項目(81374043)
連大衛(wèi),男(1988年),漢族,博士在讀
*通訊作者(To whom correspondence should be addressed):1171629708@qq.com