王 英
[山西省化工研究所(有限公司),山西 太原 030001]
雙逾滲結(jié)構(gòu)碳系填充導(dǎo)電高分子復(fù)合材料的研究進(jìn)展
王 英
[山西省化工研究所(有限公司),山西 太原 030001]
綜述了導(dǎo)電高分子復(fù)合材料(CPCs)導(dǎo)電性能的逾滲理論和雙逾滲機(jī)理,闡述了以碳材料為導(dǎo)電填料的具有雙逾滲結(jié)構(gòu)的CPCs的研究進(jìn)展,其填料主要包括炭黑、碳納米管;展望了雙逾滲結(jié)構(gòu)CPCs的研究前景。
炭黑;碳納米管;雙逾滲結(jié)構(gòu);逾滲閾值;導(dǎo)電性;復(fù)合材料
探索和發(fā)展CPCs制備的新方法,以保證在具有良好導(dǎo)電功能的情況下,降低導(dǎo)電逾滲閾值、獲得良好力學(xué)性能、加工性能和電性能且電性能不受成型加工外場(chǎng)影響或影響極小的CPCs理論和應(yīng)用已成為研究重點(diǎn)和熱點(diǎn)[1]。截止目前,研究者具體開(kāi)發(fā)了諸多方法來(lái)降低CPCs的逾滲值,如隔離結(jié)構(gòu)導(dǎo)電[2]、多逾滲(其中最常用的為雙逾滲)[3]、在基體聚合物合成過(guò)程中原位加入導(dǎo)電填料[4-5]、多層共擠出[6]、泡孔結(jié)構(gòu)CPCs[7-9]、靜電紡絲技術(shù)[10-11]、原位微纖化[12]等。相對(duì)于其他方法,雙逾滲現(xiàn)象由于具有以下優(yōu)勢(shì)而表現(xiàn)出獨(dú)特的優(yōu)越性:(1)減弱體系負(fù)溫度系數(shù)(NTC)現(xiàn)象[13-15];(2)改善導(dǎo)電復(fù)合材料的加工性能及力學(xué)性能[16-17];(3)降低材料的體積電阻率及炭黑(CB)的逾滲閾值[18-20]。本文以CB和碳納米管(CNTs)為例,對(duì)碳系填充雙逾滲結(jié)構(gòu)的CPCs進(jìn)行了研究。
1.1 逾滲理論
CPCs是將導(dǎo)電填料如CB、CNTs、碳纖維(CF)、石墨或金屬粉末等一種或幾種導(dǎo)電填料分散到一相或多相高分子基體中制得的復(fù)合材料。在CPCs中當(dāng)填料含量超過(guò)某一臨界值時(shí),材料的電導(dǎo)率將急劇上升,并發(fā)生從絕緣體到導(dǎo)體的轉(zhuǎn)變,將此現(xiàn)象稱為逾滲現(xiàn)象[21],可用圖1表示。設(shè)基體中填料所占的體積分?jǐn)?shù)為V,Vc為逾滲閾值。當(dāng)0
圖1 CPCs的逾滲現(xiàn)象Fig.1 Percolation phenomenon of CPCs
1.2 雙逾滲機(jī)理
以上是導(dǎo)電填料填充單相聚合物基體的逾滲理論,而導(dǎo)電填料在多相體系中可能出現(xiàn)不均勻分布的現(xiàn)象,這種不均勻分布存在2種可能的情況:一種是導(dǎo)電粒子與某一相親和性較好,界面張力小,幾乎全部分散在其中,如圖2所示在雙逾滲結(jié)構(gòu)聚丙烯(PP)/高密度聚乙烯(PE-HD)/CB復(fù)合材料中,CB選擇性分布在PE-HD相中;另一種是導(dǎo)電粒子優(yōu)先在相界面中分布。Sumita[22]在研究CB填充PE-HD/PP和PP/聚甲基丙烯酸甲酯(PMMA)復(fù)合材料的分散情況后首先提出了雙逾滲的概念。其含義為第一層次的逾滲是CB在其富集相或界面內(nèi)形成微導(dǎo)電網(wǎng)絡(luò),第二層次的逾滲是CB富集相或界面在整個(gè)基體內(nèi)形成宏觀導(dǎo)電網(wǎng)絡(luò)。因此雙逾滲現(xiàn)象大大促進(jìn)了微導(dǎo)電鏈及宏觀導(dǎo)電網(wǎng)絡(luò)的形成,使復(fù)合材料導(dǎo)電的逾滲閾值大幅度下降。
圖2 雙逾滲結(jié)構(gòu)PP/PE-HD/CB復(fù)合材料的微觀結(jié)構(gòu)(10000×)Fig.2 Typical morphology of PP/PE-HD/CB with double percolation structure
2.1 CB填充型
CB是目前應(yīng)用最廣、用量最大的導(dǎo)電填料,其體積電阻率為0.1~10 Ω·cm,導(dǎo)電性能穩(wěn)定持久,可大幅度調(diào)整復(fù)合材料的導(dǎo)電性能(1~1×108Ω·cm)。通常,CB填充型共混物導(dǎo)電復(fù)合材料的逾滲閾值會(huì)隨基體連續(xù)度的增加而降低[23]。不同CB填充型共混物導(dǎo)電復(fù)合材料的逾滲閾值如表1所示。
Wu等[24]將CB加入到ABS/PA6的共混物中,通過(guò)調(diào)整PA6與ABS的比例,發(fā)現(xiàn)當(dāng)ABS/PA6的共混比例為60/40時(shí),體系具有最大的連續(xù)度,此時(shí)復(fù)合材料對(duì)應(yīng)著最低的逾滲值。此外,研究表明,當(dāng)CB選擇性分布在具有雙連續(xù)結(jié)構(gòu)不相容共混物的相界面處時(shí),材料的逾滲值會(huì)進(jìn)一步降低[22]。
表1 不同CB填充型共混物導(dǎo)電復(fù)合材料的逾滲閾值Tab.1 Percolation threshold of conductive composites filled with different carbon black blends
注:EPDM為三元乙丙橡膠,ABS/PA6為丙烯腈 - 丁二烯 - 苯乙烯共聚物/聚酰胺6,PEEK/TPI為聚醚醚酮/熱塑性聚酰亞胺;a為質(zhì)量比;b為質(zhì)量分?jǐn)?shù);c為體積分?jǐn)?shù);d為質(zhì)量份。
Liu等[25]在制備PS/PMMA/CB導(dǎo)電復(fù)合材料時(shí)發(fā)現(xiàn),CB含量增加到一定量時(shí)會(huì)使不相容聚合物的相形貌發(fā)生轉(zhuǎn)變。如圖3所示,當(dāng)PS/PMMA的共混比例為30/70時(shí),兩相呈現(xiàn)海 - 島結(jié)構(gòu)[圖3(a)],在PS/PMMA/CB導(dǎo)電復(fù)合材料中,CB選擇性分布在PS相中,因此,隨著CB含量的增加,體系中PS的黏度增大,當(dāng)CB的體積含量達(dá)到4 %時(shí),體系呈現(xiàn)的是共連續(xù)結(jié)構(gòu),PS/CB復(fù)合材料中,逾滲閾值為2.5 %(體積分?jǐn)?shù))。當(dāng)PMMA的體積含量達(dá)到70 %時(shí),復(fù)合材料的逾滲閾值為1.26 %(體積分?jǐn)?shù))。
CB體積含量/%:(a)0 (b)1 (c)2 (d)4圖3 PS/PMMA(30/70)混合物的冷沉淀斷裂面的SEM照片F(xiàn)ig.3 SEM of cryo-fractured surfaces of PS/PMMA(30/70) blends
目前,雖然CB填充型共混物導(dǎo)電復(fù)合材料取得了長(zhǎng)足的發(fā)展,但是對(duì)其導(dǎo)電性以及CB分布的理論研究尚不完善。此外,這類材料的基體一般為呈現(xiàn)雙連續(xù)結(jié)構(gòu)的不相容共混物,因而使得復(fù)合材料的力學(xué)性能有所降低。因此,開(kāi)展這方面的研究對(duì)CB填充型共混物導(dǎo)電材料而言十分必要。
2.2 CNTs填充型
以PLLA/CNTs為母粒的EVA/PLLA/CNTs=40/60/1復(fù)合材料放大倍數(shù):(a)100× (c)1000×以EVA/CNTs為母粒的PLLA/EVA/CNTs=60/40/1復(fù)合材料放大倍數(shù):(b)100× (d)1000×圖4 CNTs在不同復(fù)合材料和不同放大倍率下分布的SEM照片F(xiàn)ig.4 SEM showing location of CNTs in different composites at different magnifications
CNTs是完全由碳原子組成的一種直徑處于納米級(jí)的一維管狀納米材料。與傳統(tǒng)碳系導(dǎo)電填料相比,CNTs具有更為優(yōu)異的導(dǎo)電性和強(qiáng)度,將CNTs添加到不相容共混物中將得到導(dǎo)電性更加突出的CPCs。大量研究者將CNTs添加到不相容共混物中,得到了一系列逾滲值不同的CNTs填充型導(dǎo)電復(fù)合材料,結(jié)果如表2所示。從表中可看出,CNTs填充型共混物導(dǎo)電復(fù)合材料的逾滲閾值與共混物相形貌和CNTs的分布狀況密切相關(guān)。
表2 不同CNTs填充型共混物導(dǎo)電復(fù)合材料的逾滲閾值Tab.2 Percolation threshold of conductive composites filled with different carbon nanotubes blends
注:TPV為熱塑性三元乙丙動(dòng)態(tài)硫化橡膠;PA12為聚酰胺12;PLLA/EVA為聚左旋乳酸/乙烯 - 醋酸乙烯共聚物; PLA/PCL為聚乳酸/聚ε - 己內(nèi)酯;a為質(zhì)量比;b為質(zhì)量分?jǐn)?shù)。
Zonder等[30]發(fā)現(xiàn)在通過(guò)PE-HD/多壁碳納米管(MWCNTs)母料制備的具有海 - 島結(jié)構(gòu)的PA12/PE-HD/MWCNTs復(fù)合材料中,MWCNTs選擇性分布在共混物的相界面處時(shí),復(fù)合材料的逾滲閾值為0.75 %(質(zhì)量分?jǐn)?shù)),低于MWCNTs選擇性分布在PA12中的逾滲值(2 %,質(zhì)量分?jǐn)?shù))。Hwang等[31]將CNTs加入到PP/PS共混物中制備了導(dǎo)電復(fù)合材料。結(jié)果表明,當(dāng)共混物呈現(xiàn)雙連續(xù)結(jié)構(gòu)時(shí),材料的逾滲閾值約為0.75 %(質(zhì)量分?jǐn)?shù)),低于以海 - 島結(jié)構(gòu)為基礎(chǔ)得到的逾滲值1.5 %(質(zhì)量分?jǐn)?shù))。另外,CNTs分布情況的不同也會(huì)影響復(fù)合材料的逾滲值,當(dāng)CNTs分布在共混物的相界面處時(shí),復(fù)合材料的逾滲值會(huì)進(jìn)一步降低。同樣,Shi等[32]通過(guò)改變加工順序制備了具有雙連續(xù)結(jié)構(gòu)的PLLA/EVA/CNTs復(fù)合材料。結(jié)果表明,在以PLLA/CNTs為母料的樣品中,CNTs選擇性分布在共混物相界面處,對(duì)應(yīng)的逾滲值為0.68 %(質(zhì)量分?jǐn)?shù));而在EVA/CNTs為母料的樣品中,CNTs則選擇性分布在EVA中,且材料的逾滲值為1.98 %(質(zhì)量分?jǐn)?shù))。材料的掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)照片如圖4、5所示,其中EVA在SEM測(cè)試前通過(guò)正庚烷去除,且CNTs在復(fù)合材料中的質(zhì)量分?jǐn)?shù)為1 %;在TEM照片中CNTs在復(fù)合材料中的質(zhì)量分?jǐn)?shù)為2 %。
以PLLA/CNTs為母粒的EVA/PLLA/CNTs=40/60/2復(fù)合材料:(a)典型分布 (c)相應(yīng)分布以EVA/CNTs為母粒的PLLA/EVA/CNTs=60/40/2復(fù)合材料:(b)典型分布 (d)相應(yīng)分布圖5 CNTs在不同復(fù)合材料中分布的TEM照片和模型圖Fig.5 TEM and model images showing localization of CNTs in different composites
從表1和表2對(duì)比可以看出,用CNTs填充的導(dǎo)電復(fù)合材料的逾滲值明顯低于用CB填充的導(dǎo)電復(fù)合材料。由此可見(jiàn),導(dǎo)電率的高低除了與填料在基體中的分散狀態(tài)有關(guān)外,還與填料的形貌密切相關(guān)。一維的CNTs比零維CB更有利于導(dǎo)電性能的提高。
近年來(lái),雙逾滲導(dǎo)電高分子材料在2個(gè)方面獲得了重要進(jìn)展。一方面是可通過(guò)計(jì)算機(jī)模擬手段控制預(yù)測(cè)導(dǎo)電填料在聚合物基體中選擇性分布[35-37];另一方面是利用新型填料(石墨烯、鍍鎳碳纖、鍍鎳玻纖等)來(lái)制備雙逾滲導(dǎo)電高分子材料[38]。
Yasser等[39]結(jié)合聚合物/碳納米管納米復(fù)合材料(PCNT)界面的增強(qiáng)功效和逾滲效應(yīng),研制出了用于拉伸模量的微觀力學(xué)模型,該模型認(rèn)為界面逾滲通過(guò)相同的厚度可提高PCNT的模量,同時(shí)CNTs的半徑和長(zhǎng)度可能影響納米粒子的逾滲閾值和填料網(wǎng)狀物的濃度。Kelsey等[40]探討了多分散混合物中逾滲閾值預(yù)測(cè)的分析方法,該方法擴(kuò)展了排除體積的概念,并將其應(yīng)用于二維二進(jìn)制磁盤(pán)系統(tǒng),用于設(shè)計(jì)復(fù)合材料。Zhang等[41]使用分子動(dòng)力學(xué)模型研究了聚合物 - 納米棒相互作用下,納米棒的縱橫比、塊剛度和外部張力對(duì)二嵌段共聚物納米復(fù)合材料的微觀結(jié)構(gòu)和電學(xué)性能的影響。結(jié)果表明,各向異性的納米棒在具有輕微單軸取向的連續(xù)嵌段中的連續(xù)定位可顯著降低逾滲閾值。Sima等[42]通過(guò)將石墨烯納米片(GNP)分散在聚對(duì)苯二甲酸丁二醇酯 - 對(duì)苯二甲酸酯(PBAT)中制備了一系列可生物降解的納米復(fù)合材料。結(jié)果表明,逾滲不僅起源于片晶之間的網(wǎng)絡(luò)形成,而且可能與組合的PBAT/GNP凝膠網(wǎng)絡(luò)相關(guān),PBAT/GNP凝膠網(wǎng)絡(luò)隨著溫度升高而增強(qiáng),導(dǎo)致其在提高溫度時(shí)更像固體反應(yīng)。納米復(fù)合材料的剪切黏度隨溫度的變化也表明,增加GNP負(fù)載降低了黏度的溫度敏感性,導(dǎo)致納米復(fù)合材料的相對(duì)黏度隨溫度升高而增加。Li等[43]研究了一種具有隔離網(wǎng)絡(luò)結(jié)構(gòu)的熱還原石墨烯氧化物/硅藻土復(fù)合材料的新制備方法。在硅藻土中混合質(zhì)量分?jǐn)?shù)為13 %的玻璃粉,并利用硅藻土顆粒包覆氧化石墨烯原位熱還原法制備了導(dǎo)電復(fù)合材料,其逾滲閾值體積分?jǐn)?shù)為0.229 %。同時(shí),硅藻土的最高壓縮強(qiáng)度從11.3 MPa增加到了21.1 MPa。 Lu等[44]使用2步法造紙/熱黏合工藝合成了一種高柔性、高導(dǎo)電性的無(wú)紡布,稱為PP/PE/碳纖維(CF)并排纖維(ESF)無(wú)紡布(CEF-NF),其作為電磁干擾(EMI)屏蔽材料,具有良好的力學(xué)強(qiáng)度、優(yōu)異的柔韌性、超薄性以及顯著的電學(xué)性能。通過(guò)SEM對(duì)純CF非織造織物和CEF-NF進(jìn)行全面表征,可了解和驗(yàn)證由于引入ESF而導(dǎo)致的拉伸強(qiáng)度的改善;通過(guò)測(cè)量CEF-NF的電導(dǎo)率以闡明熱壓效應(yīng),并研究其在增強(qiáng)CEF-NF導(dǎo)電性能中的重要性。結(jié)果發(fā)現(xiàn),CEF-NF的電導(dǎo)率隨著CF長(zhǎng)度的增加和體積密度的增加而增大。從電導(dǎo)率和CF體積密度關(guān)系模型中確定了CEF-NF的CF體積密度逾滲閾值。GUO等[45]通過(guò)鍍鎳玻璃纖維制成了具有低逾滲值的導(dǎo)電PP復(fù)合材料。玻璃纖維較高的縱橫比使之可以輕松地和聚合物連接從而構(gòu)建聚合物基質(zhì)中的網(wǎng)絡(luò)結(jié)構(gòu),因此玻璃纖維表面導(dǎo)電鎳涂層成功地形成了一個(gè)連續(xù)的導(dǎo)電網(wǎng)絡(luò),以相對(duì)較低的鎳含量(1.17 %)就可得到導(dǎo)電性良好的復(fù)合材料(8.7 S/cm),并且導(dǎo)電復(fù)合材料的逾滲閾值低至0.46 %(體積分?jǐn)?shù))。
雙逾滲理論提出導(dǎo)電填料分布在不相容聚合物中的一相或兩相界面處,極大地降低了導(dǎo)電復(fù)合材料的逾滲值,并減弱了體系NTC現(xiàn)象,改善了導(dǎo)電復(fù)合材料的加工性能及力學(xué)性能;在雙逾滲結(jié)構(gòu)CPCs中,導(dǎo)電填料富集相的導(dǎo)電網(wǎng)絡(luò)和此富集相在另一種聚合物基體中的連續(xù)程度是整個(gè)體系導(dǎo)電網(wǎng)絡(luò)形成的關(guān)鍵所在,目前關(guān)于雙逾滲結(jié)構(gòu)導(dǎo)電復(fù)合材料研究較多的是以CB、MWCNTs為填料,關(guān)于CF的研究較少;此外具有雙逾滲結(jié)構(gòu)的CPCs基體一般為雙連續(xù)結(jié)構(gòu)的不相容共混物,材料的力學(xué)性能有所降低;因此,開(kāi)展這方面的研究對(duì)碳系填充型共混物導(dǎo)電材料而言十分必要。
[1] Dai K, Xu X B, Li Z M. Electrically Conductive Carbon Black (CB) Filled in Situ Microfibrillar Poly(ethylene terephthalate)(PET)/Polyethylene(PE) Composite with a Selective CB Distribution[J].Polymer, 2007, 48(3): 849-859.
[2] Ou R Q,Gupta S,Parker C A,et al.Fabrication and Electrical Conductivity of Poly(methylm ethacrylate)(PMMA)/Carbon Black(CB) Composites:Comparison Between an Ordered Carbon Black Nanowire-like Segregated Structure and a Randomly Dispersed Carbon Black Nanostructure[J].J Phys Chem B,2006,110:22365-22373.
[3] Sumita M,Sakata K,Hayakaw Y,et al.Double Percolation Effect on the Electrical Conductivity of Conductive Particles Filled Polymer Blends[J].Coll Polym Sci,1992,270(2):134-139.
[4] Hu J W, Li M W, Zhang M Q,et al.Preparation of Binary Conductive Polymer Composites with Very Low Percolation Threshold by Latex Blending[J].Macromol Rapid Comm,2003,24(15): 889-893.
[5] Zhang B,Fu R W,Zhang M Q,et al.Preparation and Cha-racterization of Gas-sensitive Composites from Multi-walled Carbon Nanotubes/Polystyrene[J]. Sensor Actuat B:Chem,2005,109(2): 323-328.
[6] Xu S X,Wen M,Li J,et al.Structure and Properties of Electrically Conducting Composites Consisting of Alternating Layers of Pure Polypropylene and Polypropylene with a Carbon Black Filler[J].Polymer,2008,49(22):4861-4870.
[7] Thompson M R,Motlagh G H,Oxby K J,et al.Multiple Percolation in a Carbon-filled Polymer Composites via Foaming[J].J Appl Polym Sci, 2010, 115(2): 646-654.
[8] Rizvi R, Kim J, Naguib H.Synthesis and Characterization of Novel Low Density Polyethylene-multiwall Carbon Nanotube Porous Composites[J].Smart Mater Struct, 2009, 18(10):104002.
[9] Xu X B,Li Z M,Shi L,et al.Ultralight Conductive Carbon-nanotube-polymer Composite[J]. Small,2007, 3(3): 408-411.
[10] Hunley M T,Potschke P,Long T E.Melt Dispersion and Electrospinning of Non-functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane[J].Ma-cromol Rapid Comm,2009, 30(24): 2102-2106.
[11] Kim H S,Jin H J,Myung S J,et al.Carbon Nanotube-absorbed Electrospun Nanofibrous Membranes of Nylon 6[J].Macromol Rapid Comm, 2006, 27(2):146-151.
[12] Kiss G.In Situ Composites:Blends of Isotropic Polymers and Thermotropic Liquid Crystalline Polymers[J].Polym Eng Sci, 2010,27(6): 410-423.
[13] Lee G J, Suh K D, Im S S. Effect of Incorporating Ethy-lene-ethylacrylate Copolymer on the Positive Temperature Coefficient Characteristics of Carbon Black Filled HDPE Systems[J].Polymer Engineering & Science, 2000, 40(1): 247-255.
[14] Tang H,Piao J,Chen X, et al.The Positive Temperature Coefficient Phenomenon of Vinyl Polymer/CB Compo-sites[J].Journal of Applied Polymer Science, 1993, 48(10): 1795-1800.
[15] Feng J, Chan C. Carbon Black-filled Immiscible Blends of Poly(vinylidene fluoride) and High Density Polyethylene:The Relationship Between Morphology and Positive and Negative Temperature Coefficient Effects.[J].Polymer Engineering & Science, 1999, 39(7):1207-1215.
[16] Zhang M Q, Yu G, Zeng H M, et al. Two-step Percolation in Polymer Blends Filled with Carbon Black[J]. Macromolecules,1998,31(19): 6724-6726.
[17] Chen J,Shi Y,Yang J,et al.A Simple Strategy to Achieve Very Low Percolation Threshold via the Selective Distribution of Carbon Nanotubes at the Interface of Polymer Blends[J].J Mater Chem,2012,22(42):22398-22404.
[18] Feng J,Chan C,Li J A.Method to Control the Dispersion of Carbon Black in Immiscible Polymer Blend[J].Polymer Engineering and Science,2003,43(5):1058-1063.
[19] A vlyanov J K,Schwartz K,Gerteisen S R, et al.Self-organized Networks of Intrinsically Conductive Additives in Two-phase Plastics[J].Nursing Standard, 1999, 102(1):1274-1274.
[20] F Gubbels,R Jerome,P Teyssie,et al.Selective Localization of Carbon-Black in Immiscible Polymer Blends a Useful Tool to Design Electrical Conductive Composites[J].Macromolecules,1994,27(7):1972-1974.
[21] 張榮煒,劉鳳岐.炭黑/聚合物復(fù)合材料的研究進(jìn)展[J].高分子材料科學(xué)與工程,2005,21(3):45-49. Zhang Rongwei,Liu Fengqi.The Research Progress of Carbon Black/Polymer Composites[J].Polymer Materials Science&Engineering,2005,21(3):45-49.
[22] Gubbels F,Jerome R,Teyssie P.Selective Localization of Carbon Black in Immiscible Polymer Blends:A Useful Tool to Design Electrical Conductive Composites[J]. Macromolecules, 1994,27(7):1972-1974.
[23] Tchoudakov R,Breuer O,Narkis M,et al.Conductive Polymer Blends with Low Carbon Black Loading:High Impact Polystyrene/Thermoplastic Elastomer(styrene-isoprene-styrene)[J].Polymer Engineering & Science, 1997,37(12):1928-1935.
[24] Wu G,Li B,Jiang J.Carbon Black Self-networking Induced Co-continuity of Immiscible Polymer Blends[J]Polymer, 2010,51(9):2077-2083.
[25] Pan Y,Liu X,Hao X,et al.Enhancing the Electrical Conductivity of Carbon Black-filled Immiscible Polymer Blends by Tuning the Morphology[J]. European Polymer Journal, 2016, 78: 106-115.
[26] Ma L F, Bao R Y, Huang S L,et al.Electrical Properties and Morphology of Carbon Black Filled PP/EPDM Blends:Effect of Selective Distribution of Fillers Induced by Dynamic Vulcanization[J].Journal of Materials Science,2013, 48(14):4942-4951.
[27] Wu G Z, Li B P, Jiang J D.Carbon Black Self-networking Induced Co-continuity of Immiscible Polymer Blends[J].Polymer,2010,51(9):2077.
[28] Gao C,Zhang S, Lin Y,et al.High-performance Conductive Materials Based on the Selective Location of Carbon Black in Poly(ether ether ketone)/Polyimide Matrix[J].Composites Part B:Engineering,2015,79:124-131.
[29] Zhu Y,Zhang X,Song Z,et al.The Effect of Selective Location of Carbon Nanotubes on Electrical Properties of Thermoplastic Vulcanizates[J].Journal of Applied Polymer Science,2013,127(5):3885-3890.
[30] Zonder L,Ophir A,Kenig S,et al.The Effect of Carbon Nanotubes on the Rheology and Electrical Resistivity of Polyamide 12/High Density Polyethylene Blends[J].Poly-mer, 2011,52(22):5085-5091.
[31] Hwang T Y,Yoo Y,Lee J W.Electrical Conductivity,Phase Behavior,and Rheology of Polypropylene/Polystyrene Blends with Multi-walled Carbon Nanotube[J].Rheologica Acta, 2012,51(7):623-636.
[32] Shi Y Y,Yang J H,Huang T,et al.Selective Localization of Carbon Nanotubes at the Interface of Poly(L-lactide)/Ethylene-co-vinyl Acetate Resulting in Lowered Electrical Resistivity[J].Composites Part B:Engineering,2013,55(9):463-469.
[33] Gubbels F,Jerome R,Vanlathem E,et al.Kinetic and Thermodynamic Control of the Selective Localization of Carbon Black at the Interface of Immiscible Polymer Blends[J].Chemistry of Materials,1998,10(5):1227-1235.
[34] Gao X,Zhang S M.Preparation of High Performance Conductive Polymer Fibres from Double Percolated Structure[J].Journal of Materials Chemistry,2011,21(17):6401-6408.
[35] I Alig,P P?tschke,D Lellinger,et al.Villmow,Establishment, Morphology and Properties of Carbon Nanotube Networks in Polymer melts[J]. Polymer,2012, 53(1): 4-28.
[36] V K Daga,E R Anderson,S P Gido,et al.Hydrogen Bond Assisted Assembly of Well-ordered Polyhedral Oligome-ric Silsesquioxane-block Copolymer Composites[J].Ma-cromolecules,2011,44(17):6793-6799.
[37] Pan Y,Li L,Chan S H,et al.Reinforcing Effects of Kevlar Fiber on the Mechanical Properties of Wood-flour/High-density-polyethylene Composites[J]. Compos Part A:Appl Sci,2010,41(9):1272-1278.
[38] Li M K, Gao C X, Zhang X,et al.Electrical Conductivity of Calcined Graphene Oxide/Diatomite Composites with a Segregated Structure[J].Materials Letters,2015, 141(15):125-127.
[39] Yasser Zare,Kyong Yop Rhee.Accounting the Reinforcing Efficiency and Percolating Role of Interphase Regions in Tensile Modulus of Polymer/CNT Nanocompo-sites[J].European Polymer Journal,2017,87:389-397.
[40] Kelsey Meeks,Michelle L,Micah Green,et al.Extending the Excluded Volume for Percolation Threshold Estimates in Polydisperse Systems:The Binary Disk System[J].Appiled Mathematical Modelling,2017,46:116-125.
[41] Zhang S C,Feng Y C,Ning N Y,et al.Effects of Dispersion and Orientation of Nanorods on Electrical Networksoft Block Copolymer Nanocomposites[J].Computational Materials Science,2017,129:107-114.
[42] Sima Kashi,Rahul Gupta,Nhol Kao,et al.Viscoelastic Properties and Physical Gelation of Poly(butyleneadipate-co-terephthalate)/Grapheme Nanoplatelet Nanocompo-sites at Elevated Temperatures[J].Polymer,2016,101:347-357.
[43] Li M K,Gao C X,Zhang X,et al.Electrical Conductivity of Calcined Graphene Oxide/Diatomite Composites with a Segregated Structure[J].Materials Letters,2015,141:125-127.
[44] Lu L S,Xing D,Xie Y X,et al.Electrical Conductivity Investigation of a Nonwoven Fabric Composed of Carbon Fibers and Polypropylene/Polyethylene Core/Sheath Bicomponent Fibers[J].Materials and Design,2016,112:383-391.
[45] Guo C,Duan H J,Dong C Y,et al.Preparation of the Po-lypropylene/Nickel Coated Glass Fibers Conductive Composites with a Low Percolation Threshold[J].Materials Letters,2015,143(16):124-127.
Research Progresses in Conductive Carbon-based PolymericComposites with Dual-percolation Threshold
WANG Ying
[Shanxi Provincial Institute of Chemical Industry (Co, Ltd), Taiyuan 030001, China]
This paper introduced the mechanisms of percolation and dual-percolation thresholds for conductive carbon-based polymeric composites and reviewed the research progresses in the conductive polymeric composites with a dual-percolation threshold, in which carbon materials mainly including carbon black and carbon nanotubes were used as conductive fillers. The development trend of conductive polymeric composites with dual-percolation threshold was prospected.
carbon black;carbon nanotube; dual-percolation feature; percolation threshold; electrical conductivity; composite
2017-02-23
TQ327.8
B
1001-9278(2017)08-0018-06
10.19491/j.issn.1001-9278.2017.08.003
聯(lián)系人,ztzyz615@163.com