左曙光,李多強,毛 鈺,鄧文哲,吳旭東
?
考慮機電耦合的電動輪系統(tǒng)縱向振動特性建模及驗證
左曙光,李多強,毛 鈺,鄧文哲,吳旭東※
(同濟大學新能源汽車工程中心,上海 201804)
為了研究機電耦合對電動輪系統(tǒng)的縱向振動特性的影響,該文首先建立了電動輪縱扭耦合動力學模型,基于該模型分析了考慮機電耦合前后電動輪系統(tǒng)模態(tài)特征的變化,并通過輪轂電機驅動電動輪系統(tǒng)的振動特性試驗,驗證了該動力學解析模型的準確性;其次分析了機電耦合對電動輪系統(tǒng)縱向振動的影響,指出轉矩波動引起定轉子發(fā)生相對運動,導致電機發(fā)生偏心,從而產生不平衡磁拉力。不平衡磁拉力的作用導致非簧載部分縱向振動出現(xiàn)不同程度的惡化,當軸承剛度為12.5 MN/m時,在定子縱向平移模態(tài)頻率下電機的定轉子、輪胎縱向振動加速度分別惡化113.35%、105.69%、27.15%,影響其使用壽命和結構安全,而對于簧載部分縱向振動的影響較小。
車輛;振動;模型;機電耦合;電動輪;轉矩波動;不平衡磁拉力
近年來,隨著電動汽車的興起,其關鍵部件電動輪系統(tǒng)成為開發(fā)研究的核心[1-3]。針對電動輪一懸架系統(tǒng)振動特性,目前的研究尚不充分,文獻[4-6]考慮了輪轂電機與輪胎之間的耦合動力學關系但是分析對象是路面激勵下考慮增加電機質量對垂向振動的影響,分析頻率較低,采用的輪胎模型也較為簡單,均不能反映輪轂電機高頻轉矩激勵下的電動輪振動特性。
電動輪系統(tǒng)中的輪轂電機受到高頻轉矩波動的作用,導致縱向振動上的問題相對于垂向更顯著[7]。張立軍等[8]基于輪轂電機-輪胎總成非線性動力學模型分析了輪轂電機轉矩波動引起的輪胎縱向接地力的階次振蕩。毛鈺等[7]通過臺架試驗揭示了電動輪系統(tǒng)縱向振動的階次特征和高頻特性,基于剛性環(huán)理論的建立了電動輪系統(tǒng)的動力學模型,并進行了模態(tài)分析,通過理論解釋了電動輪高頻振動現(xiàn)象。上述文獻在分析電動輪系統(tǒng)的縱向振動時,將電機作為一個整體進行建模,然而實際運行過程中電動輪系統(tǒng)是一個復雜的機電耦合系統(tǒng)。
電動輪系統(tǒng)的縱向振動引起輪轂電機的定轉子發(fā)生相對運動,導致徑向氣隙不再均勻,進而產生不平衡磁拉力(unbalanced magnetic pull,UMP)直接作用于在電動輪系統(tǒng)電機的定轉子上,這將導致電動輪系統(tǒng)的縱向振動特性發(fā)生改變。此外不平衡磁拉力會進一步加劇徑向氣隙不均勻性,因此考慮機電耦合產生的不平衡磁拉力對電動輪系統(tǒng)的振動影響尤為重要。
Tan 等[9-10]分析了由輪轂電機產生不平衡磁拉力對電動汽車的橫向和垂向耦合動力學的影響,指出不平衡磁拉力不同程度惡化垂向和橫向的振動,在設計輪轂電機驅動電動汽車時,不平衡磁拉力必須作為一個重要的考慮因素;Wang等[11-12]分析了開關磁阻電機(switched reluctance motor,SRM)不平衡磁拉力與路面激勵相耦合下的車輛的垂向振動,指出SRM不平衡磁拉力與路面激勵和開關磁阻電機氣隙偏心高度耦合,這種耦合效應惡化了車輛垂向振動。文獻[9-12]指出不平衡磁拉力對于電動輪系統(tǒng)的振動具有重要影響,然而他們都是針對機電耦合產生的不平衡磁拉力對垂向和橫向振動特性的研究,鮮有學者考慮不平衡磁拉力對系統(tǒng)縱向振動特性的影響。因此研究考慮機電耦合產生的不平衡磁拉力對于電動輪系統(tǒng)的縱向振動的影響是十分必要的。
為研究機電耦合產生不平衡磁拉力對電動輪系統(tǒng)的縱向振動特性的影響,本文首先建立了電動輪縱扭耦合動力學模型,基于該模型分析了考慮機電耦合前后電動輪系統(tǒng)模態(tài)特征的變化,并通過輪轂電機驅動電動輪系統(tǒng)的振動特性試驗,驗證了該動力學解析模型的準確性;隨后基于建立的動力學模型分析了機電耦合產生的不平衡磁拉力對電動輪系統(tǒng)縱向振動的影響。
由前期研究可知[13]轉矩波動會通過輪胎與路面的附著作用引起縱向接地力波動進而激發(fā)電動輪縱向振動,即電動輪在電機轉矩波動激勵下主要表現(xiàn)為扭轉和縱向振動,又因為電機轉矩波動具有明顯的階次特性[14-15]。因此為了能夠反映輪轂電機高頻轉矩波動激勵下的電動輪振動特性,建立電動輪系統(tǒng)縱扭耦合動力學模型如圖1所示。輪胎和電機轉子通過胎側連接,胎側等效為扭轉剛度和縱向平移剛度;電機定子經懸架擺臂及襯套與車身在縱向連接;電機定子與轉子通過軸承連接;輪胎扭轉自由度和縱向平移自由度通過考慮輪胎松弛特性的瞬態(tài)刷子模型實現(xiàn)耦合。
圖1 電動輪系統(tǒng)縱扭耦合動力學模型
現(xiàn)有的文獻在分析電動輪系統(tǒng)的縱向振動時時通常將電機的定轉子視為整體[16-18]。而實際運行過程中電動輪系統(tǒng)是一個復雜的機電耦合系統(tǒng)。為了考慮電動輪系統(tǒng)的機電耦合特性,首先需要建立考慮定轉子分開的電動輪縱向動力學方程,如式(1)所示。
式中x、x、x為輪胎、輪輞/電機轉子和電機定子縱向位移,m;θ、θ為電機轉子和輪胎旋轉角,rad;F為輪胎縱向力,N。電動輪模型參數(shù)如表1所示。
上述模型忽視了機電耦合產生的不平衡磁拉力。考慮機電耦合后,電動輪系統(tǒng)的縱向振動引起輪轂電機的定轉子發(fā)生相對運動,導致徑向氣隙不再均勻,進而產生不平衡磁拉力直接作用于在電動輪系統(tǒng)電機的定轉子上,導致電動輪系統(tǒng)的縱向動力學模型發(fā)生了變化。圖2為輪轂電機縱向偏心的示意圖。
因為鐵芯材料的磁導率遠遠大于空氣的磁導率,磁力線進出定子、轉子鐵芯時基本垂直于鐵芯表面。因此對本文研究的徑向電機,氣隙磁通密度的切向分量遠遠小于徑向分量,可以忽略不計。所以根據麥克斯韋張量方程,切向的電磁力f為0,徑向電磁力f可近似表示為
式中B(,)為電機的徑向磁密,T;0為真空磁導率。
注:x、z表示坐標軸;e表示電機的偏心量,mm;α表示徑向電磁力與x軸的夾角,rad。
將徑向電磁力沿圓周積分后并化簡得到總的不平衡磁拉力UMP為
式中l為電機軸向長度,m;為電機氣隙半徑,m。
該電動輪系統(tǒng)采用的輪轂電機為分數(shù)槽集中繞組的外轉子永磁同步電機,其參數(shù)如表2所示。圖3為有限元建立有限元模型仿真得出的不平衡磁拉力與縱向偏心間關系,可知該不平衡的磁拉力與偏心量的大小成正比,而偏心量等于定轉子的相對位移。則不平衡磁拉力可以表示為
式中k為電磁剛度,其大小等于曲線的斜率3.25 MN/m。
表2 永磁同步電機參數(shù)
圖3 不平衡磁拉力與縱向偏心的關系
在實際中,不平衡磁拉力以一對相互作用力的形式,作用在電機的定轉子上。此時考慮機電耦合產生的不平衡磁拉力后的電動輪縱向動力學方程如式(5)所示。
將式(1)和(5)表達成狀態(tài)空間形式,根據線性系統(tǒng)理論求解出特征值與特征向量,在Matlab中通過振型歸一化和無量綱化判斷振型特征,分析結果如表3所示。
表3 電動輪模態(tài)參數(shù)
由表3可以看出,考慮機電耦合產生的不平衡磁拉力后,電動輪系統(tǒng)的各階振型特征不變,但表現(xiàn)為定子的縱向平移的第五階模態(tài)頻率下降,由130.08降為112.34 Hz,其余階模態(tài)頻率幾乎保持不變。這是因為不平衡磁拉力對于電機的定轉子來說是外力,對于車身和輪胎是內力,所以系統(tǒng)的第五階模態(tài)即振型為定子的縱向平移對應的模態(tài)頻率受影響較大。
為驗證輪轂電機驅動電動汽車在驅動電機轉矩波動激勵下振動特性研究所建解析模型的準確性,本文通過某電動汽車電動輪系統(tǒng)的臺架試驗進行了驗證。該四分之一電動輪系統(tǒng)采用雙橫臂懸架,安裝在課題組開發(fā)的懸架試驗臺架上[19],輪胎直接與轉鼓相接觸,如圖4所示。試驗過程中輪胎由輪轂電機驅動,并通過轉鼓施加負載以模擬車輛行駛過程中的阻力。通過加速度傳感器采集了輪胎的縱向加速度信號。
圖4 電動輪臺架試驗布置
試驗工況設定為電機驅動轉矩60 N·m,轉速在30 s內由0加速到300 r/min。圖5為試驗獲取的輪胎縱向加速度的時頻圖。
由圖5可知,輪胎振動表現(xiàn)出階次特征,主要階次為1、5、5.5、6、6.5等,其中6階振動最為明顯,主要是由于電機的6階轉矩波動引起的。汽車從0起步加速到30 km/h時,電機轉速從0加速到300 r/min,轉矩波動頻率可以達到360 Hz,因此本文的激勵頻率超過了100 Hz。這里涉及的階次均相對于電流基頻(轉頻與極對數(shù)的乘積),6階表示電流基頻的6倍頻。另外從圖5中可以看出在整個頻段內輪胎的縱向振動存在著3個明顯的共振區(qū)。提取輪胎縱向振動時頻圖中6階振動切片如圖6所示,3個共振區(qū)對應的頻率分別位于48、94及141 Hz,這與表3中通過解析模型計算獲取的模態(tài)頻率相接近,從而驗證了電動輪系統(tǒng)縱向動力學解析模型的準確性。同時可以看出,輪胎振動顯著的頻段為0~150 Hz,高于150 Hz的頻段內振動幅值較小。因此本文分析的主要頻率在150 Hz以內,而所建解析模型能夠反映該頻段的振動特性,可進一步用于電動輪系統(tǒng)的縱向動力學分析。
圖6 輪胎6階縱向振動加速度
分析振動來源[20]可知,轉矩波動具有明顯的階次特征。轉矩波動包括電機繞組不通電時永磁體和定子開槽相互作用產生的齒槽轉矩和由永磁體和電樞反應磁場共同作用產生的電磁轉矩脈動兩部分。由文獻[21-23]可知齒槽轉矩的脈動頻率為電機極槽最小公倍數(shù)的整數(shù)倍轉頻,由文獻[24-26]可知電磁轉矩脈動頻率為6(為極對數(shù))的整數(shù)倍轉頻。對于本文研究的24極27槽電機來說,其齒槽轉矩的頻率為216f,電磁轉矩波動的頻率為72f(f為電機的轉頻、為整數(shù))。由文獻[14]可知,轉矩波動的基波對縱向振動特性的影響較大,所以為便于后續(xù)分析考慮機電耦合產生的不平衡磁拉力對電動輪系統(tǒng)縱向振動的影響,電動輪系統(tǒng)輸入激勵為轉矩
為反映電動輪系統(tǒng)在整個轉速范圍內的動力學特性,分析輪轂電機加速工況下氣隙的變化如圖7a所示,圖7b展示了由氣隙變化產生的不平衡磁拉力。
由圖7可知,轉矩波動引起定轉子發(fā)生相對運動,即氣隙發(fā)生變化,導致電機發(fā)生偏心,產生不平衡磁拉力。當軸承的剛度為12.5 MN/m時,輪轂電機氣隙最大偏心率達3.5%,不平衡磁拉力的最大值達119 N。對比分析發(fā)現(xiàn)不平衡磁拉力亦會加劇氣隙的變化,二者存在很強的正相關性;齒槽轉矩與不平衡磁拉力共同作用是氣隙在低頻段變化的主要原因,高頻段則主要受電樞與永磁體磁場相互作用產生的轉矩波動與不平衡磁拉力的共同影響。
圖7 輪轂驅動電機的氣隙變化及不平衡磁拉力
人體對低頻的縱向振動較為敏感,因此車身在2~3 Hz附近的縱向振動將顯著影響輪轂電機驅動電動汽車的乘坐舒適性。對于電動輪系統(tǒng),由于轉矩波動的作用,輪胎滑移率會在中高頻附近出現(xiàn)顯著波動,中頻波動難以準確測量或估計,進而使滑移率的辨識的存在誤差,對車輛縱向動力學控制(如ABS,TCS等)有顯著影響[27-29]。在電機的諸多失效形式中,電機長時間工作在中高頻激勵下引起的結構件(諸如軸承、定轉子等)疲勞破壞是主要貢獻之一[30]。為分析考慮機電耦合產生不平衡磁拉力對車輛舒適性、電機結構穩(wěn)定性、縱向滑移率辨識等影響,仿真得出加速工況下車身、電機定轉子和輪胎縱向加速度時域圖,進而通過短時傅里葉變換得到對應的頻域結果如圖8至圖11所示。
注:圖中兩條曲線近似重合。
圖9 定子縱向振動加速度
圖10 轉子縱向振動加速度
由圖8到圖11可知:考慮機電耦合產生的不平衡磁拉力對系統(tǒng)的第五階模態(tài)影響較大,表現(xiàn)為頻率下降,且電機定轉子的振動幅值在此階模態(tài)處增大許多,即電機及定轉子的縱向振動由第五階貢獻增多,因為電動輪系統(tǒng)的第五階模態(tài)表現(xiàn)為定子的縱向平移。而機電耦合產生的不平衡磁拉力對于車身及輪胎的縱向振動影響相對較小。為定量分析不平衡磁拉力對車身及簧下部件縱向振動的影響,分別取=108.4、93.62 r/min,此時轉矩波動頻率分別與考慮機電耦合產生不平衡磁拉力前后第五階所對應的模態(tài)一致,仿真獲取各響應量縱向振動加速度均方根值如表4所示。
注:圖11a中,僅在1.7、2.6、5.1 s時,考慮不平衡磁拉力略大于不考慮不平衡磁拉力的輪胎縱向振動加速度;其余時間段輪胎縱向振動加速度幾乎相等。
表4 縱向振動加速度惡化程度
注:a表示車身縱向振動加速度,m·s-2;a表示轉子縱向振動加速度,m·s-2;a表示定子縱向振動加速度,m·s-2;a表示輪胎縱向振動加速度,m·s-2。
Note:aindicates longitudinal vibration acceleration of vehicle body, m·s-2;aindicates longitudinal vibration acceleration of rotor, m·s-2;aindicates longitudinal vibration acceleration of stator, m·s-2; aindicates longitudinal vibration acceleration of tire, m·s-2.
由表4可知,機電耦合產生的不平衡磁拉力使電機的定轉子、輪胎在第五階模態(tài)頻率處的縱向振動加速度都不同程度的增大,分別增加113.35%、105.69%、27.15%,對于車身縱向振動加速度幾乎無影響。
在電動輪系統(tǒng)中,由于輪轂電機驅動的輪胎/車輪等動力學結構存在柔性,反作用于電機的負載轉矩在45.41及94.28 Hz處使定轉子及輪胎縱向振動比較顯著,且電機長時間工作下的中高頻激勵將引起結構件的疲勞破壞,故分析系統(tǒng)在第三、四階模態(tài)下,即轉速=37.85、78.75 r/min時,機電耦合產生的不平衡磁拉力對簧下部件縱向振動的影響。機電耦合產生的不平衡磁拉力使電機的定子、輪胎縱向振動加速度在第三階模態(tài)頻率處分別增加6.14%、2.84%,對轉子縱向振動加速度幾乎無影響;在第四階模態(tài)頻率處使電機的轉子、定子、輪胎縱向振動加速度分別增加21.94%、64.89%、5.71%。
因為本文主要考慮機電耦合對電動輪系統(tǒng)的縱向振動特性影響,由模態(tài)頻率分析發(fā)現(xiàn)只有在定子的縱向平移的振動特征的模態(tài)頻率有所下降。這是因為不平衡磁拉力對于電機的定轉子來說是外力,直接作用在定轉子上,對于車身和輪胎是內力,所以振型為定子的縱向平移對應的模態(tài)頻率變化較大。在電機結構中,定轉子只由軸承這一物理結構直接相連,所以模型參數(shù)中只有軸承剛度的改變對于考慮機電耦合產生的不平衡磁拉力影響較大,進而影響該電動輪系統(tǒng)的縱向振動特性。由文獻[31]可知,軸承的安裝剛度一般在12.5~22.5 MN/m,因此在不同軸承剛度下,仿真獲取了激勵頻率分別為考慮機電耦合前后定子縱向平移模態(tài)的頻率時簧下質量縱向振動加速度的均方根值,分析了不同剛度下簧下質量縱向振動的惡化程度,結果如圖12所示。
圖12 不同軸承剛度下簧下質量縱向振動加速度惡化情況
由圖12可知在實際軸承的安裝剛度范圍內,考慮機電耦合后,簧下質量的縱向振動加速度出現(xiàn)不同程度的惡化,影響其使用壽命和結構安全。
本文建立了考慮機電耦合產生不平衡磁拉力的電動輪縱向動力學模型,并分析了考慮前后模態(tài)特征的變化;研究了在轉矩波動輸入下,機電耦合產生不平衡磁拉力對電動輪系統(tǒng)縱向振動特性的影響,得出以下結論:
1)基于電動輪縱扭耦合動力學模型,分析考慮機電耦合后,電動輪系統(tǒng)各階模態(tài)的變化規(guī)律:表現(xiàn)為定子的縱向平移的振動特征的模態(tài)頻率下降,其余階模態(tài)頻率幾乎保持不變。
2)當軸承剛度為12.5 MN/m時,機電耦合產生的不平衡磁拉力使定子縱向平移模態(tài)頻率下電機的定轉子、輪胎縱向振動加速度分別惡化113.35%、105.69%、27.15%;在其余軸承剛度下,機電耦合導致簧下質量的縱向振動亦出現(xiàn)了較大程度的惡化,使其控制難度加大,并嚴重影響其使用壽命和結構安全。因此在電動汽車的開發(fā)中考慮機電耦合產生的不平衡磁拉力很有必要。
[1] 電動汽車總體專項組. “十五”國家高技術研究發(fā)展計劃(863計劃)電動汽車重大專項進展[J]. 汽車工程,2003,25(6):533.
The Special Professioml Group of Electric Vehicle. National high-tech research and development program for tenth “Five-year Plan”(863 Torch Program): Significant progress of electric vehicle[J]. Automotive Engineering, 2003, 25(6): 533. (in Chinese with English abstract)
[2] Li X H, Qian H. The present status and future trends of in-wheel motors for electric vehicles[J]. Advanced Materials Research, 2012, 433: 6943-6950.
[3] Chen Y, Wang J M. Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1535-1542.
[4] Nagaya, Wakao Y, Abe A. Development of an in-wheel drive with advanced dynamic-damper mechanism[J]. Jsae Review, 2003, 24(4): 477-481.
[5] Jin L, Song C, Wang Q. Evaluation of influence of motorized wheels on contact force and comfort for electric vehicle[J]. Journal of Computers, 2011, 6(3): 497-505.
[6] 梁銳,余卓平,寧國寶. 基于吸振原理的輪邊驅動電動車垂向振動負效應的抑制[J]. 機械設計,2008,25(1):28-30.
Liang Rui, Yu Zhuoping, Ning Guobao. Restraint of negative effect on vertical vibration of wheel rim driven motor vehicle based on shake absorption principle[J].Journal of Machine Design, 2008, 25(1): 28-30. (in Chinese with English abstract)
[7] 毛鈺,左曙光,林福. 轉矩波動下電動輪縱向階次振動特性試驗及理論分析[J].同濟大學學報:自然科學版,2016,44(11):1735-1742.
Mao Yu, Zuo Shuguang, Lin Fu. Experimental and theoretical analysis of horizontal order vibration characteristics of electric wheel under torque ripple[J]. Journal of Tongji University: Natural Science, 2016, 44(11): 1735-1742. (in Chinese with English abstract)
[8] 張立軍,錢敏,余卓平. 輪轂電機-輪胎總成非線性動力學特性仿真分析[C]//第五屆中國智能交通年會暨第六屆國際節(jié)能與新能源汽車創(chuàng)新發(fā)展論壇優(yōu)秀論文集(下冊). 北京:電子工業(yè)出版社,2009:162-168.
[9] Tan Di, Lu Chao. The Influence of the magnetic force generated by the in-wheel motor on the vertical and lateral coupling dynamics of electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4655-4668.
[10] Luo Yutao, Tan Di. Study on the dynamics of the in-wheel motor system[J]. IEEE Transactions on Vehicular Technolog, 2012 , 61(8): 3510-3518.
[11] Wang Y, Li P, Ren G. Electric vehicles with in-wheel switched reluctance motors: Coupling effects between road excitation and the unbalanced radial force[J]. Journal of Sound & Vibration, 2016, 372: 69-81.
[12] Wang Y Y, Li N, Sun W, et al. Effect of the unbalanced vertical force of a switched reluctance motor on the stability and the comfort of an in-wheel motor electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2015, 229(12): 1569-1584.
[13] 左曙光,段向雷,吳旭東. 電動輪剛性環(huán)耦合特性模型建模與分析[J]. 同濟大學學報:自然科學版,2014,42(10):1578-1585.
Zuo Shuguang, Duan Xianglei, Wu Xudong. Modeling and analysis of rigid ring coupling model of electric wheel[J]. Journal of Tongji University: Natural Science, 2014, 42(10): 1578-1585. (in Chinese with English abstract)
[14] Islam M S, Islam R, Sebastian T. Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications[J]. IEEE Transactions on Industry Applications, 2009, 47(1): 88-95.
[15] 林福,左曙光,吳旭東,等. 基于階次分析的永磁同步電機噪聲源識別[J]. 農業(yè)工程學報,2016,32(17):69-76.
Lin Fu, Zuo Shuguang, Wu Xudong, et al. Noise source recognition of permanent magnet synchronous motor based on order analysis[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(17): 69-76. (in Chinese with English abstract)
[16] 毛鈺,左曙光,林福. 轉矩波動下電動輪系統(tǒng)機電耦合振動特性[J]. 吉林大學學報:工學版,2017,47(3):908-916.
Mao Yu, Zuo Shuguang, Lin Fu. Electromechanical coupled vibration characteristics of electric wheel under torque ripple[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47(3): 908-916. (in Chinese with English abstract)
[17] Mao Yu, Zuo Shuguang, Wu Xudong. Longitudinal vibration analysis of electric wheel system in starting condition[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017, 1(2): 156-164.
[18] Mao Yu, Zuo Shuguang, Wu Xudong, et al. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple[J]. Journal of Sound and Vibration, 2017, 400: 442-456.
[19] 同濟大學. 一種可調式電動輪懸架系統(tǒng)振動噪聲測試臺: 201310125584. 0[P]. 2013-08-07.
[20] Zuo Shuguang, Duan Xianglei, Wu Xudong. Vibration test analysis of an electric wheel-suspension system on a test bed[J]. Journal of Vibration and Shock, 2014, 33(12): 165-187.
[21] Ge X, Zhu Z Q, Kemp G, et al. Optimal step-skew methods for cogging torque reduction accounting for three- dimensional effect of interior permanent magnet machines[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 222-232.
[22] Shin K H, Park H I, Cho H W, et al. Analytical calculation and experimental verification of cogging torque and optimal point in permanent magnet synchronous motors[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4.
[23] Li Yanxin, Lu Qinfen, Zhu J Q, et al.Superposition method for cogging torque prediction in permanent magnet machines with rotor eccentricity[J]. IEEE Transactions on Magnetics, 2016, 52(6): 1-10.
[24] 王斯博,趙慧超,李志宇,等. 電動車永磁同步電機轉矩波動分析及測試[J]. 電機與控制學報,2015,19(9):95-102.
Wang Sibo, Zhao Huichao, Li Zhiyu, et al. Analysis and test for torque ripple of permanent magnet synchronous motor for electric vehicle[J]. Electric Machines and Control, 2015, 19(9): 95-102. (in Chinese with English abstract)
[25] Farshadnia M, Cheema M A M, Dutta R, et al. Detailed analytical modelling of fractional-slot concentrated-wound interior permanent magnet machines for prediction of torque ripple[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5272-5283.
[26] Lai C, Feng G, Iyer L V, et al. Genetic algorithm based current optimization for torque ripple reduction of interior PMSMs[J].IEEE Transactions on Industry Applications, 2017, 53(5): 4493-4503.
[27] Song Ziyou, Li Jianqiu, Wei Yintao, et al. Interaction of in-wheel permanent magnet synchronous motor with tire dynamics[J]. Chinese Journal of Mechanical Engineering. 2015, 28(3): 470-478.
[28] Li Jianqiu, Song Ziyou, Wei Yintao, et al. Influence of tire dynamics on slip ratio estimation of independent driving wheel system[J]. Chinese Journal of Mechanical Engineering. 2015, 27(6): 1203-1209.
[29] 李波,趙又群,臧利國,等. 基于復合滑移理論的輪胎抓地狀態(tài)建模與驗證[J]. 農業(yè)工程學報,2014,30(16):68-74.
Li Bo, Zhao Youqun, Zang Liguo, et al. Construction and verification of tire grip state based on combined-slip theory[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(16): 68-74. (in Chinese with English abstract)
[30] Matej B, Gorazd G, Damijian M, et al. Mechanical failure mode causes of in-wheel motors[J]. Journal of Mechanical Engineering, 2015, 61(1): 74-85.
[31] 史魁,岳永堅. 電動機轉子深溝球軸承剛度的測試[J]. 現(xiàn)代制造工程,2013(12):77-80.
Shi Kui, Yue Yongjian. Stiffness measurement of deep- groove ball bearing using in electromotor rotor[J]. Modern Manufacturing Engineering, 2013(12): 77-80. (in Chinese with English abstract)
左曙光,李多強,毛 鈺,鄧文哲,吳旭東. 考慮機電耦合的電動輪系統(tǒng)縱向振動特性建模及驗證[J]. 農業(yè)工程學報,2017,33(22):61-68. doi:10.11975/j.issn.1002-6819.2017.22.008 http://www.tcsae.org
Zuo Shuguang, Li Duoqiang, Mao Yu, Deng Wenzhe, Wu Xudong. Modeling and validation on longitudinal vibration characteristics of electric wheel system considering electromechanical coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 61-68. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.008 http://www.tcsae.org
Modeling and validation on longitudinal vibration characteristics of electric wheel system considering electromechanical coupling
Zuo Shuguang, Li Duoqiang, Mao Yu, Deng Wenzhe, Wu Xudong※
(201804,)
Recently, distributed-drive electric vehicle has become one of the development directions of future vehicle with the advantage of miniaturization and high performance. The electric wheel system is a key component of distributed-drive electric vehicle. The longitudinal dynamics of electric wheel system caused by torque ripple of the in-wheel motor is more significant than vertical. The existing studies on longitudinal vibration analysis of electric wheel system are always taking stator and rotor as a whole. Actually, the electric wheel is a complicated electromechanical coupling system. The longitudinal vibration of electric wheel system causes the relative displacement of rotor and stator, resulting in unbalanced magnetic pull (UMP) that acts on the surface of rotor and stator. The induced UMP by electromechanical coupling changes the characteristics of the longitudinal vibration and deteriorates the performance of the electric wheel system further. Therefore, it is important to consider the effects of UMP caused by electromechanical coupling on the longitudinal vibration of the electric wheel system. Longitudinal vibration characteristics of an electric wheel system considering electromechanical coupling was studied in this paper. Firstly, the electric wheel longitudinal-tensional coupling dynamic model was established, and the variation of the modal characteristics for the electric wheel system with and without electromechanical coupling was analyzed. It needs to indicate that the modal shapes of the electric wheel system are identical considering the UMP, but the fifth order modal frequency is decreased obviously. This mode was characterized as the longitudinal translation of the stator. The accuracy of the analytical dynamic model was verified through vibration test of a one-quarter electric wheel system. The electric wheel system adopted a double-wishbone suspension and was installed on the experiment bench developed by the research group. During the test, the tire was driven by the in-wheel motor and directly contacted with the drum. The load on the tire was exerted by the drum to simulate the resistance in the course of vehicle running. The longitudinal acceleration of tire was measured by an acceleration sensor. Time frequency map of the tire longitudinal vibration was then extracted. Three main resonance regions could be found near 48, 94 and 141 Hz, which were consistent with the modal frequencies obtained by the established analytical model. This verified the accuracy of the analytical model on longitudinal dynamics of electric wheel system. When longitudinal vibration frequency of the vehicle driven by in-wheel motor was near 2-3 Hz, it significantly affected the riding comfort as people are sensitive to low-frequency longitudinal vibration. While the high frequency longitudinal vibration is not favorable to the motor. Finally, the longitudinal vibration characteristic of the electric wheel system considering electromechanical coupling was studied. The time and frequency domain acceleration of vehicle body, stator, rotor and tire were obtained by simulation. It inferred from the quantitative analysis that torque ripple caused the relative displacement of stator and rotor, resulting in eccentric of the motor and UMP. The UMP is regarded as external force for the stator and rotor of the motor, while it is regarded as internal force for the vehicle body and tire. As a result, the unbalanced magnetic pull had little influence on the longitudinal vibration characteristic of sprung mass. However, it deteriorated the longitudinal vibration characteristic of unsprung mass sharply, which was harmful to the service life and structure safety. Therefore, it is necessary to consider the unbalanced magnetic pull caused by electromechanical coupling in the development of electric vehicle. This study provides guidance for the design of electric vehicles driven by in-wheel motor.
vehicles; vibrations; models; electromechanical coupling; electric wheel; torque ripple; unbalanced magnetic pull
10.11975/j.issn.1002-6819.2017.22.008
U461.1
A
1002-6819(2017)-22-0061-08
2017-06-23
2017-09-20
國家自然科學基金資助項目(51375343);上海市教委科研創(chuàng)新項目(15ZZ015)
左曙光,教授,博士生導師,研究方向為汽車系統(tǒng)動力學與控制。Email:sgzuo@#edu.cn
吳旭東,助理教授,研究方向為汽車振動、噪聲及系統(tǒng)動力學。Email:wuxudong@#edu.cn