羅慕晴,馮智超,廖云杰,鐘東,李萬猛,容鵬飛*,王維
作者單位:
1. 中南大學湘雅三醫(yī)院放射科 長沙410003
2. 中南大學湘雅醫(yī)院脊柱外科 長沙410008
關節(jié)軟骨在關節(jié)活動中具有重要作用,而關節(jié)軟骨退行性變是許多骨關節(jié)疾病如骨關節(jié)炎(osteoarthritis,OA)等的重要早期改變之一。關節(jié)軟骨內無淋巴、血管組織,損傷后愈合困難[1],常繼發(fā)出現(xiàn)關節(jié)其他結構甚至鄰近骨的不同程度損傷,早期評估和診斷關節(jié)軟骨退變對指導患者治療、康復鍛煉等方面具有重要意義。
磁共振成像具有多序列、多方位、多參數(shù)成像及組織分辨率高、對比度好等優(yōu)勢,能提高對早期軟骨受損、骨質侵蝕和軟組織及骨髓水腫檢測的敏感度,被公認為目前評價關節(jié)軟骨形態(tài)和成分的首選方法[2]。在關節(jié)軟骨退行性變的早期,軟骨中生化成分的改變往往早于形態(tài)學改變[3]。近年來,多種定量MRI技術已成功地應用于檢測軟骨生化成分狀態(tài),對早期關節(jié)退變的評價方面較形態(tài)學成像序列具有更重要的價值。筆者針對該方面的研究進展進行綜述。
關節(jié)軟骨是關節(jié)的重要結構之一,是覆蓋關節(jié)骨面的富有彈性的特殊透明軟骨,具有潤滑、吸收震蕩及緩沖應力等功能,在維持關節(jié)的正常結構和功能方面發(fā)揮著重要作用。關節(jié)軟骨由淺至深包括表層(滑動帶)、中間層(過渡帶)、深層(放射帶)和鈣化層四部分[4]。關節(jié)軟骨由細胞外基質(extracellular matrix,ECM)和軟骨細胞構成,其中ECM是其主要的物質基礎,由水(約60%~80%)、膠原蛋白(約15%~20%)、蛋白多糖(proteoglycan,PG,約1%~10%)和其他糖蛋白底物、礦物質和脂質等組成[5]。其中水在關節(jié)面負重時在軟骨各層內充分流動,起到潤滑關節(jié)的作用;膠原蛋白是ECM中含量最多的大分子,排列網格高度有序,構成軟骨組織的三維各向異性框架,是關節(jié)軟骨抗拉力和剪切力的主要成分[6];PG主要以聚集蛋白聚糖的形式存在,由含數(shù)百個糖胺聚糖(glycosaminoglycan,GAG)側鏈的核心蛋白組成,GAG上的硫酸鹽和羧基產生負電荷,使相鄰的GAG分子排斥并吸引金屬離子(如Na+、Ca2+等),產生滲透壓將水吸引到組織中并與水相互作用,使得關節(jié)軟骨富有彈性,這是關節(jié)軟骨承受壓力的基礎。關節(jié)軟骨中的軟骨細胞分布很少(僅占4%濕重),主要參與軟骨代謝活動,與PG的合成有關。
關節(jié)軟骨退行性變時存在生化成分、結構及形態(tài)的改變,并且是一個由量變到質變的過程。關節(jié)軟骨退變早期,其生化成分及超微結構的改變往往發(fā)生在形態(tài)改變之前[3]。在分子水平上,關節(jié)軟骨退變是軟骨細胞、ECM及軟骨下骨三者代謝和合成失衡的結果,發(fā)生的改變包括膠原纖維變性退化、PG丟失、水含量降低以及水滲透性增高等。在形態(tài)上則表現(xiàn)為初期軟骨淺表層缺損或纖維化,隨后裂隙延伸至軟骨下骨、形成裂縫或潰瘍,軟骨厚度逐漸變薄,最終隨著疾病的進展導致軟骨全層缺損、剝脫。針對關節(jié)軟骨退變的主要病理生理改變,目前有相應的定量MRI成像技術來進行評估:(1)水含量降低及滲透性增高:T2 mapping、T2*mapping、擴散加權成像(diffusion weighted imaging,DWI)及擴散張量成像(diffusion tensor imaging,DTI);(2) PG含量減少:鈉磁共振成像(Sodium MRI,Na-MRI)、T1ρ mapping、延遲釓增強磁共振軟骨成像(delayed gadolinium-enhanced magnetic resonance imaging of cartilage,dGEMRIC)和氨基葡聚糖化學交換飽和轉移技術(glycosaminoglycan chemical exchangedependent saturation transfer,gagCEST);(3)膠原纖維變性退化、結構紊亂:主要是DTI,T2 mapping、T2*mapping的評估效果尚存爭議。
此外,近年來有超短回波時間(ultrashort echotime,UTE)序列、MRI紋理分析(MRI texture analysis,MRTA)技術等被開發(fā)應用于顯示短T2、T2*信號的軟骨組織成分和分析圖像異質性等。
目前評價關節(jié)軟骨退變最常用的定量技術是T2 mapping,它是基于多回波自旋回波(multi-echo spin echo,MESE)序列獲得T2值來評估軟骨內生化成分的改變。T2 mapping對關節(jié)軟骨退變引起的ECM內水和膠原纖維的變化高度敏感[7],可有效檢測關節(jié)軟骨早期退變或損傷區(qū)域。有體外研究表明,關節(jié)軟骨T2值與水含量呈正相關,與GAG濃度呈負相關,并隨退變程度加重而增高[8-10];T2值與膠原蛋白含量是否相關尚存爭議[8,11]。Apprich等[12]發(fā)現(xiàn)輕中度髕軟骨病損周圍形態(tài)未改變的退變軟骨和健康軟骨間T2值存在顯著差異。Zhong等[13]認為關節(jié)軟骨T2 mapping的信號變化能預測無癥狀性膝關節(jié)OA患者的病情進展,可作為評估早期OA的一種影像標記物。Kijowski等[14]提出在3.0 T常規(guī)MRI掃描方案中增加T2 mapping后,可提高對膝關節(jié)軟骨損傷檢測的敏感度,但特異度略有降低。此外,有學者將T2 mapping與計算機輔助診斷相結合,可用于檢測膝關節(jié)OA的早期軟骨變性[15]。T2 mapping的脈沖序列和后處理軟件較容易獲取,能被大多數(shù)MRI系統(tǒng)兼容,易應用于臨床實踐中。但缺點是有魔角效應,即當膠原蛋白排列方向與成像基線成55°角時會影響T2值,導致定量評估軟骨損傷的精準性下降[16]。今后須進一步探討其適用范圍、技術優(yōu)化及可重復性問題等[17]。
與T2 mapping類似,T2*mapping也與關節(jié)軟骨中水分子含量和膠原纖維排列方式密切相關[18]。然而,Newbould等[10]研究表明不同級別退變軟骨的T2和T2*值存在顯著差異。OA關節(jié)軟骨T2*值隨軟骨退變程度加重而縮短[18-20],具有很好的重復性[10]。但Taehee等[21]卻發(fā)現(xiàn),T2*值雖然隨關節(jié)軟骨退變分級增加而降低,但兩者無顯著相關性。盡管T2*mapping具有成像速度快、圖像分辨率高、能進行三維各向同性評價等優(yōu)勢,但T2*值可能在評估軟骨退變分級的敏感性不如T2值[22],還易受到磁場不均勻性影響[19],因此需要更多的科學證據(jù)來確定T2*值評估關節(jié)軟骨退變的可靠性、有效性和潛在機制。
DWI成像能獲得關節(jié)軟骨內水分子的擴散信息,通過表觀擴散系數(shù)(apparent diffusion coefficient,ADC)值來量化組織結構特性。正常軟骨中水分子擴散受到膠原成分各向異性的限制,軟骨發(fā)生變性(包括膠原網絡結構破壞、PG含量減少)時水含量相對增多、流動性增強,導致擴散阻力降低、ADC值增高。因此,ADC值可用來評估關節(jié)軟骨的變性退變[23-24]。Xu等[25]發(fā)現(xiàn)早期膝關節(jié)退變軟骨ADC值明顯高于正常軟骨,軟骨DWI成像作為膝關節(jié)OA早期診斷工具的技術可行性已得到證實[26]。DWI不需要注射對比劑、掃描時間相對較短,與T2 mapping相比,它易受到運動和偽影的影響、圖像分辨率不高,在3.0 T MRI上更明顯,需要采用良好的脂肪抑制及更短的回波時間來達到類似T2 mapping成像的效果。此外,DWI還會受到b值和組織各向異性的影響等。
DTI不僅能提供軟骨中水分子擴散狀態(tài)的定量信息,還能反映膠原纖維細微結構變化,其量化指標包括平均ADC和部分各向異性(fractional anisotropy,F(xiàn)A)[24,27]。軟骨退變時PG含量減少、膠原纖維變形紊亂,水分子含量相對增多且擴散程度增加、各向異性減少,導致平均ADC值增高、FA值降低[28]。DTI能夠有效區(qū)分正常軟骨和退變損傷軟骨[29]。Raya等[28]比較DTI和T2 mapping在鑒別正常軟骨和膝關節(jié)OA軟骨的效果時發(fā)現(xiàn),平均ADC和FA的敏感度、FA的特異度均優(yōu)于T2值,并具有良好的重測可重復性。他們的后續(xù)研究表明,DTI成像還有助于對早期軟骨損傷進行分級評價[30]。此外,在7.0 T MRI上進行線掃描DTI也能區(qū)分正常軟骨與OA軟骨退變,并能覆蓋所有軟骨區(qū)域[31]。DTI技術量化水分子各向異性擴散,故不受魔角效應影響,但其數(shù)據(jù)分析復雜、掃描時間較長。
此外,有研究者提出了磁敏感張量成像(susceptibility tensor imaging,STI)在9.4 T高場強MRI中量化豬軟骨膠原纖維磁化率各向異性的可行性和適用性,可作為分析膠原纖維微觀結構的一種新型敏感、無創(chuàng)技術,但其在人體關節(jié)軟骨成像尚無應用[32]。
Na-MRI是通過磁共振波譜成像(magnetic resonance spectroscopy,MRS)測量Na+在軟骨內的分布,反映軟骨中的固定電荷密度及PG含量[33]。關節(jié)軟骨退變時PG含量減少,導致固定電荷密度降低、釋放出Na+,此時軟骨中鈉濃度降低、Na-MRI信號減低。Wheaton等[34]對早期膝關節(jié)OA患者和健康人的關節(jié)軟骨進行Na-MRI掃描,發(fā)現(xiàn)OA患者軟骨變性區(qū)信號減低,提示局部PG丟失。此外,Madelin等[35]發(fā)現(xiàn)與傳統(tǒng)的Na-MRI序列相比,采用施加了絕熱反轉脈沖水抑制的Na-MRI序列能抑制關節(jié)腔滑液內游離Na+信號,減少了滑液對鈉信號的干擾,提高了Na-MRI檢測膝關節(jié)OA的準確度,該序列對精準評估早期關節(jié)軟骨退變是一種更具前景的技術。Na-MRI在不同場強水平都具有良好的可重復性[36],但存在較多局限性,包括鈉濃度測量困難、信噪比和空間分辨率低、需要高場強條件(≥3.0 T)、采集時間長、需有特殊射頻線圈與相關硬件設備、周圍組織(如軟骨下水腫或滑液)的部分容積效應可能影響定量測量等[37-38],有待深入研究和技術優(yōu)化以提高臨床實用性。
T1ρ mapping可獲得關節(jié)軟骨T1ρ弛豫時間,其對軟骨內PG含量變化較為敏感[39]。Kester等[40]發(fā)現(xiàn)早期膝關節(jié)OA患者在關節(jié)軟骨形態(tài)尚未發(fā)生明顯改變時,軟骨T1ρ值因PG含量減少而增高。因而,T1ρ mapping可作為定量評估關節(jié)軟骨早期退變的一種技術手段。Wang等[41]發(fā)現(xiàn)T1ρ mapping在評估膝關節(jié)早期OA軟骨變性較T2 mapping效果更好。Hu等[42]研究表明,與T2 mapping和T2*mapping相比,T1ρ mapping在檢測小關節(jié)軟骨退變的生化成分改變時更敏感,能用于評估腰椎小關節(jié)軟骨早期退行性變。另外,T1ρ mapping在鑒別Ⅰ、Ⅱ級軟骨退變方面也較T2 mapping有一定優(yōu)勢[43]。T1ρ mapping在臨床研究或應用中有很大潛力,它不需要使用對比劑,也不需要進行關節(jié)運動和長時間等待,可部分替代延遲增強成像。但同時也存在一些技術挑戰(zhàn),如需要特殊的脈沖序列、耗時較長及需要高場強、高射頻脈沖能量水平等[44]。
dGEMRIC是根據(jù)退變軟骨ECM中固定電荷密度分布不均的特點,利用釓對比劑進行成像來間接估計GAG乃至PG含量的變化。關節(jié)軟骨退變早期PG含量下降,相應GAG帶有負電荷減少,從而對帶陰離子的順磁性釓螯合物DTPA2-等排斥力減弱,能夠進入到軟骨退變區(qū)的釓螯合物就會增多。采用靜脈內注射雙倍劑量對比劑釓噴酸葡胺,經長時間自主運動使其滲入關節(jié)軟骨,然后多次進行反轉恢復序列掃描,分析測定軟骨T1值。健康軟骨的T1值較高,退變后T1值降低。dGEMRIC可準確反映軟骨內PG或GAG含量,能用于評估關節(jié)軟骨退變及其修復情況[18,45-47],具有較好的可重復性[48]。Van Tiel等[49]對膝關節(jié)OA患者在全膝關節(jié)置換術前進行dGEMRIC和T1ρ mapping,與術中軟骨標本中測量的硫酸化糖胺聚糖(sulphated glycosaminoglycan,sGAG)和膠原含量進行相關性分析,發(fā)現(xiàn)僅T1值與sGAG含量顯著正相關,與膠原含量相關性弱,而T1ρ值與sGAG和膠原含量均無關。這說明dGEMRIC評估軟骨sGAG含量的效果優(yōu)于T1ρ mapping。此外,聯(lián)合T2 mapping和dGEMRIC會對關節(jié)軟骨的生化評估更全面[50]。但dGEMRIC具有成像時間長、需要關節(jié)運動、T1值測定缺乏統(tǒng)一標準及大劑量釓對比劑有潛在副作用(如腎源性系統(tǒng)性纖維化)等缺點,影響了該技術的廣泛臨床應用。
關節(jié)軟骨的ECM中含大量大分子偶聯(lián),其磁化傳遞效應明顯,這是關節(jié)軟骨形成磁化傳遞對比(magnetization transfer contrast, MTC)的基礎。MTC技術通過磁化傳遞率(magnetization transfer ratio,MTR)來反映軟骨中蛋白含量變化,利用水與大分子內質子間MTR值的差異產生組織對比來顯示軟骨結構或病變。當關節(jié)軟骨中膠原蛋白含量減少時MTR值降低[51]。但MTC技術的準確性及特異性均不高,應用價值有限。
近年來,基于MTC技術和化學交換理論的gagCEST技術被用于軟骨評估中。gagCEST利用特定頻率的偏共振預飽和脈沖照射GAG內結合水中的質子,使之達到飽和狀態(tài)后,通過化學交換作用轉移到自由水中導致信號降低,來間接反映GAG含量[52]。Schmitt等[53]發(fā)現(xiàn)在7.0 T MRI上gagCEST和Na-MRI的軟骨測量結果具有顯著相關性。Wei等[54]采用dGEMRIC、gagCEST和T2 mapping評估膝關節(jié)軟骨的GAG濃度,發(fā)現(xiàn)gagCEST與dGEMRIC的測量結果基本一致,但敏感性偏低,T2值與它們相關性差且不敏感。因此,仍需進一步研究如何改善gagCEST技術,使之成為一種臨床上敏感可靠的方法。最近,Kogan等[55]開發(fā)了一種用于關節(jié)軟骨容積成像的多層gagCEST序列,在脛距關節(jié)軟骨成像中可行、有效,還發(fā)現(xiàn)軟骨容積成像和減少掃描時間有助于提高gagCEST技術的臨床應用價值。Krishnamoorthy等[56]設計了一種新型3D gagCEST技術,可得到可靠、可重復的高質量膝關節(jié)軟骨圖像,能在7.0 T MRI上對人膝關節(jié)軟骨的GAG含量進行精準測量。隨著圖像采集技術的不斷發(fā)展更新,gagCEST有望在在評估軟骨退變方面發(fā)揮更加重要的作用。由于3.0 T MRI常難以提供更高的信噪比和更均勻的靜磁場,gagCEST多用于超高場強MRI的應用研究。另外,它所需的后處理工具相對復雜,也限制了它的臨床應用。
傳統(tǒng)MRI序列的回波時間較長,不能采集到短T2/T2*的軟骨組織成分信號, UTE序列采用超短回波時間,能對短T2、T2*的軟骨深層和鈣化層進行直接顯示及生化定量分析,包括UTE T2*mapping、UTE T1ρ mapping等。正常軟骨內自由水產生長T2*信號,與膠原纖維或PG結合的水產生短T2*信號[57]。UTE T2*mapping通過采集不同的T2*信號能間接量化軟骨內膠原或PG含量。Pauli等[58]發(fā)現(xiàn)健康軟骨的短T2*信號百分比從淺到深逐漸增加,隨著軟骨退變的加重,短T2*信號百分比增加、UTE T2*值降低,這是由于退變導致PG甚至膠原丟失、結合水減少,但膠原基質微結構紊亂使水分子結合的膠原纖維表面積顯著增加,后者更為明顯并抵消了結合水的減少,導致總結合水分數(shù)凈增高。此時UTE T2*值降低提示膠原基質微結構破壞,而非膠原含量減少。Williams等[59]證明3D UTE T2*mapping技術評估健康膝關節(jié)軟骨生化成分具有臨床可行性及短期可重復性。同時,短T2*信號百分比受魔角效應影響較小[60],對評估關節(jié)軟骨退變穩(wěn)定性較好。UTE T2*mapping能超早期發(fā)現(xiàn)關節(jié)軟骨內生化成分的微變化,可實現(xiàn)早期敏感監(jiān)測和診斷。UTE T1ρ mapping也能反映軟骨深層及鈣化層的生化狀態(tài)。Bae等[61]發(fā)現(xiàn)UTE T1ρ值增高和軟骨變性有顯著相關性,反映軟骨中GAG含量減少。但受魔角效應影響較大,結果穩(wěn)定性欠佳[62]。最近,Chaudhari等[63]提出了超短回波時間雙回波穩(wěn)態(tài)序列(ultrashort echo-time double-echo steady-state,UTEDESS),可用于短T2組織中T2值的測量,同時具有高信噪比、高分辨率的形態(tài)學成像,在常規(guī)臨床檢查和縱向研究中有很好的應用前景。
UTE序列與常規(guī)定量MRI技術相比,最突出的特點是在顯示軟骨中短T2/T2*信號成分方面具有天然優(yōu)勢,但對軟骨深層和鈣化層各自情況、PG或膠原結合的水無法區(qū)分評估。今后需探討減小磁場不均和部分容積效應對UTE的影響,及開展UTE序列的臨床體內研究,以提高其對不同軟骨層生化成分檢測的特異性和實用性。
MRTA技術通過提取MRI圖像中與體素級信號強度相關的多階紋理特征后統(tǒng)計建模,實現(xiàn)對疾病的檢測、定性及預測等,進而輔助臨床診療決策。該技術能夠挖掘圖像深層次的潛在有價值信息,是影像組學的重要手段。Boutsikou等[64]發(fā)現(xiàn)單側膝損傷的關節(jié)軟骨與正常軟骨相比,存在多種紋理參數(shù)的差異,說明MRTA技術可作為MRI形態(tài)學成像的補充手段,以提高對細微軟骨改變的檢測。另有研究表明,在出現(xiàn)明顯的軟骨形態(tài)改變之前,膝關節(jié)損傷的軟骨T2圖的灰度共生矩陣(grey-level co-occurrence matrix,GLCM)參數(shù)大部分出現(xiàn)改變[65],提示具有更高的異質性。Urish等[66]的隨訪研究發(fā)現(xiàn),基于基線狀態(tài)軟骨T2圖的紋理參數(shù)建立的反映T2圖像異質性的綜合標志物,能作為臨床前期預測膝關節(jié)OA進展的重要指標。此外,短期復查軟骨T2圖并進行MRTA還可為前交叉韌帶損傷和重建后可能發(fā)生退變的軟骨進行早期評估[67]。采用MRTA來量化軟骨T2圖像上局部異質性具有可行性[68],但其應用于關節(jié)軟骨退變早期檢測的研究尚少,今后可深入研究MRTA在軟骨形態(tài)及定量成像方面的應用價值,并可嘗試拓展到基于多模態(tài)影像的深度學習實現(xiàn)人工智能評估并預警關節(jié)軟骨的早期退變。
定量MRI技術通過量化反映關節(jié)軟骨生化成分包括水分子、膠原纖維及PG含量的變化,能有效評估關節(jié)軟骨早期退變損傷。尤其是,隨著近年來高場強MRI (≥3.0 T)的廣泛應用及線圈技術、脈沖序列的進一步完善,高分辨率的軟骨定量MRI技術在關節(jié)軟骨退變的診斷分級、指導治療及修復效果評估等精準診療方面的價值已逐漸凸顯。然而,目前在臨床中關節(jié)軟骨定量MRI序列的選擇尚缺乏統(tǒng)一標準,臨床研究大多也只針對單一技術,而這些技術也各具優(yōu)勢和不足,今后對這些技術進行優(yōu)化、組合有望構建優(yōu)勢互補、全面有效的評價技術體系。且大部分研究是評估膝關節(jié)等大關節(jié)軟骨,這些技術在小關節(jié)方面的應用價值尚不明確。但定量MRI技術作為無創(chuàng)、敏感且有效的檢查手段,必將在關節(jié)退變?yōu)橹鞯募膊≡u估中發(fā)揮著不可替代的重要作用,下一步應當主要針對掃描和后處理技術的優(yōu)化及標準化、定量參數(shù)與生化病理改變的關系、可重復性評價等方面開展深入研究,臨床關注內容也可從早期發(fā)現(xiàn)軟骨退變延伸到篩檢有迅速進展的高危人群、早期干預或修復治療后的縱向監(jiān)測評估等。
參考文獻 [References]
[1] Madry H, Kon E, Condello V, et al. Early osteoarthritis of the knee.Knee Surg Sports Traumatol Arthrosc, 2016, 24(6): 1753-1762.
[2] M?ller I, Loza E, Uson J, et al. Recommendations for the use of ultrasound and magnetic resonance in patients with rheumatoid arthritis. Reumatol Clin, 2018, 14(1): 9-19.
[3] Gellhorn AC, Katz JN, Suri P. Osteoarthritis of the spine: the facet joints. Nat Rev Rheumatol, 2013, 9(4): 216-224.
[4] Liu Y, Wan YD. Progresses of 3T MRI biochemical composition imaging in articular cartilage. Internat J Med Radiol, 2014, 37(5):453-456.
劉艷, 萬業(yè)達. 3T MRI關節(jié)軟骨生化成分成像的研究進展. 國際醫(yī)學放射學雜志, 2014, 37(5): 453-456.
[5] Zhang LJ, Jerry Hu, Kyriacos A. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng,2009, 37(1-2): 1-57.
[6] Burstein D, Gray M, Mosher T, et al. Composition and structure in osteoarthritis. Radiol Clin North Am, 2009, 47(4): 675-686.
[7] Kim T, Min BH, Yoon SH, et al. An in vitro comparative study of T2 and T2*mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal radiol, 2014, 43(7):947-54.
[8] Wei B, Mao F, Guo Y, et al. Using 7.0 T MRI T2 mapping to detect early changes of the cartilage matrix caused by immobilization in a rabbit model of immobilization-induced osteoarthritis. Magn Reson Imaging, 2015, 33(8): 1000-1006.
[9] Soellner S, Goldmann A, Muelheims D, et al. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee. Osteoarthritis Cartilage, 2017, 25(11):1841-1849.
[10] Newbould RD, Miller SR, Toms LD, et al. T2*measurement of the knee articular cartilage in osteoarthritis at 3 T. J Magn Reson Imaging, 2012, 35(6): 1422-1429.
[11] Kretzschmar M, Bieri O, Miska M, et al. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted doubleecho steady-state sequence(dwDESS). Eur Radiol, 2015, 25(4): 980-986.
[12] Apprich S, Mamisch TC, Welsch GH, et al. Quantitative T2 mapping of the patella at 3.0 T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol, 2012, 81(4): 438-443.
[13] Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skeletal Radiol, 2016, 45(7): 909-913.
[14] Kijowski R, Blankenbaker DG, Munoz Del Rio A, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology,2013, 267(2): 503-513.
[15] Wu Y, Yang R, Jia S, et al. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping. Biomed Mater Eng, 2014,24(6): 3379-3388.
[16] Moshe TJ, Smith H, Dardzinski BJ, et al. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol, 2001, 177(3): 665-669.
[17] Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc, 2014,22(6): 1385-1395.
[18] Bittersohl B, Hosalkar HS, Miese FR, et al. Zonal T2 and T1Gd assessment of knee joint cartilage in various histological grades of cartilage degeneration: an observational in vitro study. BMJ Open,2015, 5(2): e006895.
[19] Bittersohl B, Miese FR, Hosalkar HS, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthritis Cartilage, 2012, 20(7): 653-660.
[20] Siebenrock KA, Kienle KP, Steppacher SD, et al. Biochemical MRI predicts hip osteoarthritis in an experimental ovine femoroacetabular impingement model. Clin Orthop Relat Res, 2015, 473(4): 1318-1324.
[21] Taehee K, Byoung-Hyun M, Seung-Hyun Y, et al. An in vitro comparative study of T2 and T2*mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference.Skeletal Radiol, 2014, 43(7): 947-954.
[22] Mamisch TC, Hughes T, Mosher TJ, et al. T2 star relaxation times for assessment of articular cartilage at 3T: a feasibility study. Skeletal Radiol, 2012, 41(3): 287-292.
[23] Yao K, Troupis JM. Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol, 2016, 71(11): 1071-1782.
[24] Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging, 2015, 41(6): 1487-1504.
[25] Xu J, Xie G, Di Y, et al. Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep, 2011,5(2): 13-18.
[26] Guha A, Wyatt C, Karampinos DC, et al. Spatial variations in magnetic resonance-based diffusion of articular cartilage in knee osteoarthritis. Magn Reson Imaging, 2015, 33(9): 1051-1058.
[27] Ferizi U, Rossi I, Lee Y, et al. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model. Magn Reson Med, 2017, 78(1): 69-78.
[28] Raya JG, Horng A, Dietrich O, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology, 2012, 262(2): 550-559.
[29] Zhao DD, Li H, Qin H, et al. Initial application and clinical significance of DTI in normal adult patella cartilage. Chin J Magn Reson Imaging, 2016, 7(2): 131-135.
趙丹丹, 李紅, 秦灝, 等. DTI在正常成人髕骨軟骨的初步應用及臨床意義. 磁共振成像, 2016, 7(2): 131-135.
[30] Raya JG, Melkus G, Adam-Neumair S, et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology, 2013, 266(3): 831-841.
[31] Raya JG, Dettmann E, Notohamiprodjo M, et al.Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur Radiol, 2014, 24(7): 1700-1706.
[32] Wei H, Gibbs E, Zhao P, et al. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage. Magn Reson Med, 2017, 78(5): 1683-1690.
[33] Newbould RD, Miller SR, Tielbeek JA, et al. Reproducibility of sodium MRI measures of articular cartilage of the knee in osteoarthritis. Osteoarthritis Cartilage, 2012, 20(1): 29-35.
[34] Wheaton AJ, Borthakur A, Shapiro EM, et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imagingfeasibility study. Radiology, 2004, 231(3): 900-905.
[35] Madelin G, Babb JS, Xia D, et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology, 2013, 268(2): 481-491.
[36] Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed 23 Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol, 2012,22(6): 1341-1349.
[37] Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging, 2013, 38(3): 511-529.
[38] Newbould RD, Miller SR, Upadhyay N, et al. T1-weighted sodium MRI of the articulator cartilage in osteoarthritis: a cross sectional and longitudinal study. PloS One, 2013, 8(8): e73067.
[39] Yoon MA, Hong SJ, Im AL, et al. Comparison of T1rho and T2 Mapping of knee articular cartilage in an asymptomatic population.Korean J Radiol, 2016, 17(6): 912-918.
[40] Kester BS, Carpenter PM, Yu HJ, et al. T1ρ/T2 mapping and histopathology of degenerative cartilage in advanced knee osteoarthritis. World J Orthop, 2017, 8(4): 350-356.
[41] Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0T: parallel changes in T2, T1rho, and dGEMRIC. Acad Radiol,2014, 21(4): 463-471.
[42] Hu J, Zhang Y, Duan C, et al. Feasibility study for evaluating early lumbar facet joint degeneration using axial T1 ρ, T2 , and T2*mapping in cartilage. Magn Reson Imaging, 2017, 46(2): 468-475.
[43] Sasho T, Katsuragi J, Yamaguchi S. Associations of threedimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage. Clin Rheumatol, 2017,36(9): 2109-2119.
[44] Wang L, Regatte RR. T1ρ MRI of human musculoskeletal system. J Magn Reson Imaging, 2015, 41(3): 586-600.
[45] Hangaard S, Gade JS, Hansen P, et al. Single- vs. double-dose gadolinium contrast in delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in knee osteoarthritis: is dose reduction possible on 3-T MRI? Acta Radiol, 2018, 24: 284185118796694.
[46] Jungmann PM, Baum T, Bauer JS, et al. Cartilage repair surgery:outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? Biomed Res Int, 2014, 2014(7): 840170.
[47] Zilkens C, Miese F, Herten M, et al. Validity of gradient-echo threedimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol, 2013, 82(2): e81-e86.
[48] Tiel JV, Bron EE, Tiderius CJ, et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage(dGEMRIC)of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol, 2013, 23(2):496-504.
[49] Van Tiel J, Kotek G, Reijman M, et al. is T1ρ Mapping an alternative to Delayed gadolinium-enhanced Mr imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? Radiology, 2016, 279(2): 523-531.
[50] Verschueren J, van Tiel J, Reijman M, et al. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?Osteoarthritis Cartilage, 2017, 25(9): 1484-1487.
[51] Choi JA, Gold GE. MR imaging of articular cartilage physiology.Magn Reson Imaging Clin N Am, 2011, 19(2): 249-282.
[52] Brinkhof S, Nizak R, Khlebnikov V, et al. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol, 2018, 28(7): 2874-2881.
[53] Schmitt B, Zbyn S, Stelzeneder D, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23) Na MR imaging at 7T. Radiology, 2011, 260(1): 257-264.
[54] Wei W, Lambach B, Jia G, et al. A Phase I clinical trial of the knee to assess the correlation of gagCEST MRI, delayed gadoliniumenhanced MRI of cartilage and T2 mapping. Eur J Radiol, 2017,90(6): 220-224.
[55] Kogan F, Hargreaves BA, Gold GE. Volumetric multiclice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med, 2017, 77(3): 1134-1141.
[56] Krishnamoorthy G, Nanga RP, Bagga P, et al. High quality three dimensional gagCEST imaging of in vivo human knee cartilage at 7 Tesla. Magn Reson Med, 2017, 77(5): 1866-1873.
[57] Rehnitz C, Kupfer J, Streich NA, et al. Comparison of biochemical cartilage imaging techniques at 3T MRI. Osteoarthritis Cartilage,2014, 22(10): 1732-1742.
[58] Pauli C, Bae WC, Lee M, et al. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. Radiology,2012, 264(2): 484-493.
[59] Williams A, Qian Y, Chu CR. UTE-T2*mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage,2011, 19(1): 84-88.
[60] Shao H, Chang EY, Pauli C, et al. UTE bi-component analysis of T2*relaxation in articular cartilage. Osteoarthritis Cartilage, 2016,24(2): 364-373.
[61] Bae WC, Biswas R, Statum S, et al. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc. Skeletal Radiol, 2014, 43(9): 1217-1223.
[62] Du J, Statum S, Znamirowski R, et al. Ultrashort TE T1ρ magic angle imaging. Magn Reson Med, 2013, 69(3): 682-687.
[63] Chaudhari AS, Sveinsson B, Moran CJ, et al. Imaging and T2 relaxometry of short-T2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med, 2017, 78(6): 2136-2148.
[64] Boutsikou K, Kostopoulos S, Glotsos D, et al. Texture analysis of articular cartilage traumatic changes in the knee calculated from morphological 3.0T MR imaging. Eur J Radiol, 2013, 82(8): 1266-1272.
[65] Hofmann FC, Neumann J, Heilmeier U, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative. Skeletal Radiol, 2018, 47(1): 93-106.
[66] Urish KL, Keffalas MG, Durkin JR, et al. T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2013, 21(10):1550-1557.
[67] Williams A, Winalski CS, Chu CR. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J Orthop Res, 2017,35(3): 699-706.
[68] Neumann J, Hofmann FC, Heilmeier U, et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the osteoarthritis initiative.Osteoarthritis Cartilage, 2018, 26(6): 751-761.