胡爭波,李文虎,何 軒 [南方醫(yī)科大學附屬韶關醫(yī)院(韶關市第一人民醫(yī)院)骨科,廣東韶關512000]
Nurse等在1975年從裂殖酵母細胞(S.pombe)中分離出來WEE1蛋白激酶,它屬于絲/蘇氨酸蛋白激酶家族。由于其可以通過抑制CDC2的活性來抑制細胞進行有絲分裂[1],從而控制細胞周期生物鐘,因此得名為“WEE”家族。WEE1激酶家族在進化上高度保守,在人體內(nèi)也找到了WEE1的同源基因編碼產(chǎn)物WEE1。研究[2]表明WEE1除了在胚胎發(fā)育、神經(jīng)元極化、成骨分化、胃腸道生物鐘、植物分化和根表型、細胞大小等方面具有重要作用外,WEE1在維持癌細胞生存方面的也具有不可或缺的作用。目前,以WEE1為治療靶點的抗癌研究已經(jīng)成為當前研究的熱點。本文就WEE1的研究進展作一綜述。
WEE1是一個進化上高度保守的酪氨酸激酶。1991年,Igarashi首次克隆出與S pombe WEE1基因相似的人類WEE1基因,并發(fā)現(xiàn)二者功能相似,同時他們也確定人類細胞中存在WEE1基因(圖1)。人類WEE1基因位于染色體上的11p15.4,最近DNA測序結果WEE1基因長度為21 Kbp,mRNA約有3300 bp,有12個外顯子。在人體中,WEE1基因編碼的核蛋白共有646個氨基酸殘基。在哺乳動物中,Wee蛋白激酶家族包括WEE1、WEE2和MYT1三個成員,其中WEE1在體細胞中表達,WEE2在胚細胞中表達,MYT1在體細胞和胚細胞中都表達。
染色質(zhì)重組因子ATP酶CHD5是NuRD整個轉(zhuǎn)錄因子復合物的組成部分,在細胞中過表達CHD5導致WEE1基因表達抑制[3]。人 Kruppel樣因子2是一個cys2/His2含鋅指結構的轉(zhuǎn)錄因子,在卵巢腫瘤細胞中KLF2通過直接結合到WEE1啟動子抑制WEE1轉(zhuǎn)錄[4]。在人類類風濕滑膜細胞中,cFOS/AP-1可以直接激活WEE1基因[5]。另外,染色體免疫共沉淀實驗還發(fā)現(xiàn)WEE1啟動子上有轉(zhuǎn)錄因子TP53和MyoD結合位點,但功能是促進還是抑制未見報道。
圖1 WEE1基因表達和轉(zhuǎn)錄翻譯調(diào)節(jié)因素和因子。1,25[OH]2VD3為人1,25二羥基維生素D3;TP53為抗腫瘤基因p53;MyoD 為 Myogenic Differentiation Antigen,即成肌分化抗原;染色體解螺旋酶DNA結合蛋白5;cFOS/AP-1為骨肉瘤病毒癌基因同源物/活化蛋白轉(zhuǎn)錄因子;KLF-2是Krppel樣轉(zhuǎn)錄因子2;HuR,胚胎致死異常視覺基因家族中的成員,RNA結合蛋白;miRNA微小RNA。
WEE1基因轉(zhuǎn)錄mRNA后,很多因子包括蛋白和小分子miRNA調(diào)節(jié)其翻譯過程。HuR是一種大量存在于腫瘤的RNA結合蛋白,在壓力應激下從細胞核心轉(zhuǎn)位到細胞質(zhì)中調(diào)節(jié)mRNA。研究[6]發(fā)現(xiàn)HuR直接結合到WEE1 mRNA直接影響其蛋白水平,尤其是DNA損傷后。除了HuR蛋白對WEE1 mRNA調(diào)節(jié),目前研究較多的是小分子miRNA。miRNA是一些單鏈小分子RNA,通過結合到靶基因mRNA上的3'末端非編碼區(qū)調(diào)節(jié)mRNA翻譯。用微芯片分析發(fā)現(xiàn)了 3 個 miRNA(128a/155/516a-3p)定位在 WEE1轉(zhuǎn)錄本的3'端非翻譯區(qū),表達這些miRNA導致了WEE1蛋白下調(diào)[7]。 功能促進和功能抑制試驗[8]表明MiR15 家族 miRNA15/16/424/497 等在多種腫瘤細胞中調(diào)節(jié) WEE1表達。在某些腫瘤中miR16/26a[9]、 miRNA17-92 基因叢編碼的 miRNA17/18a/19a/20a/19b/92a[10]、 以 及 miR17/20a/106b[11]、 miRNA128[12]、miRNA195[13]、miRNA497[14]等也下調(diào)WEE1 mRNA。而雖有報道缺氧、維生素1,2[OH]2VD3、生物鐘基因 Per1下調(diào)等均會導致WEE1在mRNA水平升高,但它們上調(diào)WEE1 mRNA的具體機制不明。
在正常酵母細胞中,WEE1的穩(wěn)定性由組蛋白合成致死蛋白Hsl1和7調(diào)節(jié),活性由CDC2和CDC25調(diào)節(jié)。在人WEE1蛋白的調(diào)節(jié)則更為復雜(圖2)。
圖 2 WEE1 蛋白活性與功能調(diào)節(jié)。 Akt、CrK II、14-3-3σ、Vrp、ISCp1、 CDC2、PKA、Niml、MAPK 、CK1 δ、CK2 β 、PLK1、CD34、pin1、CDC14A、 CDC25c、 β-TrCP、CyclinB、γ-H2AX、Mus81、Eme1、ChK1、Hsp90、p53 等為蛋白或基因名稱;G0/G1、S、G2/M等細胞周期。
在細胞周期進展中,WEE1存在依賴于從低磷酸化激活到超磷酸化失活,再泛素化降解的反饋回路,以保證其下游因子CDC2快速激活以準備分裂。1993年,學者發(fā)現(xiàn)WEE1在分裂間期的107 KD的低磷酸化形式,而在有絲分裂期則是170 KD的超磷酸化形式。而超磷酸化形式催化CDC2磷酸化的活性顯著減少。在M期CDC2催化WEE1的S123p位點,PLK1催化 S53p位點,后被 β-TrCP識別,使得WEE1被超磷酸化失活后降解下調(diào)[15]。而蛋白激酶CK2β亞基在核外通過WEE1上的結構域直接結合促成 PLK1-WEE1復合物形成,促進 G2/M期過渡[16]。CK2β 也可以與 WEE1在核內(nèi)結合,CK2β 抑制WEE1催化H1組蛋白磷酸化,上調(diào)CDC2的活性[17]。也有研究證實CK1δ是泛素溶酶體途徑降解WEE1所必需的[18-19],β-TrCP 復合物是 WEE1泛素化的 E3 泛素化連接酶[15,17],CDC2、PLK1 和 CK2 催化WEE1磷酸化形成降解體后才會被β-TrCP識別,其中WEE1中的S53和S123位點磷酸化是β-TrCp識別的重要位點。此外 CDC2還能夠通過催化WEE1的T186磷酸化,并特異結合cis/tran羥脯氨酰異構酶 Pin1,導致 WEE1失活[20]。 CDC2也通過磷酸化激活CDC25,但CDC25會磷酸化失活WEE1,而CDC14A可結合到WEE1的N末端逆轉(zhuǎn)CDC2磷酸化的WEE1,由此形成一個反饋調(diào)節(jié)[21]。WEE1是在核外降解,因此核轉(zhuǎn)位對其降解非常重要[22]。有學者[23]發(fā)現(xiàn)與細胞內(nèi)定位有關的核內(nèi)信號蛋白CrkII可與WEE1結合;而Akt在S/G2期直接結合并磷酸化激活 WEE1的 Ser642位點[24],且 14-3-3σ 參與了WEE1從細胞核轉(zhuǎn)出細胞質(zhì)中定位[25]。說明這些也與WEE1降解有關。
另外,Hsp90是WEE1的分子伴侶[26],既可以結合 WEE1,又可以結合 Chk1[27],這個過程受 p53 調(diào)節(jié)[28-29];而 Chk1 磷酸化 WEE1 的 S549 位點[25,30],Chk1直接靶向作用于WEE1和CDC25[31],從而調(diào)節(jié)WEE1的功能活性。Tral1是負責ATM/ATR相關的假性激酶,也可通過有絲分裂變化應答激酶CDR1/2拮抗Chk1,進而抑制 WEE1蛋白活性[32-33]。此外,PKA催化亞基、Niml激酶、促分裂原活化蛋白激酶MAPK、病毒蛋白Vpr誘導WEE1磷酸化增加。抑制泛素結合激酶復合物CD34[34]、Rad24和14-3-3σ上調(diào)、高水平肌醇磷酸鞘磷脂酶 C1[35]等均可導致WEE1積累。其他能夠上調(diào)或穩(wěn)定WEE1蛋白還有缺氧、蛋白點突變、HIV 病毒蛋白 Vpr[36-37]。 這些與WEE1的細胞周期調(diào)節(jié)功能有關(圖3)。
圖 3 WEE1 與細胞周期調(diào)節(jié)。 CDC2、CDC20、CyclinB、FCP1、Hub、mTOR、PLK1、Rad24、Torin1、USP44、Vrp、VitD、β-TrCP、14-3-3σ等為蛋白或基因名稱;G2/M等為細胞周期。
在WEE1下游,WEE1調(diào)節(jié)CDC2上Y15位點和CyclinB上的260和270位點磷酸化[38]。WEE1通過核酸內(nèi)切酶Mus81/Eme1調(diào)節(jié)DNA復制與穩(wěn)定性[39-40]。 此外,WEE1 還通過抑制 γH2AX 磷酸化[39],催化組蛋白 H2B 的 Y27 磷酸化[41],與 H3K36作用促進RRM2表達[42],從而保護基因組穩(wěn)定。這些與WEE1的生理病理功能密不可分。
4.1 WEE1在癌組織中的表達 WEE1是動物胚胎生存的必需基因,細胞中缺失WEE1基因則導致周期缺陷,異倍體和細胞凋亡?;蚯贸鲜笈咛ピ?.5天前因細胞凋亡死亡[43],因此 WEE1是小鼠胚胎植入前階段必不可少的。有研究表明WEE1在非小細胞肺癌[44]和惡性黑色素瘤[13]中能夠抑癌(圖 4)。但與這些研究結論相反的是,又有研究表明在惡性黑色素瘤[45]、外陰鱗癌細胞[46]、骨肉瘤[47-48]、神經(jīng)母細胞瘤[14]、惡性卵巢癌[49]、乳腺癌癌細胞[50]中,WEE1的表達增加與惡性程度一致。
圖4 WEE1在人體細胞中的表達及其與癌細胞靶向治療。TP53,Trail,H3K36,Chk1/2,Hsp90 等為蛋白或基因名稱。
4.2 WEE1單一靶點作用及與p53的關系 在髓母細胞瘤[51]、外陰鱗癌細胞[46]和惡性卵巢癌化療后復發(fā)的癌細胞[49]中,單一WEE1抑制劑AZD1775就可以抑制腫瘤。在沒有組蛋白H3K36癌細胞中,合成致死作用對WEE1抑制非常敏感,單純抑制WEE1導致S期阻滯,細胞凋亡增加[42]。在基底乳腺癌細胞中,抑制WEE1能夠增強TRAIL介導的細胞凋亡[52]。但在正常乳腺上皮中抑制WEE1后沒有出現(xiàn)這些反應[50]。
p53是細胞周期G1檢查站的關鍵因子和細胞凋亡的決定因子[9]。 很多研究[27-29]表明,WEE1 可通過p53途徑調(diào)節(jié)細胞生存。研究[17]表明生物鐘基因Per1下調(diào)后,導致WEE1上調(diào)而p53下調(diào),其致瘤性增強,細胞凋亡抑制。在DNA損傷藥物如阿霉素作用下,p53靶定WEE1和Chk1導致細胞阻滯在G1/S期,并增加細胞凋亡[9]。在p53wt和p53mt乳腺癌細胞系中,沉默WEE1后,p53蛋白上調(diào),凋亡細胞增加,且WEE1的抑制效果與p53水平一致[28]。另一方面,也有研究[29,45,63]表明 WEE1 的作用與 p53 無關。因此,WEE1抑制與p53狀態(tài)對癌細胞生存的影響還有待進一步闡明。
4.3 WEE1的協(xié)同效應 WEE1抑制劑AZD1775和Chk1抑制劑PD00477736對鞘細胞淋巴瘤細胞具有強烈的協(xié)同效應[54]。在黑色素瘤細胞中,WEE1抑制劑AZD1775和Chk1、2抑制劑AZD7762協(xié)同用藥效果更好[55]。WEE1抑制與阿糖胞苷對急性髓系白血病AML也具有協(xié)同效果[56]。WEE1抑制劑增加了HSp90抑制劑的抗癌效果[57]。同時抑制 WEE1和Hsp90時,survivin和WEE1轉(zhuǎn)錄下調(diào),內(nèi)源性凋亡途徑激活,在翻譯水平,這兩種蛋白的表達和Akt活化被抑制。單一抑制兩者之一則沒有這種效果。AZD1775抑制WEE1后可增強非小細胞肺癌對光子放射敏感性[58]。WEE1在大多數(shù)骨肉瘤標本中檢測到有表達,抑制WEE1可增強骨肉瘤放療敏感性[47]。4.4 WEE1與DNA損傷藥及其耐藥 癌細胞耐藥和抗放療是因為在S期能夠很好地修復DNA的損傷,WEE1起了重要作用。順鉑處理miR497表達的細胞和WEE1抑制的細胞導致凋亡增加[14]。髓母細胞瘤中,雖然單一抑制WEE1就有抗癌效果,但抑制WEE1協(xié)同CDDP會有更好的抗癌效果[51]。在卵巢腫瘤中,轉(zhuǎn)錄因子KLF2顯著下調(diào),抑制WEE1后增加DNA損傷藥物的效果。在順鉑耐藥的細胞中經(jīng)常發(fā)生 WEE1 和 Chk1 過表達[8],而 miRNA15、16、195、424、497家族通過調(diào)節(jié)WEE1和Chk1導致腫瘤細胞順鉑耐藥[4,53]。 在胰腺導管腺癌中,DNA 損傷藥刺激后HuR從細胞核轉(zhuǎn)位到細胞質(zhì)[6]。HuR快速上調(diào)WEE1蛋白水平,增加γH2AX水平和誘導CDK1磷酸化,促進G2/M過渡期停滯。多表達HuR導致腫瘤細胞耐藥,沉默WEE1導致DNA藥物更敏感。在膠質(zhì)母細胞瘤中,WEE1抑制增強力DNA損傷藥物的效果,也增強了γ射線的效果[59]。高表達叉頭蛋白能夠逃避抑制WEE1誘導腫瘤干細胞凋亡,異常表達T-box轉(zhuǎn)錄因子叉頭在人腫瘤中驅(qū)動上皮間質(zhì)轉(zhuǎn)化以適應腫瘤轉(zhuǎn)移、耐藥和耐放療等[60]。
WEE1與癌細胞生存密切相關,應用前景廣泛,需進一步深入研究。目前對WEE1的研究還存在以下問題急需解決。其一,目前學者對WEE1蛋白的分子量還沒有形成統(tǒng)一標準。多數(shù)學者傾向于接受人類內(nèi)源性WEE1是含有647個氨基酸殘基,在SDSPAGE電泳遷徙為94 KD的蛋白。但Igarashi等[61]在1991年基于cDNA克隆表達分析,認為WEE1是一個分子量為49 KD,含有432個氨基酸殘基的蛋白。這個49 KD的WEE1蛋白在細菌、真菌、昆蟲和哺乳動物細胞系中表達進行了實驗研究[62]。然而根據(jù)WEE1含有647氨基酸殘基計算,其分子量約為71 KD。實際上目前也有針對分子量為約為72 KD的WEE1的抗體研究。造成這種現(xiàn)象的原因可能與WEE1蛋白的結構、化學修飾等有關。因此,WEE1蛋白的分子量及分子結構還是需要進一步闡明。其二,以前的研究發(fā)現(xiàn),很多因素如缺氧、光刺激和維生素D誘導都可以上調(diào)WEE1mRNA的表達,但WEE1基因究竟是如何被轉(zhuǎn)錄激活還不清楚。其三,WEE1及其家族基因MYT1都能后磷酸化周期依賴激酶2,從而調(diào)節(jié)細胞周期進展。有研究[63]表明WEE1家族基因MYT1是炎癥因子NF-kB通路的抑制因子。細胞周期調(diào)節(jié)因子CylinD1被NF-κB通路和Rb1調(diào)節(jié),WEE1 的穩(wěn)定伴隨著 Rb1[31]和 p53[27]的抑制,p53 狀態(tài)也影響著 WEE1的功能[27]。因此 WEE1與 p53、Rb1和NF-κB之間相互影響的機制以及WEE1與其家族基因MYT1的分工也需要進一步闡明。其四,WEE1的經(jīng)典作用是其通過磷酸化抑制CDC2從而抑制細胞進入M期。其次就是WEE1在S期的基因組DNA穩(wěn)定性作用。但有研究[64]表明WEE1還能與其它細胞周期的關鍵調(diào)節(jié)因子p53、Rb1、CylinD1、PLK相互作用,因此WEE1對細胞周期的調(diào)節(jié)作用還有待進一步研究。其五,體外癌細胞實驗表明H3K36、p53、DNA復制激活通路對WEE1抑制有明顯影響[42],WEE1抑制劑在不同腫瘤中的抗癌效果也不一致。而目前WEE1抑制劑作為抗癌靶點進入臨床Ⅱ期實驗,但WEE1抑制劑敏感性的決定因子及腫瘤基因組特性還不清楚。這些都是后續(xù)研究需要解決的問題。
【參考文獻】
[1] Geenen JJJ, Schellens JHM.Molecular pathways: targeting the protein kinase Wee1 in cancer[J].Clin Cancer Res,2017,23(16):4540-4544.
[2]Wright G, Golubeva V, Remsing Rix LL, et al.Dual targeting of WEE1 and PLK1 by AZD1775 elicits single agent cellular anticancer activity[J].ACS Chem Biol,2017,12(7):1883-1892.
[3] Quan J, Adelmant G, Marto JA, et al.The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1[J].PLoS One,2014,9(9):e108066.
[4] Wang F, Zhu Y, Huang Y, et al.Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis[J].Oncogene,2005,24(24):3875-3885.
[5] Kawasaki H, Komai K, Nakamura M, et al.Human wee1 kinase is directly transactivated by and increased in association with c-Fos/AP-1:rheumatoid synovial cells overexpressing these genes go into aberrant mitosis[J].Oncogene,2003,22(44):6839-6844.
[6] Lal S, Burkhart RA, Beeharry N, et al.HuR posttranscriptionally regulates WEE1:implications for the DNA damage response in pancreatic cancer cells[J].Cancer Res,2014,74(4):1128-1140.
[7] Butz H, Likó I, Czirják S, et al.Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas[J].J Clin Endocrinol Metab,2010,95(10): E181-E191.
[8] Pouliot LM, Chen YC, Bai J, et al.Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family[J].Cancer Res,2012,72(22):5945-5955.
[9] Lezina L, Purmessur N, Antonov AV, et al.miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress[J].Cell Death Dis,2013,4:e953.
[10] Brockway S, Zeleznik-Le NJ.WEE1 is a validated target of the microRNA miR-17-92 cluster in leukemia[J].Cancer Genet,2015,208(5):279-287.
[11] Trompeter HI, Abbad H, Iwaniuk KM, et al.MicroRNAs,miR-17,miR-20a,and miR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC[J].PLoS One,2011,6(1):e16138.
[12] Wuchty S, Arjona D, Li A, et al.Prediction of associations between microRNAs and gene expression in glioma biology[J].PLoS One,2011,6(2):e14681.
[13] Bhattacharya A, Schmitz U, Wolkenhauer O, et al.Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma[J].Oncogene,2013,32(26):3175-3183.
[14] Creevey L, Ryan J, Harvey H, et al.MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1[J].Mol Cancer,2013,12:23.
[15] Watanabe N,Arai H,Nishihara Y,et al.M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP[J].Proc Natl Acad Sci U S A,2004,101(13): 4419-4424.
[16] Olsen BB, Kreutzer JN,Watanabe N,et al.Mapping of the interaction sites between Wee1 kinase and the regulatory beta-subunit of protein kinase CK2[J].Int J Oncol,2010,36(5): 1175-1182.
[17] Olsen BB,Guerra B.Ability of CK2beta to selectively regulate cellular protein kinases[J].Mol Cell Biochem,2008,316(1-2):115-126.
[18] Penas C, Ramachandran V, Simanski S, et al.Casein kinase 1δ-dependent Wee1 protein degradation[J].J Biol Chem,2014,289(27):18893-18903.
[19] Owens L, Simanski S, Squire C, et al.Activation domain-dependent degradation of somatic Wee1 kinase[J].J Biol Chem,2010,285(9):6761-6769.
[20] Okamoto K, Sagata N.Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase[J].Proc Natl Acad Sci U S A,2007,104(10):3753-3758.
[21] Ovejero S, Ayala P, Bueno A, et al.Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation[J].Mol Biol Cell,2012,23(23):4515-4525.
[22] Keaton MA, Szkotnicki L, Marquitz AR, et al.Nucleocytoplasmic trafficking of G2/M regulators in yeast[J].Mol Biol Cell,2008,19(9):4006-4018.
[23] Kar B, Reichman CT, Singh S, et al.Proapoptotic function of the nuclear Crk II adaptor protein[J].Biochemistry,2007,46(38):10828-10840.
[24] Katayama K, Fujita N, Tsuruo T.Akt/protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle progression at G2/M transition[J].Mol Cell Biol,2005,25(13):5725-5737.
[25] Lee J, Kumagai A, Dunphy WG.Positive regulation of Wee1 by Chk1 and 14-3-3 proteins[J].Mol Biol Cell,2001,12(3):551-563.[26] Mollapour M, Tsutsumi S, Donnelly AC, et al.Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function[J].Mol Cell,2010,37(3):333-343.
[27] Tse AN,Sheikh TN,Alan H,et al.90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1[J].Mol Pharmacol,2009,75(1):124-133.
[28] Ghiasi N,Habibagahi M,Rosli R,et al.Tumour suppressive effects of WEE1 gene silencing in breast cancer cells[J].Asian Pac J Cancer Prev,2014,14(11):6605-6611.
[29] Pappano WN, Zhang Q, Tucker LA, et al.Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells[J].BMC Cancer,2014,14:430.
[30] Stanford JS, Ruderman JV.Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests[J].Mol Biol Cell,2005,16(12):5749-5760.
[31] Hashimoto O, Ueno T, Kimura R, et al.Inhibition of proteasomedependent degradation of Wee1 in G2-arrested Hep3B cells by TGF beta 1[J].Mol Carcinog,2003,36(4):171-182.
[32] Calonge TM, Eshaghi M, Liu J, et al.Transformation/transcription domain-associated protein (TRRAP)-mediated regulation of Wee1[J].Genetics,2010,185(1):81-93.
[33] Grallert A, Connolly Y, Smith DL, et al.The S.pombe cytokinesis NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1[J].Nat Cell Biol,2012,14(7):738-745.
[34] Legesse-Miller A, Elemento O, Pfau SJ, et al.let-7 Overexpression leads to an increased fraction of cells in G2/M,direct down-regulation of Cdc34, and stabilization of Wee1 kinase in primary fibroblasts[J].J Biol Chem,2009,284(11):6605-6609.
[35] Matmati N,Kitagaki H,Montefusco D, et al.Hydroxyurea sensitivity reveals a role for ISC1 in the regulation of G2/M[J].J Biol Chem,2009,284(13):8241-8246.
[36] Sharma A, Madhunapantula SV, Gowda R, et al.Identification of aurora kinase B and Wee1-like protein kinase as downstream targets of(V600E)B-RAF in melanoma[J].Am J Pathol,2013,182(4):1151-1162.
[37] Tay YD, Patel A, Kaemena DF, et al.Mutation of a conserved residue enhances the sensitivity of analogue-sensitised kinases to generate a novel approach to the study of mitosis in fission yeast[J].J Cell Sci,2013,126(21):5052-5061.
[38] Hu F,Gan Y,Aparicio OM.Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae[J].Genetics,2008,179(2):863-874.
[39] Domínguez-Kelly R, Martín Y, Koundrioukoff S, et al.Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease[J].J Cell Biol,2011,194(4):567-579.
[40] Martín Y, Domínguez-Kelly R, Freire R.Novel insights into maintaining genomic integrity: Wee1 regulating Mus81/Eme1 [J].Cell Div,2011,6:21.
[41] Mahajan K, Mahajan NP.WEE1 tyrosine kinase, a novel epigenetic modifier[J].Trends Genet,2013,29(7):394-402.
[42] Pfister SX,Markkanen E,Jiang Y,et al.Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation[J].Cancer Cell,2015,28(5):557-568.
[43] Vassilopoulos A, Tominaga Y, Kim HS, et al.WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis[J].Oncogene,2015,34(23): 3023-3035.
[44] Yoshida T, Tanaka S, Mogi A, et al.The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer[J].Ann Oncol,2004,15(2):252-256.
[45] Magnussen GI, Holm R, Emilsen E, et al.High expression of Wee1 is associated with poor disease-free survival in malignant melanoma:potential for targeted therapy[J].PLoS One,2012,7(6):e38254.
[46] Magnussen GI, Hellesylt E, Nesland JM, et al.High expression of wee1 is associated with malignancy in vulvar squamous cell carcinoma patients[J].BMC Cancer,2013,13:288.
[47] PosthumaDeBoer J, Würdinger T, Graat HC, et al.WEE1 inhibition sensitizes osteosarcoma to radiotherapy[J].BMC Cancer,2011,11:156.
[48] Beck H, N?hse-Kumpf V, Larsen MS, et al.Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption[J].Mol Cell Biol,2012,32(20):4226-4236.
[49] Slipicevic A,Holth A,Hellesylt E,et al.Wee1 is a novel independent prognostic marker of poor survival in post-chemotherapy ovarian carcinoma effusions[J].Gynecol Oncol,2014,135(1):118-124.
[50] Murrow LM, Garimella SV, Jones TL, et al.Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome[J].Breast Cancer Res Treat,2010,122(2):347-357.
[51] Harris PS, Venkataraman S, Alimova I, et al.Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma[J].Mol Cancer,2014,13:72.[52] Garimella SV, Rocca A, Lipkowitz S.WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis[J].Mol Cancer Res,2012,10(1):75-85.
[53] Heijink AM,Blomen VA,Bisteau X,et al.A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity[J].Proc Natl Acad Sci U S A,2015,112(49):15160-15165.
[54] Chilà R, Basana A, Lupi M, et al.Combined inhibition of Chk1 and Wee1 as a new therapeutic strategy for mantle cell lymphoma[J].Oncotarget,2015,6(5):3394-3408.
[55] Magnussen GI, Emilsen E, Giller Fleten K, et al.Combined inhibition of the cell cycle related proteins Wee1 and Chk1/2 induces synergistic anti-cancer effect in melanoma[J].BMC Cancer,2015,15:462.
[56] Porter CC, Kim J, Fosmire S, et al.Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia[J].Leukemia,2012,26(6):1266-1276.
[57] Iwai A, Bourboulia D, Mollapour M, et al.Combined inhibition of WEE1 and Hsp90 activates intrinsic apoptosis in cancer cells[J].Cell Cycle,2012,11(19):3649-3655.
[58] Ma H, Takahashi A, Sejimo Y, et al.Targeting of carbon ion-induced G2 checkpoint activation in lung cancer cells using Wee-1 inhibitor MK-1775[J].Radiat Res,2015,184(6):660-669.
[59] Mir SE, De Witt Hamer PC, Krawczyk PM, et al.In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma[J].Cancer Cell,2010,18(3):244-257.
[60] Hamilton DH, Huang B, Fernando RI, et al.WEE1 inhibition alleviates resistance to immune attack of tumor cells undergoing epithelial-mesenchymal transition[J].Cancer Res,2014,74(9):2510-2519.
[61] Igarashi M, Nagata A, Jinno S, et al.Wee1(+)-like gene in human cells[J].Nature,1991,353(6339):80-83.
[62] McGowan CH, Russell P.Cell cycle regulation of human WEE1[J].EMBO J,1995,14(10):2166-2175.
[63] So J, Pasculescu A, Dai AY, et al.Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy[J].Sci Signal,2015,8(371):rs3.
[64] Xiaojuan F, Kai Y, Hanxue L, et al.Effects and mechanism of the circadian clock gene Per1 on the proliferation, apoptosis, cycle, and tumorigenicity in vivo of human oral squamous cell carcinoma[J].Hua Xi Kou Qiang Yi Xue Za Zhi,2016,34(3):255-261.