張芹 奧婷 肖淑英
[摘要] 缺血性腦血管病是常見的慢性致殘性疾病,嚴(yán)重影響患者生活質(zhì)量。研究表明,表皮生長因子受體-細(xì)胞外信號調(diào)節(jié)激酶(EGFR-ERK)通路在缺血性腦血管病的病理生理過程中發(fā)揮了重要的作用,但具體機(jī)制不詳。因此,本文對該通路在缺血性腦血管病中的相關(guān)研究進(jìn)展作一綜述,為缺血性腦血管病的進(jìn)一步基礎(chǔ)研究及臨床治療提供參考。
[關(guān)鍵詞] 表皮生長因子受體;細(xì)胞外信號調(diào)節(jié)激酶;EGFR-ERK信號通路;缺血性腦血管病
[中圖分類號] R743 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)03(c)-0036-05
[Abstract] Ischemic cerebrovascular disease (ICD) is a common chronic disabling disease. This disease seriously affects the quality of lives of patients. The research shows that the epidermal growth factor receptor-extracellular signal regulated kinase (EGFR-ERK) pathway plays an important role on the pathophysiology process in ICD. However, the mechanism is still unclear. This article reviews the progress of the EGFR-ERK pathway in ICD, which provides references for further basic research and clinical treatment of ICD.
[Key words] Epidermal growth factor receptor; Extracellular signal-regulated kinase; EGFR-ERK signaling pathway; Ischemic cerebrovascular disease
缺血性腦血管病具有發(fā)病率高、致死率高、致殘率高、復(fù)發(fā)率高等特點(diǎn),給社會和家庭帶來沉重的經(jīng)濟(jì)負(fù)擔(dān)和精神負(fù)擔(dān)[1],是當(dāng)前世界范圍高度重視的公共衛(wèi)生問題。其病理生理過程復(fù)雜[2],涉及氧自由基的積累、炎癥、細(xì)胞壞死和凋亡等多個(gè)環(huán)節(jié)。研究表明,表皮生長因子對神經(jīng)系統(tǒng)發(fā)育、營養(yǎng)有重要作用[3];可抑制自由基引起的過氧化損傷,保護(hù)神經(jīng),并參與梗死灶修復(fù)[4-5]。表皮生長因子受體-細(xì)胞外信號調(diào)節(jié)激酶(epidermal growth factor receptor-extracellular signal-regulated kinase,EGFR-ERK)通路在其中發(fā)揮了重要的保護(hù)作用,但具體機(jī)制尚不明確。因此,本文對該通路在缺血性腦血管病中的相關(guān)研究進(jìn)展作一綜述。
1 表皮生長因子及受體的結(jié)構(gòu)及其在神經(jīng)系統(tǒng)中的作用
1.1 表皮生長因子的結(jié)構(gòu)及其在缺血性腦血管病及其他神經(jīng)系統(tǒng)疾病中的作用
表皮生長因子(Epidermal growth factor,EGF)是1962年由Co-hen從雄鼠頜下腺中提取,主要由頜下腺分泌,可促進(jìn)細(xì)胞分裂、分化、增殖的一種重要的神經(jīng)營養(yǎng)因子,由53個(gè)氨基酸組成,分子量為6 kD,生理狀態(tài)下,EGF幾乎見于所有體液中。
目前認(rèn)為在缺血性腦血管病中EGF是強(qiáng)效的有絲分裂原,具有保護(hù)缺血神經(jīng)元,維持其生存的作用,與中樞神經(jīng)系統(tǒng)細(xì)胞、組織的增殖、生長、分化及再生作用密切相關(guān)。在腦缺血后12 h,EGF在缺血中心區(qū)及缺血半暗帶區(qū)的表達(dá)達(dá)到高峰,在缺血48 h時(shí)仍可維持較高水平,且其在缺血半暗帶區(qū)的表達(dá)量明顯高于缺血中心區(qū)[6]。在腦梗死后24~48 h內(nèi)腦室內(nèi)注入外源性EGF可改善早期神經(jīng)結(jié)構(gòu)和功能的重建[3]。在機(jī)體組織受損、缺氧和氧化應(yīng)激等情況下,EGF表達(dá)水平顯著升高,炎性因子、氧自由基等的產(chǎn)生減少,發(fā)揮保護(hù)作用[7-8]。EGF可影響腦梗死后腦室管膜下區(qū)(subventricular zone,SVZ)內(nèi)神經(jīng)干細(xì)胞(neural stem cells,NSCs)增殖和遷徙,減輕腦缺血后海馬CA1區(qū)神經(jīng)元的損傷,抑制自由基引起的過氧化反應(yīng),保護(hù)神經(jīng),并參與梗死灶修復(fù)[4-5]。經(jīng)鞘內(nèi)、腦室和皮層表面注射EGF,均可促進(jìn)SVZ內(nèi)源性NSCs增殖,且經(jīng)腦室注射EGF與經(jīng)皮層表面注射相比,細(xì)胞增殖無顯著差異[9-10]。此外,對于亞急性期大腦中動脈梗死大鼠,EGF亦可明顯縮短其康復(fù)時(shí)間[11]。有研究報(bào)道,EGF在急性腦梗死患者中呈動態(tài)變化,動態(tài)監(jiān)測EGF水平可作為判斷急性腦梗死損傷程度、評價(jià)療效、評估預(yù)后的敏感指標(biāo)[12]。在帕金森病患者中,EGF對黑質(zhì)-紋狀體多巴胺神經(jīng)元有保護(hù)作用[13];阻斷EGF的信息傳遞途徑能明顯影響神經(jīng)軸突的生長,減弱對外周神經(jīng)的營養(yǎng)作用[14]。
另有研究發(fā)現(xiàn),EGF聯(lián)合生長激素釋放肽-6(growth hormone release peptide-6,GHRP-6)可以顯著改善急性腦梗死的病理改變和臨床表現(xiàn),促進(jìn)神經(jīng)功能的恢復(fù)[15]。在局部和全腦缺血模型中,在EGF+GHRP-6組發(fā)現(xiàn)梗死體積和海馬CA1區(qū)域密度都相似于低溫處理組,該研究為EGF和GHRP-6聯(lián)合使用提供了神經(jīng)保護(hù)性證明[8]。肝素結(jié)合表皮生長因子(hepafin-binding epidermal growth factor,HB-EGF)是一種缺氧誘導(dǎo)的神經(jīng)保護(hù)蛋白,在成年大鼠的局灶性腦缺血后發(fā)現(xiàn)HB-EGF減少梗死的體積并減弱缺血后神經(jīng)功能缺陷,刺激神經(jīng)元前體細(xì)胞的增殖,通過直接神經(jīng)保護(hù)作用或促進(jìn)神經(jīng)發(fā)生改善腦損傷[16-17]。皮下注射堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)、EGF促進(jìn)腦缺血大鼠模型內(nèi)源性神經(jīng)干細(xì)胞的增殖,bFGF和EGF聯(lián)合有協(xié)同作用[18]。
1.2 表皮生長因子受體
EGF是EGFR-ERK信號轉(zhuǎn)導(dǎo)通路的上游因子,與受體結(jié)合后,磷酸化激活ERK,啟動一系列級聯(lián)反應(yīng),促進(jìn)細(xì)胞增殖。
EGFR是HER家族成員之一,是一巨大的跨膜糖蛋白,分子量約為180 kD[19]。EGFR廣泛分布于哺乳動物細(xì)胞內(nèi),EGF與其受體結(jié)合,具有高親和性、可飽和性、特異性等特征,能促進(jìn)創(chuàng)傷愈合,已被用于角膜、胃、腸道、肝臟、骨骼、神經(jīng)等多種組織創(chuàng)傷的研究。
EGFR可以激活下游的信號分子ERK和Elk-1從而促進(jìn)細(xì)胞生存并維持細(xì)胞的正常功能,在腫瘤細(xì)胞的血管生成、惡性增殖和轉(zhuǎn)移等多方面起著重要作用[20]。
2 ERK的結(jié)構(gòu)及其作用
ERK是20世紀(jì)80年代末發(fā)現(xiàn)的一類絲/蘇氨酸蛋白激酶,是傳遞絲裂原信號的信號轉(zhuǎn)導(dǎo)蛋白。已知ERK家族有5個(gè)亞族,包括ERK1~ERK5。ERK1和ERK2是ERK家族中研究最徹底的,其表達(dá)廣泛,分子量分別為44 kD和42 kD。ERK1/2是EGFR-ERK通路下游的細(xì)胞因子,是絲裂原活化蛋白激酶家族的成員,廣泛存在于各種動物細(xì)胞中,參與細(xì)胞增殖分化與凋亡、細(xì)胞骨架的構(gòu)建、細(xì)胞形態(tài)維持等多種生物學(xué)反應(yīng)[21]。磷酸化ERK(p-ERK)是細(xì)胞功能活躍狀態(tài)的標(biāo)志,p-ERK1/2由胞質(zhì)轉(zhuǎn)位到核內(nèi),調(diào)節(jié)包括轉(zhuǎn)錄因子在內(nèi)的核蛋白活性從而產(chǎn)生生物學(xué)功能,ERK的活化與細(xì)胞的增殖、分化、癌變及惡性進(jìn)展程度密切相關(guān)[22-23],也可調(diào)節(jié)凋亡相關(guān)因子,如bcl-2、bcl-XL、c-myc等的表達(dá),促進(jìn)細(xì)胞的生長、發(fā)育和增殖,使細(xì)胞從G1期進(jìn)入S期[24-25]。通過檢測組織中p-ERK可推測組織的增殖情況。
大量研究表明,ERK在多種缺血再灌注模型中被激活且表達(dá)增加[26-28]。ERK1/2通路與缺血性腦卒中關(guān)系密切,其對缺血性腦卒中發(fā)揮保護(hù)作用或損害作用,尚有爭議[29]。盡管如此,很多證據(jù)都肯定了ERK1/2通路的激活對缺血性腦卒中的保護(hù)性作用,缺血再灌注損傷發(fā)生后,ERK1/2通路的激活能抑制損傷腦組織炎性反應(yīng)的發(fā)生[30],促進(jìn)骨橋蛋白的分泌,從而減少興奮性氨基酸的釋放[31],增強(qiáng)IL-20的表達(dá),促進(jìn)細(xì)胞增殖,從而保護(hù)缺血缺氧的腦組織[32]。在腦缺血缺氧或缺血再灌注后損傷中心區(qū)ERK的激活主要發(fā)生在損傷后早期(2 min~2 h),以神經(jīng)元為主[33-34];與損傷中心區(qū)不同,在未受損區(qū)的研究發(fā)現(xiàn),p-ERK的表達(dá)以星形膠質(zhì)細(xì)胞為主,且損傷后,ERK在未受損區(qū)星形膠質(zhì)細(xì)胞中的激活早于在損傷中心區(qū)星形膠質(zhì)細(xì)胞中ERK的激活[35]。在體外培養(yǎng)的星形膠質(zhì)細(xì)胞中激活的ERK發(fā)揮保護(hù)作用[36]。
EGFR被視為一個(gè)重要的膠質(zhì)瘤治療靶點(diǎn)[37-39]。但通過EGFR來治療腫瘤的具體分子機(jī)制尚不明確。GATA2是EGFR信號通路下游效應(yīng)分子之一,可以調(diào)控多發(fā)性神經(jīng)膠質(zhì)母細(xì)胞瘤(glioblastomamultiform,GBM)細(xì)胞的惡性生物學(xué)特征。Elk-1轉(zhuǎn)錄因子,作為Ets基因家族成員之一,可以激活ERK信號途徑[40]。有研究認(rèn)為GATA2在EGFR/ERK/Elk-1信號通路中具有重要作用,該研究通過100 ng/mL EGF預(yù)處理,隨EGFR磷酸化水平升高,GATA2表達(dá)明顯上調(diào),抑制EGFR/ERK或下調(diào)Elk-1的表達(dá),使GATA2表達(dá)明顯降低,阻止腫瘤發(fā)展;結(jié)果表明GATA2是通過EGFR/ERK/Elk-1信號通路來促進(jìn)神經(jīng)膠質(zhì)瘤的進(jìn)展[41]。
3 EGFR-ERK通路在缺血性腦血管病方面的研究進(jìn)展
細(xì)胞的信號轉(zhuǎn)導(dǎo)是機(jī)體生命活動中生理功能調(diào)節(jié)的基礎(chǔ)。細(xì)胞信號轉(zhuǎn)導(dǎo)和疾病關(guān)系是當(dāng)前生命科學(xué)研究的一個(gè)熱點(diǎn),隨著研究的深入,已闡明多種遺傳疾病的發(fā)生機(jī)制,且證實(shí)了許多危重病,如炎癥、感染、心腦血管疾病、糖尿病、惡性腫瘤等的發(fā)病與信號轉(zhuǎn)導(dǎo)異常有密切的關(guān)系。
腦缺血可引起神經(jīng)元變性、壞死,在腦缺血病灶中,缺血核心區(qū)以神經(jīng)元壞死為主,缺血半暗帶區(qū)以細(xì)胞凋亡為主[42]。研究表明,抑制缺血半暗帶區(qū)細(xì)胞的凋亡,可減少神經(jīng)細(xì)胞的死亡和減少腦梗死的面積[43-44]。
腦缺血再灌注損傷可以導(dǎo)致大量炎性因子的釋放,包括IL-1、IL-6、TNF-a及活性氧等,它們在缺血再灌注損傷中發(fā)揮了重要作用[45-46],抑制其表達(dá)可減輕缺血性腦損傷[47]。余劍等[3]的研究表明EGF對腦缺血后神經(jīng)系統(tǒng)營養(yǎng)、結(jié)構(gòu)及功能重建、神經(jīng)修復(fù)等均有重要作用。AG1487作為EGF受體拮抗劑,可誘導(dǎo)EGFR 形成無活性的二聚體形式,阻止受體間的信號傳導(dǎo),從而拮抗EGF的生物學(xué)效應(yīng)[48],但是,目前在缺血性腦血管病領(lǐng)域尚無相關(guān)研究。
在生理和病理?xiàng)l件下,各種外界信號刺激均可激活ERK信號通路,調(diào)控基因轉(zhuǎn)錄等,從而影響神經(jīng)元的功能。腦梗死后的缺血再灌注,啟動了ERK信號轉(zhuǎn)導(dǎo)通路,導(dǎo)致N-甲基-D-天冬氨酸(N-methyl-D-aspartate receptor,NMDA)受體活性降低,阻止Ca2+內(nèi)流,在神經(jīng)元功能保護(hù)中發(fā)揮了重要作用[49]。細(xì)胞外ERK1/2轉(zhuǎn)導(dǎo)通路的激活,可促進(jìn)成年鼠少突膠質(zhì)細(xì)胞新的髓鞘形成,改善神經(jīng)系統(tǒng)功能[50]。在MCAO大鼠模型中,腦缺血發(fā)生后0、6 h經(jīng)腹腔注射ERK抑制劑U0126,可明顯阻斷ERK1/2的磷酸化,減少腦梗死體積[51]。
綜上所述,腦梗死發(fā)生后EGFR和ERK的上調(diào)可以起到腦保護(hù)作用,外源性EGF促進(jìn)了這一保護(hù)作用,從而改善腦梗死的預(yù)后。但是,EGFR-ERK通路對腦梗死保護(hù)作用的具體機(jī)制尚未明確,因此對該機(jī)制的研究具有重要意義。
[參考文獻(xiàn)]
[1] Tong X,George MG,Gillespie C,et al. Trends in hospitalizations and cost associated with stroke by age,United States 2003-2012 [J]. Int J Stroke,2016,11(8):874-881.
[2] James R,Searcy JL,Le Bihan T,et al. Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge [J]. J Cereb Blood Flow Metab,2012,32(1):164-176.
[3] 余劍,曾進(jìn)勝,盛文利,等.表皮生長因子促進(jìn)大鼠腦梗死后的早期神經(jīng)功能康復(fù)[J].中國神經(jīng)精神疾病雜志, 2005,31(2):111-114.
[4] 余劍,曾進(jìn)勝,趙湛,等.表皮生長因子促進(jìn)腦梗死后室管膜下區(qū)神經(jīng)干細(xì)胞遷徙機(jī)制的初步研究[J].中風(fēng)與神經(jīng)疾病雜志,2007,24(1):4-7.
[5] 周金橋,劉秋紅,孫劍瑞.顱腦損傷并發(fā)應(yīng)激性潰瘍時(shí)血清表皮生長因子濃度和氧化物岐化酶活力的變化及臨床意義[J].2010,17(1):72-74.
[6] 沈順姬,楊凈,李婧,等.大鼠局灶性腦缺血損傷中表皮生長因子的表達(dá)變化的意義[J].中國臨床康復(fù),2003,7(31):4180-4181.
[7] Rocourt DV,Mehta VB,Besner GE. Heparin-binding EGF-like growth factor decreases inflammatory cytokine expression after intestinal ischemia/reperfusion injury [J]. J Surg Res,2007,139(2):269-273.
[8] Subiros N,Perez-Saad H,Aldana L,et al. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke [J]. Neurol Res,2016,38(11):950-958.
[9] Wang Y,Cooke MJ,Lapitsky Y,et al. Transport of epidermal growth factor in the stroke-injured brain [J]. J Control Release,2011,149(3):225-235.
[10] Cooke MJ,Wang Y,Morshead CM,et al. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain [J]. Biomaterials,2011,32(24):5688-5697.
[11] Jeffers MS,Hoyles A,Morshead C,et al. Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation [J]. Stroke,2014,45(6):1856-1858.
[12] 張鴻,宋利春,龐秀慧.急性腦梗死患者血清表皮生長因子含量與神經(jīng)功能缺損評分的關(guān)系[J].現(xiàn)代康復(fù),2001, 5(8):52-55.
[13] Hanke M,F(xiàn)arkas LM,Jakob M,et al. Heparin-binding epidermal growth factor-like growth factor:a component in chromaffin granules which promotes the survival of nig?鄄rostriatal dopaminergic neurones in vitro and in vivo [J]. Neuroscience,2004,124(4):757-766.
[14] Hermann PM,Nicol JJ,Nagle GT,et al. Epidermal growth factor-dependent enhancement of axonal regeneration in the pond snail Lymnaea stagnalis:role of phagocyte survival [J]. J Comp Neurol,2005,492(4):383-400.
[15] Garcia DBD,Martinez NS,Coro-Antich RM,et al. Epidermal growth factor and growth hormone-releasing peptide-6:combined therapeutic approach in experimental stroke [J]. Restor Neurol Neurosci,2013,31(2):213-223.
[16] 景迎春,李擎瑜,劉彬,等.HB-EGF可挽救ADAM17缺失導(dǎo)致的大腦皮層神經(jīng)前體細(xì)胞分化遷移異常[J].復(fù)旦學(xué)報(bào):自然科學(xué)版,2017,56(5):602-609.
[17] Jin K,Sun Y,Xie L,et al. Post-ischemic administration of heparin-binding epidermal growth factor-like growth factor(HB-EGF)reduces infarct size and modifies neurogenesis after focal cerebral ischemia in the rat [J]. J Cereb Blood Flow Metab,2004,24(4):399-408.
[18] 李曉波,丁新生.堿性成纖維細(xì)胞生長因子、表皮生長對腦缺血大鼠內(nèi)源性神經(jīng)干細(xì)胞增殖的影響[J].臨床神經(jīng)病學(xué)雜志,2006,19(3):188-190.
[19] Menard S,Casalini P,Campiglio M,et al. Role of HER2/neu in tumor progression and therapy [J]. Cell Mol Life Sci,2004,61(23):2965-2978.
[20] Steelman LS,F(xiàn)ranklin RA,Abrams SL,et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy [J]. Leukemia,2011,25(7):1080-1094.
[21] Mebratu Y,Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death:is subcellular localization the answer?[J]. Cell Cycle,2009,8(8):1168-1175.
[22] Hopfner M,Schuppan D,Scherubl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer [J]. World J Gastroenterol,2008,14(1):1-14.
[23] Davidson B,Givant-Horwitz V,Lazarovici P,et al. Matrix metalloproteinases(MMP),EMMPRIN(extracellular matrix metalloproteinase inducer)and mitogen-activated protein kinases(MAPK):co-expression in metastatic serous ovarian carcinoma [J]. Clin Exp Metastasis,2003, 20(7):621-631.
[24] Chang F,Steelman LS,Lee JT,et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors:potential targeting for therapeutic intervention [J]. Leukemia,2003,17(7):1263-1293.
[25] Roovers K,Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery [J]. Bioessays,2000,22(9):818-826.
[26] Wang ZF,Tang LL,Yan H,et al. Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice [J]. Pharmacol Biochem Behav,2006,83(4):603-611.
[27] Zuo Z,Wang Y,Huang Y. Isoflurane preconditioning protects human neuroblastoma SH-SY5Y cells against in vitro simulated ischemia-reperfusion through the activation of extracellular signal-regulated kinases pathway [J]. Eur J Pharmacol,2006,542(1-3):84-91.
[28] Minutoli L,Antonuccio P,Romeo C,et al. Evidence for a role of mitogen-activated protein kinase 3/mitogen-activated protein kinase in the development of testicular ischemia-reperfusion injury [J]. Biol Reprod,2005,73(4):730-736.
[29] Sawe N,Steinberg G,Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke [J]. J Neurosci Res,2008,86(8):1659-1669.
[30] Sironi L,Banfi C,Brioschi M,et al. Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment [J]. Neurobiol Dis,2006,22(2):445-451.
[31] Meller R,Stevens SL,Minami M,et al. Neuroprotection by osteopontin in stroke [J]. J Cereb Blood Flow Metab,2005,25(2):217-225.
[32] Chen WY,Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke [J]. J Immunol,2009,182(8):5003-5012.
[33] Wang ZQ,Wu DC,Huang FP,et al. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia [J]. Brain Res,2004,996(1):55-66.
[34] Gu Z,Jiang Q,Zhang G. Extracellular signal-regulated kinase 1/2 activation in hippocampus after cerebral isch?鄄emia may not interfere with postischemic cell death [J]. Brain Res,2001,901(1-2):79-84.
[35] Wang X,Zhu C,Qiu L,et al. Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia [J]. J Neuroc?鄄hem,2003,86(2):351-362.
[36] Jiang Z,Zhang Y,Chen X,et al. Activation of Erk1/2 and Akt in astrocytes under ischemia [J]. Biochem Biophys Res Commun,2002,294(3):726-733.
[37] Labussiere M,Boisselier B,Mokhtari K,et al. Combined analysis of TERT,EGFR,and IDH status defines distinct prognostic glioblastoma classes [J]. Neurology,2014,83(13):1200-1206.
[38] Chamberlain MC,Sanson M. Combined analysis of TERT,EGFR,and IDH status defines distinct prognostic gliobl?鄄astoma classes [J]. Neurology,2015,84(19):2007.
[39] Taylor TE,F(xiàn)urnari FB,Cavenee WK. Targeting EGFR for treatment of glioblastoma:molecular basis to overcome resistance [J]. Curr Cancer Drug Targets,2012,12(3):197-209.
[40] Goncharenko-Khaider N,Matte I,Lane D,et al. Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis [J]. Mol Cancer,2012,11:84.
[41] Wang Z,Yuan H,Sun C,et al. GATA2 promotes glioma progression through EGFR/ERK/Elk-1 pathway [J]. Med Oncol,2015,32(4):87.
[42] Ferrer I,Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia:life and death struggle in the penumbra [J]. J Neuropathol Exp Neurol,2003,62(4):329-339.
[43] Tsubokawa T,Yamaguchi-Okada M,Calvert JW,et al. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats [J]. J Neurosci Res,2006,84(4):832-840.
[44] Anagli J,Abounit K,Stemmer P,et al. Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain [J]. Biochem Biophys Res Commun,2008,366(1):86-91.
[45] Iadecola C,Alexander M. Cerebral ischemia and inflammation [J]. Curr Opin Neurol,2001,14(1):89-94.