趙蕾 劉學(xué)員 鄧澤熙 何杰
[摘要] 心血管異位鈣化是一種與臨床多種心血管事件密切相關(guān)的病理改變,是發(fā)生惡性事件的獨(dú)立危險因素,其發(fā)生進(jìn)展是類似骨重塑的主動而復(fù)雜的過程,其中包括血管平滑肌、間質(zhì)細(xì)胞及基質(zhì)細(xì)胞的參與,多種細(xì)胞因子及介質(zhì)、外泌因子的調(diào)節(jié)以及脂肪酸代謝、炎性反應(yīng)的干預(yù)等多因素共同作用。了解其發(fā)病機(jī)制對于預(yù)防及阻斷其進(jìn)展、維護(hù)老年人生命健康、降低老年人群的死亡率有著重要意義。
[關(guān)鍵詞] 心血管異位鈣化;主動調(diào)節(jié);發(fā)病機(jī)制
[中圖分類號] R543.5? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-7210(2019)02(c)-0036-04
[Abstract] Cardiovascular ectopic calcification is a pathological change closely related to clinical events and an independent risk factor of malignant cardiovascular events, its occurrence and development is an active and complex process similar to bone remodeling, including the participation of vascular smooth muscle, interstitial cell, stroma cell, the adjustment of varieties of cytokines, medium and eccrine factors, and the combined action of multiple factors, such as the intervention of fatty acid metabolism and inflammatory reaction. It has great significance of understanding its pathogenesis for preventing and stopping its progress, maintaining elderly life health, and decreasing the mortality rate of the elderly people.
[Key words] Cardiovascular ectopic calcification; Active regulation; Pathogenesis
心血管異位鈣化是指鈣磷在血管、心肌和心瓣膜的異常沉積[1-2],同時也常被描述為礦化結(jié)節(jié)和纖維化并存的結(jié)局[3]。他是與臨床心血管疾病密切相關(guān)的一種病理改變,在老年人群中發(fā)病率更高、更為集中。越來越多的研究者發(fā)現(xiàn),心血管鈣化程度及其積分與全因死亡率、猝死及致命性急性心梗均呈正相關(guān)[4],而且與外科術(shù)后的康復(fù)、進(jìn)程與預(yù)后顯著相關(guān)[3]。無論是否合并高血壓,心血管異位鈣化程度都是一個非常有用的危險分層預(yù)測因子,對于那些程度較高的患者需要進(jìn)行更嚴(yán)格的生活方式干預(yù)以及更集中的藥物對其干預(yù)治療[5]。一直以來都認(rèn)為心血管異位鈣化是一個退化過程,但是越來越多的證據(jù)支持其是一個類似骨重塑的主動過程[3,6]。探究心血管異位鈣化的發(fā)病機(jī)制并給予正確的干預(yù),對降低心血管疾病的患病率及死亡率,特別是老年人群生命健康有著非常重要的意義。
1 細(xì)胞因子及介質(zhì)的參與
近年來,研究發(fā)現(xiàn),異位鈣化的抑制和觸發(fā)是體內(nèi)各種不同的細(xì)胞因子和介質(zhì)所導(dǎo)致的主動過程[7-8],是一個類似骨化和礦化的過程。Davaine等[3]代表的研究團(tuán)隊(duì),在對女性血管鈣化患者的研究中發(fā)現(xiàn),動脈鈣化是一個類似骨化的過程,高表達(dá)的骨保護(hù)素受體激活與骨化生顯著相關(guān)(P = 0.03),在細(xì)胞水平,這類患者周細(xì)胞顯著升高(P = 0.04)。Mari等[9]研究小組通過對主動脈瓣狹窄鈣化狹窄(CAS)患者研究發(fā)現(xiàn),腫瘤壞死因子(TNF)-α能夠主動誘導(dǎo)人類主動脈瓣間質(zhì)細(xì)胞的異位鈣化,從而導(dǎo)致CAS的發(fā)生,其中還有基質(zhì)Gla蛋白(MGP)和骨形態(tài)發(fā)生蛋白(BMP)等因子的參與。Schurgers等[10]研究認(rèn)為,血清中去羧基化的MGP細(xì)胞因子可作為血管鈣化的標(biāo)志物。Goettsch等[11]研究發(fā)現(xiàn),Sortilin是調(diào)節(jié)平滑肌細(xì)胞鈣化的重要細(xì)胞因子,其主要通過調(diào)節(jié)鈣化蛋白介質(zhì)TNAP的附著并進(jìn)入細(xì)胞外囊,從而啟動平滑肌細(xì)胞囊外鈣化。已經(jīng)有多個相關(guān)的研究證據(jù)顯示,血管鈣化是一個類似于軟骨骨化和修復(fù)的主動過程,其中有許多細(xì)胞因子的調(diào)控,如BMP、轉(zhuǎn)化生長因子β(TGF-β)、TNF、MGP、骨連素(ON)、骨保護(hù)素(OPG)、氧化的脂肪酸和未調(diào)節(jié)的鈣磷代謝物[12-14]。Fukumoto[15]重點(diǎn)研究了成纖維細(xì)胞生長因子-23(FGF-23)在異位鈣化中的作用,發(fā)現(xiàn)這類細(xì)胞因子通過降低近曲小管重吸收磷酸鹽從而降低血清中磷酸鹽水平,同時降低1,25(OH)-2D水平降低腸壁中磷酸鹽的重吸收,進(jìn)而阻止異位鈣化的發(fā)生。Ragnauth等[16]的團(tuán)隊(duì)也發(fā)現(xiàn),TNF可以通過多種途徑及機(jī)制,激活平滑肌細(xì)胞及瓣膜間質(zhì)細(xì)胞的鈣化發(fā)生。
2 血管平滑肌細(xì)胞(VSMCs)及瓣膜間質(zhì)細(xì)胞參與
VSMCs和瓣膜間質(zhì)細(xì)胞通過骨分化和礦化,均可參與心血管異位鈣化的發(fā)生。Chen等[17]研究發(fā)現(xiàn),瓣膜間質(zhì)細(xì)胞和VSMCs一樣,具有很強(qiáng)的潛在成骨活性,同時在鈣化的瓣膜中活性更高。Martinez等[18]在其研究中指出,VSMCs在高磷的培養(yǎng)環(huán)境中很容易發(fā)生成骨轉(zhuǎn)化(VOT)和提早鈣化。在壓力和應(yīng)激狀態(tài)下,VSMCs會由間質(zhì)起源細(xì)胞轉(zhuǎn)化為成骨細(xì)胞類型;在血管內(nèi)的鈣化部分,發(fā)現(xiàn)VSMCs的細(xì)胞表型更加接近于成骨細(xì)胞,伴有很多骨相關(guān)蛋白質(zhì)表達(dá)的上調(diào),比如Runx2、Osterix、Msx2和Sox9,而這些因子通常被認(rèn)為參與骨鈣化的調(diào)節(jié)過程[19]。諸多研究[20-21]將Runx2認(rèn)為是VSMCs發(fā)生VOT的關(guān)鍵因素和最早的標(biāo)志物,無論在體內(nèi)或是體外,發(fā)生鈣化的VSMCs均能檢測出Runx2。同時,Alesutan等[22]發(fā)現(xiàn)VSMCs中酸性細(xì)胞的pH值在調(diào)節(jié)其鈣化/軟骨化的轉(zhuǎn)化中起到重要的作用。而Husseini等[23]則首次報道了在主動脈瓣鈣化中IL-6的超表達(dá),提示瓣膜間質(zhì)細(xì)胞的礦化過程中,IL-6是一個關(guān)鍵的信號,用來提升BMP2的合成。
3 脂肪酸代謝的紊亂和失衡
Vorkas等[24]在其研究中闡明了冠狀動脈鈣化及其類似相關(guān)性疾?。–CAD)與脂肪酸代謝的失衡有關(guān),主要是鞘磷脂和卵磷脂代謝的失調(diào),同時證實(shí)了這種失衡狀態(tài)同時能增加冠脈疾病的嚴(yán)重性,而且在嚴(yán)重的心血管鈣化模型中發(fā)現(xiàn),磷脂酰代謝途徑中的鞘磷脂的敏感性明顯下降。Rizza等[25]通過代謝組學(xué)定向分析了49種代謝產(chǎn)物(18種氨基酸、30種酰基肉堿、左旋肉毒堿),發(fā)現(xiàn)其中參與了脂肪酸氧化代謝的中長鏈?;舛緣A及左旋肉毒堿可以作為心血管異位鈣化的預(yù)測因子。Huang等[26]通過對41例外周動脈鈣化性(PAD)疾病患者的調(diào)查發(fā)現(xiàn),脂肪代謝產(chǎn)物如脂蛋白和磷脂等可以作為PAD患者發(fā)生嚴(yán)重心血管事件的預(yù)測因子,也可以作為血管異位鈣化進(jìn)展的高危因素。
4 血管平滑肌、外切體酶介導(dǎo)的基質(zhì)細(xì)胞參與
在分子機(jī)制層面,心血管的鈣化啟動有基質(zhì)細(xì)胞的參與和雙向調(diào)節(jié)。Kapustin等[27]和Schlieper等[28]通過電子顯微鏡發(fā)現(xiàn),基質(zhì)細(xì)胞是血管局部礦化的初始病灶,其中包含有彈性蛋白和膠原纖維。而這一發(fā)現(xiàn)被New等[29]證實(shí),他們在基質(zhì)細(xì)胞介導(dǎo)的動脈鈣化斑塊中發(fā)現(xiàn)了VSMCs、巨噬細(xì)胞、內(nèi)皮細(xì)胞和血小板。在Bertazzo等[30]的實(shí)驗(yàn)中,從早期發(fā)生異位鈣化的大動脈處提取基質(zhì)細(xì)胞,通過納米技術(shù)用膠原酶溶解法,分析了CD9、CD63、CD68等因子,進(jìn)一步證實(shí)了促進(jìn)異位鈣化發(fā)生的基質(zhì)細(xì)胞的VSMC來源。Kapustin等[31]在其研究中描述了血管平滑肌-基質(zhì)細(xì)胞的來源是細(xì)胞內(nèi)多泡體(MVB)的外切體酶,這些外切體酶產(chǎn)生的基質(zhì)細(xì)胞與血管鈣化有關(guān),外切體的產(chǎn)生與神經(jīng)鞘磷脂磷酸二脂酶-3(SMPD3)的表達(dá)上調(diào)有關(guān),而SMPD3的分泌由成骨細(xì)胞及生長因子等調(diào)節(jié)。Kapustin等[31]和Shroff等[32]在其研究中通過蛋白組學(xué)研究,揭示了在VSMCs外泌體介導(dǎo)的基質(zhì)細(xì)胞中包含大量與礦化相關(guān)的載體蛋白,能夠通過很多額外機(jī)制加速體內(nèi)的鈣化,而這些途徑需要進(jìn)一步的深入研究。
5 異位鈣化與炎癥的關(guān)系
諸多研究和實(shí)驗(yàn)證明,心血管異位鈣化與炎癥發(fā)生密不可分,這其中包括多種炎性因子的參與和高表達(dá)。Agharazii等[33]在慢性腎功不全的大鼠模型中,發(fā)現(xiàn)IL-6、IL-1、TNF-α等炎性因子的高表達(dá)與胸主動脈中膜鈣化相關(guān)。Buendia等[34]的研究小組發(fā)現(xiàn),在炎性因子如TNF-α刺激下,血管內(nèi)皮細(xì)胞能夠生成BMP-2,導(dǎo)致內(nèi)皮微粒(EMPs)的產(chǎn)生,而EMPs含有大量的BMP-2,進(jìn)一步促進(jìn)血管平滑肌的骨化生和血管異位鈣化的發(fā)生。Abdelbaky等[35]通過對111例60歲左右無癥狀的早期主動脈鈣化患者追蹤調(diào)查,運(yùn)用PET-CT評估早期炎性反應(yīng)和動脈鈣化的程度,發(fā)現(xiàn)早期炎性反應(yīng)能夠誘導(dǎo)主動脈瓣鈣化的發(fā)生進(jìn)展。Hofmann Bowman等[36]做了大量的研究工作,證實(shí)炎癥可以促發(fā)SM22α-hs100a12靶向調(diào)節(jié),誘導(dǎo)成骨細(xì)胞標(biāo)記基因包括DMP1、Runx2、BMP2、Bglap的表達(dá),從而促進(jìn)正常的VSMCs向鈣化的VSMCs轉(zhuǎn)化。而心血管鈣化是一種慢性炎癥的假說也在2011年被提出[7]。
6 高遷移率族蛋白B1(HMGB1)的調(diào)節(jié)
Chen等[37]闡述了HMGB1對于血管異位鈣化的多種調(diào)節(jié)作用。HMGB1作為一種細(xì)胞核成分存在于幾乎所有真核細(xì)胞的線粒體中,炎癥、外傷、壓力等可促使HMGB1釋放,通過糖基化終末受體產(chǎn)物/中性鞘磷脂酶2(RAGE/nSMase2)和TGF-β/BMP兩個信使通道,作用于VSMCs、瓣膜間質(zhì)細(xì)胞以及周細(xì)胞,在膜胞和膜基質(zhì)釋放Runx2、OCN、OPN、BSP等細(xì)胞因子,從而促進(jìn)骨軟化分化,最終導(dǎo)致血管鈣化的發(fā)生。這其中,當(dāng)然也有炎癥、細(xì)胞自噬以及活性氧簇等參與調(diào)節(jié)。這一研究,也給心血管異位鈣化的早期防治提供了一條途徑。
綜上所述,心血管異位鈣化是心腦血管疾病、衰老、慢性腎衰竭等多種疾病的共同的病理生理表現(xiàn),其發(fā)病率高,危害性大,特別是針對老年人群,其發(fā)生發(fā)展是一個可調(diào)控的過程,受內(nèi)環(huán)境、多細(xì)胞因子、介質(zhì)、信號通道、炎癥、脂代謝等多因素影響。由于其病理生理過程的復(fù)雜性、發(fā)病機(jī)制和細(xì)胞來源的多樣性,為更深入了解其發(fā)生機(jī)制,顯然需要展開更多的結(jié)合最新技術(shù)的臨床研究和基礎(chǔ)實(shí)驗(yàn)。
[參考文獻(xiàn)]
[1]? 陳宇,王士雯.心血管系統(tǒng)異位鈣化分子研究進(jìn)展[J].心血管病學(xué)進(jìn)展,2004,25(2):81-84.
[2]? Kim JH,Choi YK,Do JY,et al. Estrogen-Related Receptor gamma Plays a Key Role in Vascular? Calcification Through the Up-regulation of BMP2 Expression [J]. Arterioscler Thromb Vasc Biol,2015,35(11):2384-2390.
[3]? Davaine JM,Quillard T,Chatelais M,et al. Bone Like Arterial Calcification in Femoral Atherosclerotic Lesions:Prevalence and Role of Osteoprotegerin and Pericytes [J]. Eur J Vasc Endovasc Surg,2016,51(2):259-267.
[4]? Brinda AT,Ikeda K,Hirata KI,et al. Macrophages Highly Express Carbonic Anhydrase 2 and Play a Significant Role in Demineralization of the Ectopic Calcification [J]. Kobe J Med Sci,2017,63(2):45-50.
[5]? Graham G,Michael JB,Matthew J,et al. Impact of coronary artery calcification on all-cause mortality in individuals with and without hypertension [J]. Atherosclerosis,2012,225(2):432-437.
[6]? Bostrom KI. Where do we stand on vascular calcification? [J]. Vascul Pharmacol,2016,84(9):8-14.
[7]? New SE,Aikawa E. Cardiovascular calcification:an inflammatory disease [J]. Circ J,2011,75(6):1305-1313.
[8]? Haussler MR,Whitfield GK,Haussler CA,et al. 1,25-Dihydroxyvitamin D and Klotho:A Tale of Two Renal Hormones Coming of Age [J]. Vitam Horm,2016,100(1):165-230.
[9]? Mari C,Kazuhiko S. Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves [J]. J Pharmacol Sci,2018, 136(1):257-265.
[10]? Schurgers LJ,Teunissen KJ,Knapen MH,et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid(Gla)protein:under carboxylated matrix Gla protein as marker for vascular calcification [J]. Arterioscler Thromb Vasc Biol,2005,25(8):1629-1633.
[11]? Goettsch C,Hutcheson JD,Aikawa M,et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles [J]. Clin Invest,2016,126(4):1323-1336.
[12]? Chang JC,Miura RM. Regulatory inhibition of biological? tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A [J]. J Chem Phys,2016, 144(15):154906.
[13]? Speer MY,Giachelli CM. Regulation of cardiovascular calcification [J]. Cardiovasc athol,2004,13(2):63-70.
[14]? Chen NX,Moe SM. Pathophysiology of Vascular Calcification [J]. Curr Osteoporos Rep,2015,13(5):372-380.
[15]? Fukumoto S. Vascular Calcification Pathological Mechanism and Clinical Application. Regulation of mineral metabolism and mineralization by FGF-23 [J]. Clin Alcium,2015,2(5):687-691.
[16]? Ragnauth CD,Warren DT. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging [J]. Circulation,2010,121(20):2200-2210.
[17]? Chen JH,Yip CY,Sone ED,et al. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential [J]. Am J Pathol,2009,174(3):1109-1119.
[18]? Martinez JM,Muoz-C JR,Herencia C,et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/beta-catenin activation [J]. Am J Physiol Renal Physiol,2013,303(8):1136-1144.
[19]? Shroff R,Long DA,Shanahan C,et al. Mechanistic insights into vascular calcification in CKD [J]. J Am Soc Nephrol,2013,24(2):179-189.
[20]? Rong S,Zhao X,Jin X,et al. Vascular calcification in chronic kidney disease is induced by bone orphogenetic protein-2 via a mechanism involving the Wnt/beta-catenin pathway [J]. Cell Physiol Biochem,2014,34(6):2049-2060.
[21]? Yao L,Sun YT,Sun W,et al. High phosphorus level leads to aortic calcification via beta-catenin in chronic kidney disease [J]. Am J Nephrol,2015,41(1):28-36.
[22]? Alesutan I,Musculus K,Castor T,et al. Inhibition of Phosphate-Induced Vascular Smooth Muscle Cell Osteo-/Chondrogenic Signaling and Calcification by Bafilomycin A1 and Methylamine [J]. Kidney Blood Press Res,2015, 40(5):490-499.
[23]? Husseini ED,Boulanger MC,Mahmut A,et al. P2Y2 receptor represses IL-6 expression by valve intertstitial cells through Akt:implication for calcific aortic valve disease [J]. J Mol Cell Cardiol,2014,72(6):146-156.
[24]? Vorkas PA,Isaac G,Holmgren A,et al. Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease:An exploratory lipidomic study [J]. Int J Cardiol,2015,197(10):192-199.
[25]? Rizza S,Copetti M,Rossi C,et al. Meta-bolomics signature improves the prediction of cardiovascular events in elderly subjects [J]. Atherosclerosis,2014,232(2):260-264.
[26]? Huang CC,McDermott MM,Liu K,et al. Plasma meta-bolomics profiles predict near-term death among individuals with lower extremity peripheral arterial disease [J]. Vasc Surg,2013,58(4):989-996.
[27]? Kapustin AN,Davies JD,Reynolds JL,et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization [J]. Circ Res,2011,109(1):1-12.
[28]? Schlieper G,Aretz A,Verberckmoes SC,et al. Ultrastructural analysis of vascular calcifications in uremia [J]. J Am Soc Nephrol,2010,21(4):689-696.
[29]? New SE,Goettsch C,Aikawa M,et al. Macrophage-derived matrix vesicles:an alternative novel mechanism for microcalcification? in atherosclerotic plaques [J]. Circ Res,2013,113(1):72-77.
[30]? Bertazzo S,Gentleman E,Cloyd KL,et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification [J]. Nat Mater,2013,12(6):576-583.
[31]? Kapustin AN,Chatrou ML,Drozdov I,et al. Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion [J]. Circ Res,2015,116(8):1312-1323.
[32]? Shroff RC,McNair R,F(xiàn)igg N,et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis [J]. Circulation,2008,118(17):1748-1757.
[33]? Agharazii M,St-Louis R,Gautier BA,et al. Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease related vascular calcification [J]. Am J Hypertens,2015,28(6):746-755.
[34]? Buendia P,Montesde OA,Madueno JA,et al. Endothelial microparticles mediate inflammation induced vascular calcification [J]. FASEB J,2015,29(1):173-181.
[35]? Abdelbaky A,Corsini E,F(xiàn)igueroa AL,et al. Early aortic valve inflammation precedes? calcification:a longitudinal? FDG-PET/CT study [J]. Atherosclerosis,2015,238(2):165-172.
[36]? Hofmann Bowman MA,Gawdzik J,Bukhari U,et al. S100A12 in vascular smooth muscle accelerates vascular calcification in apolipoprotein E-null mice by activating an osteogenic gene regulatory program [J]. Arterioscler Thromb Vasc Biol,2011,31(2):337-344.
[37]? Chen Q,Wang ZY. Roles of High Mobility Group Box 1 in-Cardiovascular Calcification [J]. Cell Physiol Biochem,2017,42(2):427-440.
(收稿日期:2018-04-27? 本文編輯:張瑜杰)