盧家潮 壽記新 李龍龍 王冰冰
【摘要】 目的:探討替莫唑胺(TMZ)聯(lián)合氟桂利嗪(FZ)對人腦膠質(zhì)瘤細胞體外清除作用及可能機制。方法:用伊格爾培養(yǎng)基培養(yǎng)膠質(zhì)瘤U87、U251、CHG-5、SHG-44細胞株,用CCK-8試劑檢測并評價TMZ、FZ兩者單藥及聯(lián)合用藥處理后的U87、U251、CHG-5、SHG-44細胞增殖抑制率及觀察TMZ的半數(shù)抑制濃度(IC50);流式細胞儀檢測細胞凋亡。結(jié)果:FZ單獨處理膠質(zhì)瘤細胞株后能起到一定的抑制作用,而遠遠起不到治療效果;在同類細胞中,TMZ單藥作用細胞株后IC50分別為(562.3±56.7)、(370.5±40.2)、(480.9±29.6)、(420.5±61.4)μg/mL。在不同濃度的FZ聯(lián)合TMZ應(yīng)用后TMZ IC50均有不同程度下降(P<0.05);與對照組、替莫唑胺、氟桂利嗪單藥作用組比較,TMZ聯(lián)合FZ用藥誘導(dǎo)膠質(zhì)瘤細胞凋亡率顯著提高。結(jié)論:FZ可抑制膠質(zhì)瘤U87、U251、CHG-5、SHG-4增殖,與TMZ聯(lián)合應(yīng)用后能提高化療效果。
【關(guān)鍵詞】 替莫唑胺; 氟桂利嗪; 膠質(zhì)瘤
【Abstract】 Objective:To investigate the effect of Temozolomide(TMZ)combined with Flunarizine(FZ)on glioma cell lines in vitro.Method:The glioma U87,U251,CHG-5 and SHG-44 cell lines were cultured in Eagles medium,Cell Counting Kit-8(CCK-8)assay was used to evaluate the cell proliferation in glioma cell lines which treated with TMZ combined with FZ either alone or in combination.Result:FZ inhibited the proliferation of glioma cell lines,but it was far less therapeutic effect.In the same kind of cells,the 50% inhibitory concentration(IC50)of FZ in cell lines U87,U251,CHG-5,SHG-44 were(562.3±56.7),(370.5±40.2),(480.9±29.6),(420.5±61.4)μg/mL.The IC50 of TMZ was significantly decreased after different concentrations of FZ combined with TMZ(P<0.05).Compared with the control group,TMZ and FZ monotherapy group,the apoptotic rate of TMZ combined with FZ induced a significant increase of glioma cells.Conclusion:FZ could inhibit the proliferation of glioma U87,U251,CHG-5 and SHG-4,and it could improve the chemotherapy effect when combined with TMZ.
【Key words】 Temozolomide; Flunarizine; Glioma
First-authors address:The Fifth Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China
doi:10.3969/j.issn.1674-4985.2019.03.002
神經(jīng)膠質(zhì)瘤是人類中樞神經(jīng)系統(tǒng)中最常見的原發(fā)性腫瘤,占惡性腦瘤的81%,影響膠質(zhì)瘤發(fā)病的因素較多,如基因突變、電離輻射等[1],最新的權(quán)威報道,膠質(zhì)瘤發(fā)病率(1~5)/10萬,超過3年的生存率僅5%[2]。約50%膠質(zhì)瘤患者存在癲癇風(fēng)險,氟桂利嗪(Flunarizine,F(xiàn)Z)為雙氟化哌啶衍生物,是強效的鈣通道拮抗劑,臨床上常用的抗癲癇藥物之一[3]。替莫唑胺(Temozolomide,TMZ)是一種口服的烷基化廣譜抗腫瘤藥物,通過DNA上的鳥嘌呤在O-6或N-7位上誘導(dǎo)DNA烷基化,致使腫瘤細胞凋亡[4],其作為臨床上一線的抗腫瘤藥物,能明顯延長膠質(zhì)瘤患者生存期,但Chio等[5]研究發(fā)現(xiàn),長期使用替莫唑胺作用于膠質(zhì)瘤細胞會使其產(chǎn)生耐藥性,臨床上同樣見有類似報道[6]。如何提高膠質(zhì)瘤細胞對TMZ的敏感性,增強抗腫瘤作用已經(jīng)成為目前研究熱點,而關(guān)于TMZ與FZ聯(lián)合應(yīng)用對U87、U251、CHG-5、SHG-44細胞株的影響目前尚未見相關(guān)報道。本研究擬探討體外FZ能否增加膠質(zhì)瘤細胞對TMZ的敏感性、增強TMZ對腫瘤細胞的殺傷作用,為臨床治療膠質(zhì)瘤患者提供相關(guān)的理論依據(jù)。
1 材料與方法
1.1 試劑和儀器 流式細胞儀(BD calibur)、酶聯(lián)免疫檢測儀(上?;蚩萍加邢薰荆?、胎牛血清(Gibco)、Eagle培養(yǎng)基(DMEM)(Hyclone公司)、0.25%胰酶(杭州四季青生物科技有限公司)、超凈工作臺(美國貝克曼公司)、CO2恒溫培養(yǎng)箱(Cell Signaling公司)、TMZ(天士力公司)、FZ(西安楊森制藥有限公司)、Annexin V-FITC細胞凋亡檢測試劑盒(上海碧云天生物技術(shù)有限公司)、CCK-8溶液(cell counting kit-8,Dojindo)。
1.2 細胞培養(yǎng) 膠質(zhì)瘤U87、U251、CHG-5、SHG-44細胞株購自中科院上海細胞庫,于含10%胎牛血清、1%青鏈霉素的DMEM的高糖培養(yǎng)基,在室溫下5%CO2的孵育箱培養(yǎng)。取對數(shù)生長期細胞且活性>95%用于實驗。
1.3 方法
1.3.1 細胞抗增殖試驗 取對數(shù)生長期的U87、U251、CHG-5、SHG-44細胞懸液接種于96孔板,每孔3 000個,預(yù)先置于37 ℃,5%CO2飽和濕度的培養(yǎng)箱內(nèi)培養(yǎng),使細胞貼壁生長并長滿孔底。24 h后將各濃度藥物10 μL加入培養(yǎng)孔,每濃度藥物設(shè)4個復(fù)孔,空白組(無細胞、試劑)4個復(fù)孔,對照組(只有等量溶劑)4個復(fù)孔。各藥液細胞培養(yǎng)孔的FZ、TMZ、FZ+TMZ濃度分別為FZ(5、10、20、40、80 μg/mL),TMZ(50、100、200、400、800 μg/mL),繼續(xù)培養(yǎng)24 h后每孔加10 μL的CCK-8溶液,孵育2 h在酶聯(lián)免疫檢測儀450 nm處檢測光吸收值(optical density,OD值),然后計算不同濃度的增殖抑制率。以上實驗均重復(fù)3次取均值計算增殖抑制率和聯(lián)合用藥后TMZ的IC50,
1.3.2 流式細胞術(shù)檢測細胞凋亡率 取同步培養(yǎng)的對數(shù)生長期U87、U251、CHG-5、SHG-44細胞加入對照組以及用DMSO配置的FZ、TMZ、FZ+TMZ(FZ終濃度為10、20、40 μg/mL,TMZ的終濃度為100、200、400 μg/mL),每組藥物設(shè)3個復(fù)孔,按照凋亡試劑盒的說明進行操作后經(jīng)流式細胞儀檢測。
1.4 統(tǒng)計學(xué)處理 采用SPSS 21.0軟件對所得數(shù)據(jù)進行統(tǒng)計分析,計量資料用(x±s)表示,多組間比較采用方差分析,兩兩比較采用Students t檢驗。以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 FZ、TMZ單藥作用于U87、U251、CHG-5、SHG-44細胞的增殖抑制率比較 FZ單藥對膠質(zhì)瘤細胞有一定的抑制作用,但達不到治療效果,見表1。
2.2 FZ與TMZ聯(lián)合用藥對膠質(zhì)瘤細胞株的增殖抑制作用 聯(lián)合處理后TMZ的IC50均有不同程度的下降,差異有統(tǒng)計學(xué)意義(P<0.05),見表2。
2.3 TMZ、FZ及其聯(lián)合用藥對U87、U251、CHG-5、SHG-44細胞株凋亡率比較 對照組與各濃度藥物FZ、TMZ、FZ+TMZ培養(yǎng)至24 h后,對U87、U251、CHG-5、SHG-44細胞的凋亡率比較,差異有統(tǒng)計學(xué)意義(P<0.05),見表3。
3 討論
原發(fā)性膠質(zhì)瘤難以根治的原因主要是其具有豐富的血供、高度的浸潤性及腫瘤邊界不清等特點[7-8],手術(shù)切除是目前治療膠質(zhì)瘤的第一選擇方案,但由于腫瘤切除不完全,膠質(zhì)瘤患者復(fù)發(fā)率極高,預(yù)后效果欠佳,嚴(yán)重危害患者生活質(zhì)量及生命健康[9]。改進治療方案及策略,提高膠質(zhì)瘤患者生存期和生活質(zhì)量是臨床工作者亟待解決的問題。臨床大樣本數(shù)據(jù)證實,惡性膠質(zhì)瘤患者行手術(shù)+放療+化療,目前已達成共識[10]。而Fisher等[11]在腫瘤放射治療試驗(RTOG)0424組證實,手術(shù)后行放療+TMZ化療較單純行術(shù)后放療,中位生存時間(MST)從40.5個月提高到57.9個月,提高率為43%,三年總體生存率(OS)從54%提高到65%。TMZ早在1980年被合成,且易于通過血腦屏障,目前成熟應(yīng)用于臨床一線的化療藥[12],不少學(xué)者報道,原發(fā)性或復(fù)發(fā)性膠質(zhì)瘤術(shù)后患者初次口服TMZ獲得良好效果,但不少患者逐步產(chǎn)生耐藥性[13-14],因此研究膠質(zhì)瘤細胞對TMZ的治療增敏,有望提高膠質(zhì)瘤術(shù)后患者的治療效果。FZ是一種非選擇性的能阻斷T型和L型Ca離子通道阻斷劑,普遍應(yīng)用于膠質(zhì)瘤伴隨癲癇發(fā)作患者[15]。Lee等[16]曾應(yīng)用10余種抗癲癇藥作用于膠質(zhì)瘤U87、T98G細胞株,發(fā)現(xiàn)所研究的抗癲癇藥對膠質(zhì)瘤細胞均有一定的抑制作用(沒有一種能達到殺滅腫瘤細胞的作用),其中以奧卡西平和丙戊酸鈉抑制作用顯著,但兩者的抑制作用濃度遠遠超過臨床以預(yù)防、控制癲癇發(fā)作所需要的藥物濃度,因此該劑量藥物并不能作為抗腫瘤藥物來推廣使用。Schmeel等[17]在研究多發(fā)性骨髓瘤時發(fā)現(xiàn),無翼相關(guān)整合位點(WNT)通路在淋巴瘤和骨髓瘤組織細胞中異?;钴S,而FZ的化學(xué)特性與已知的WNT通路抑制劑相似,在白血病細胞中具有促凋亡作用。Koller等[18]使用三種WNT抑制劑作用于腎癌細胞,結(jié)果發(fā)現(xiàn)腎癌細胞長時間處于生長停滯狀態(tài),該抑制劑能抑制癌細胞內(nèi)谷胱甘肽-s-轉(zhuǎn)移酶(GST),導(dǎo)致癌細胞內(nèi)谷胱甘肽水平升高,氧化應(yīng)激進一步增強導(dǎo)致細胞死亡,文獻[19-21]認(rèn)為WNT通路抑制劑能增敏抗腫瘤藥物的細胞毒作用。Perin等[22]研究表明,F(xiàn)Z與常用化療藥物聯(lián)用時,F(xiàn)Z對腫瘤細胞膜的分裂融合有明顯的抑制作用,同時能增強化療藥物的藥物敏感性,不受動物組不同腫瘤的影響,化療效果顯著增強。
本研究發(fā)現(xiàn),F(xiàn)Z與TMZ聯(lián)合用藥作用于U87、U251、CHG-5、SHG-44細胞株可以顯著降低TMZ的IC50,即FZ能起到增敏TMZ的作用,F(xiàn)Z單藥作用于該細胞,只能起到一定的增殖抑制作用,但達不到殺滅腫瘤細胞的效果,這可能是由于FZ作為WTN通路的一種抑制劑,能抑制膠質(zhì)瘤細胞內(nèi)谷胱甘肽-s-轉(zhuǎn)移酶活性,致使谷胱甘肽的蛋白水平高升高,從而增敏TMZ的抗腫瘤作用,這與Koller等[18]研究結(jié)果類似。
綜上所述,F(xiàn)Z作為一種臨床常用的抗癲癇藥,對膠質(zhì)瘤細胞有一定生長抑制作用,但達不到細胞毒效應(yīng),在膠質(zhì)瘤細胞中能增敏TMZ的抗腫瘤作用,因此,臨床上推薦膠質(zhì)瘤術(shù)后患者應(yīng)用TMZ化療的同時應(yīng)用FZ是一個不錯的治療方案,既起到預(yù)防/治療癲癇的作用,又能提高TMZ的治療效果。但其復(fù)雜的聯(lián)合應(yīng)用機制,有待進一步研究。
參考文獻
[1] Hu J,Shi B,Liu X,et al.The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway[J].Int Immunopharmacol,2018,64:33-41.
[2] Torres-Bayona S,Aldaz P,Auzmendi-Iriarte J,et al.PR-LncRNA signature regulates glioma cell activity through expression of SOX factors[J].Sci Rep,2018,8(1):12746.
[3] Sendrowski K,Rusak M,Sobaniec P,et al.Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons[J].Pharmacol Rep,2013,65(3):730-736.
[4] Di M A,Sedlarik V,et al.Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy[J].Int J Pharm,2014,474(1-2):134-145.
[5] Chio C C,Chen K Y,Chang C K,et al.Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells[J].BMC Cancer,2018,18(1):379.
[6] Reyes-Botero G,Cartalat-Carel S,Chinot O L,et al.Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status:An ANOCEF Phase Ⅱ Trial(ATAG)[J].Oncologist,2018,23(5):524-e44.
[7] Bai Y H,Zhan Y B,Yu B,et al.A Novel Tumor-Suppressor,CDH18,Inhibits Glioma Cell Invasiveness Via UQCRC2 and Correlates with the Prognosis of Glioma Patients[J].Cell Physiol Biochem,2018,48(4):1755-1770.
[8] Alfonso J C L,Talkenberger K,Seifert M,et al.The biology and mathematical modelling of glioma invasion:a review[J].J R Soc Interface,2017,14(136):pii20170490.
[9] Guan X,Zhang C,Zhao J,et al.CMTM6 overexpression is associated with molecular and clinical characteristics of malignancy and predicts poor prognosis in gliomas[J].EBioMedicine,2018,35:233-243.
[10] Gupta M,Bansal S,Pruthi D S,et al.Prognostic Factors in Elderly Patients with High-grade Gliomas:A Retrospective Analysis of 24 Cases[J].J Neurosci Rural Pract,2018,9(3):312-316.
[11] Fisher B J,Hu C,Macdonald D R,et al.Phase 2 study of temozolomide-based chemoradiation therapy for high-risk low-grade gliomas:preliminary results of Radiation Therapy Oncology Group 0424[J].Int J Radiat Oncol Biol Phys,2015,91(3):497-504.
[12] Cousin D,Hummersone M G,Bradshaw T D,et al.Synthesis and growth-inhibitory activities of imidazo[5,1-d]-1,2,3,5-tetrazine-8-carboxamides related to the anti-tumour drug temozolomide,with appended silicon,benzyl and heteromethyl groups at the 3-position[J].Medchemcomm,2018,9(3):545-553.
[13] St-Coeur P D,Touaibia M,Cuperlovic-Culf M,et al.Leveraging metabolomics to assess the next generation of temozolomide-based therapeutic approaches for glioblastomas[J].Genomics Proteomics Bioinformatics,2013,11(4):199-206.
[14] Cheng L,Bao S,Rich J N,et al.Potential therapeutic implications of cancer stem cells in glioblastoma[J].Biochem Pharmacol,2010,80(5):654-665.
[15] Gulati P,Muthuraman A,Kaur P,et al.Investigation of the role of non-selective calcium channel blocker(flunarizine)on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice[J].Pharmacol Biochem Behav,2015,131:26-32.
[16] Lee C Y,Lai H Y,Chiu A,et al.The effects of antiepileptic drugs on the growth of glioblastoma cell lines[J].J Neurooncol,2016,127(3):445-453.
[17] Schmeel L C,Schmeel F C,Kim Y,et al.Flunarizine exhibits in vitro efficacy against lymphoma and multiple myeloma cells[J].Anticancer Res,2015,35(3):1369-1376.
[18] Koller C M,Kim Y,Schmidt-Wolf I G,et al.Targeting renal cancer with a combination of WNT inhibitors and a bi-functional peptide[J].Anticancer Res,2013,33(6):2435-2440.
[19] Mohhammed M K,Shao C,Wang J,et al.Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal,tumorigenesis and cancer chemoresistance[J].Genes & Diseases,2016,3(1):11-40.
[20] Katoh M,Katoh M.Molecular genetics and targeted therapy of WNT-related human diseases(Review)[J].International Journal of Molecular Medicine,2017,40(3):587-606.
[21] Yang K,Wang X,Zhang H,et al.The evolving roles of canonical WNT signaling in stem cells and tumorigenesis:Implications in targeted cancer therapies[J].Lab Invest,2016,96(2):116-136.
[22] Perin P M,Haid S,Brown R J,et al.Flunarizine Prevents Hepatitis C Virus Membrane Fusion in a Genotype-dependent Manner by Targeting the Potential Fusion Peptide within E1[J].Hepatology,2016,63(1):49-62.
(收稿日期:2018-11-02) (本文編輯:程旭然)