劉云海 薛雁 陳蕾
[摘要]?目的?探究丘腦底核orexin-B對正常小鼠運動行為的調(diào)控及神經(jīng)元自發(fā)放電的影響。
方法分別采用爬桿實驗、曠場實驗和在體細(xì)胞外電生理記錄等方法,觀察丘腦底核微量注射orexin-B對小鼠運動的調(diào)控以及神經(jīng)元自發(fā)放電的影響。
結(jié)果雙側(cè)丘腦底核注射orexin-B可以明顯延長正常小鼠爬桿轉(zhuǎn)頭時間(t=2.40,P<0.05)和爬桿時間(t=4.59,P<0.01)。曠場實驗結(jié)果顯示,雙側(cè)丘腦底核注射orexin-B顯著減少小鼠運動總距離(t=3.14,P<0.01)。在正常小鼠丘腦底核記錄到11個神經(jīng)元,微壓力注射orexin-B使其中7個神經(jīng)元的放電頻率顯著升高(t=4.96,P<0.01),放電頻率平均升高(216.90±118.40)%,與生理鹽水對照組比較差異有顯著性(Z=-2.72,P<0.01)。
結(jié)論Orexin-B能增加丘腦底核神經(jīng)元自發(fā)放電,抑制正常小鼠的運動行為,可能通過丘腦底核參與基底神經(jīng)節(jié)間接通路的調(diào)控運動。
[關(guān)鍵詞]?丘腦底核;食欲素;電生理學(xué);行為研究
[中圖分類號]?R338.8
[文獻(xiàn)標(biāo)志碼]?A
[文章編號]??2096-5532(2019)01-0025-04
EFFECT OF OREXIN-B IN THE SUBTHALAMIC NUCLEUS IN REGULATING MOTOR BEHAVIOR IN NORMAL MICE AND RELATED MECHANISM
LIU Yunhai, XUE Yan, CHEN Lei
(Department of Physiology and Pathophysiology, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of orexin-B in the subthalamic nucleus on motor behavior and neuronal spontaneous discharge in normal mice.
MethodsThe pole test, the open field test, and thein vivo extracellular electrophysiological recordings were used to observe the effect of orexin-B microinjection into the subthalamic nucleus on motor behavior and neuronal spontaneous discharge in mice.
ResultsIn the pole test, orexin-B microinjection into the bilateral subthalamic nucleus significantly increased the time to turn around (t=2.40,P<0.05) and the total time to climb down the pole (t=4.59,P<0.01). The open field test showed that orexin-B microinjection into the bilateral subthalamic nucleus significantly reduced the total distance travelled by the mice (t=3.14,P<0.01). A total of 11 neurons were recorded in the subthalamic nucleus of normal mice; micro-pressure injection of orexin-B significantly increased the neuronal discharge frequency of 7 out of the 11 neurons (t=4.96,P<0.01) by an average increase of (216.90±118.40)%, and there was a significant difference between this group and the normal saline group (Z=-2.72,P<0.01).
ConclusionOrexin-B can increase the spontaneous discharge of neurons in the subthalamic nuc-leus and inhibit the motor behavior of normal mice, suggesting that orexin-B can regulate the movement through the indirect pathway of basal ganglia which involves the subthalamic nucleus.
[KEY WORDS]subthalamic nucleus; orexin-B; electrophysiology; behavioral research
丘腦底核是基底神經(jīng)節(jié)重要的信息整合核團(tuán)和唯一的興奮性核團(tuán)[1],基底神經(jīng)節(jié)是錐體外系調(diào)節(jié)軀體運動的中心,其功能通路的任何部分出現(xiàn)異常,均會導(dǎo)致運動障礙性疾病,如亨廷頓舞蹈病和帕金森病(PD)等[2-4]。越來越多的研究結(jié)果表明,丘腦底核在運動控制和行為表現(xiàn)中發(fā)揮重要作用,其神經(jīng)元活動異常與PD的發(fā)病密切相關(guān)[5-6]。食欲肽(orexins)是由下丘腦中數(shù)量有限的orexin能神經(jīng)元產(chǎn)生[7],含有130個氨基酸的orexins前體經(jīng)水解產(chǎn)生orexin-A和orexin-B。Orexin-B主要通過作用于orexin-2(OX2)受體發(fā)揮作用[3]。Orexins參與調(diào)控睡眠覺醒、運動和學(xué)習(xí)記憶等多種生物學(xué)效應(yīng)[8]。有研究證實,丘腦底核表達(dá)OX2受體并直接接受來自下丘腦orexin能神經(jīng)元的纖維投射[9]。然而,丘腦底核orexin-B對小鼠運動行為的調(diào)控及神經(jīng)元自發(fā)放電的影響目前尚不清楚。因此,本研究應(yīng)用行為學(xué)測試方法以及電生理學(xué)技術(shù),探討丘腦底核orexin-B對正常小鼠運動行為的調(diào)控及神經(jīng)元自發(fā)放電的影響。
1?材料與方法
1.1?材料
1.1.1實驗動物?健康雄性C57BL/6小鼠,體質(zhì)量22~25 g,購自江蘇常州卡文斯實驗動物有限公司。小鼠飼養(yǎng)于室溫23~25 ℃、濕度50%~55%、12 h光照12 h黑暗晝夜交替的安靜環(huán)境中,自由飲水進(jìn)食,單籠飼養(yǎng)。小鼠實驗前飼養(yǎng)2周以適應(yīng)實驗環(huán)境。
1.1.2實驗藥品?Orexin-B購于Tocris公司,用無菌生理鹽水稀釋為0.1 μmol/L。
1.2?實驗方法
1.2.1實驗分組?27只正常小鼠隨機(jī)選擇其中5只用于電生理實驗,其余22只用于爬桿測試和曠場測試,各11只。實驗隨機(jī)分為兩組,對照組(5只)小鼠雙側(cè)丘腦底核注射生理鹽水0.1 μL,實驗組(6只)注射orexin-B溶液0.1 μL。
1.2.2腦立體定位及套管植入術(shù)?小鼠用80 g/L水合氯醛麻醉后,固定在腦立體定位儀上,切開頭皮,剝離骨膜,使顱骨前后囟位于同一水平面。根據(jù)小鼠腦立體定位圖譜,將不銹鋼套管(長度9.0 mm,內(nèi)徑0.6 mm,外徑0.8 mm)植入雙側(cè)丘腦底核(前囟后1.8 mm,旁開1.5 mm,深度4.5 mm),并用牙托粉固定。術(shù)后連續(xù)3 d肌肉注射青霉素(每天8萬單位)。待小鼠恢復(fù)3 d,進(jìn)行行為學(xué)測試?;謴?fù)期間進(jìn)行接觸撫摸以防止出現(xiàn)應(yīng)激現(xiàn)象。
1.2.3爬桿實驗?測試桿長度55 cm,直徑1 cm,桿頂固定一個直徑為2.5 cm的小木球,桿和木球周圍包裹紗布以增加摩擦力防止小鼠打滑摔落。小鼠注射藥物后,頭朝上置于桿頂部位置,測試并記錄小鼠轉(zhuǎn)頭時間和小鼠爬桿時間。轉(zhuǎn)頭時間是指從小鼠開始運動到頭朝下所用的時間;爬桿時間是指小鼠頭朝下后開始沿桿自然爬下到前爪觸地所用時間。測試前每只小鼠訓(xùn)練2次,正式測試進(jìn)行5次。
1.2.4曠場實驗?曠場行為測試室內(nèi)光照昏暗,溫度、濕度均與飼養(yǎng)環(huán)境相同。小鼠注射藥物后立即置于方形測試盒內(nèi)(26.5 cm×26.5 cm×35.5 cm),紅外線實時監(jiān)控15 min,記錄單位時間內(nèi)小鼠運動的總距離。
1.2.5在體細(xì)胞外電生理記錄?采用單細(xì)胞細(xì)胞外記錄的方法,觀察orexin-B對丘腦底核神經(jīng)元自發(fā)放電的影響。小鼠麻醉(200 g/L 烏拉坦)后固定在腦定位儀上,切開頭皮,剝離骨膜,使顱骨前后囟位于同一水平面。根據(jù)小鼠腦立體定位圖譜,定位丘腦底核(前囟后1.7~2.3 mm,旁開1.2~1.8 mm,深度4.1~4.8 mm)。實驗操作及記錄方法參照文獻(xiàn)方法[10]。
1.3?統(tǒng)計學(xué)分析
應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計學(xué)處理,計量資料數(shù)據(jù)采用[AKx-D]±s表示,多組數(shù)據(jù)間比較采用單因素方差分析,兩組數(shù)據(jù)比較采用t檢驗;計數(shù)資料比較采用Mann-Whitney U檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
2?結(jié)??果
2.1?丘腦底核注射orexin-B對小鼠爬桿行為影響
小鼠爬桿實驗中, 實驗組小鼠轉(zhuǎn)頭時間及爬桿時間均大于對照組,差異均有顯著性(t=2.40、4.59,P<0.05)。見表1。
2.2?丘腦底核注射orexin-B對小鼠曠場行為影響
小鼠曠場實驗中,實驗組小鼠在曠場中的運動總距離短于對照組,兩組比較差異有顯著意義(t=3.14,P<0.01)。見表1。
2.3?Orexin-B對丘腦底核神經(jīng)元放電頻率的影響
電生理實驗共記錄到11個丘腦底核放電神經(jīng)元,其平均放電頻率為(1.58±0.16)Hz。微壓力給予0.1 μmol/L的orexin-B后,可使其中7個神經(jīng)元放電頻率顯著增加(加藥前為(1.69±0.27) Hz,給予orexin-B后為(3.59±0.26) Hz),差異有統(tǒng)計學(xué)意義(t=4.96,P<0.01)。見圖1。其余4個神經(jīng)元的放電頻率沒有明顯改變(t=0.15,P>0.05)。對orexin-B有興奮效應(yīng)的7個丘腦底核神經(jīng)元,微壓力給予生理鹽水前后自發(fā)放電頻率分別為(1.54±0.38)、(1.52±0.36) Hz,差異無顯著意義(t=0.25,P>0.05)。微壓力給予orexin-B對丘腦底核神經(jīng)元的興奮效應(yīng)平均值為(216.90±118.40)%,與生理鹽水對照組細(xì)胞平均反應(yīng)率相比,差異有顯著性(Z=-2.72,P<0.01)。
3?討??論
基底神經(jīng)節(jié)是錐體外系調(diào)節(jié)軀體運動的中心,錐體外系主要通過大腦皮質(zhì)-基底神經(jīng)節(jié)-丘腦-大腦皮質(zhì)環(huán)路控制機(jī)體的運動行為。丘腦底核作為基底神經(jīng)節(jié)的中繼核團(tuán),在軀體運動等方面發(fā)揮重要作用[11]。在基底神經(jīng)節(jié)間接通路中,丘腦底核與紋狀體、蒼白球、黑質(zhì)等核團(tuán)共同調(diào)控機(jī)體運動,當(dāng)其中任一核團(tuán)出現(xiàn)異常,就會引起多種運動障礙性疾病,如PD等[2,4,12]。眾所周知,orexin-B是興奮性神經(jīng)肽,在基底神經(jīng)節(jié)的間接通路中,orexin-B作用于丘腦底核神經(jīng)元后,被興奮的丘腦底核神經(jīng)元發(fā)出興奮性谷氨酸能纖維至蒼白球內(nèi)側(cè)部和黑質(zhì)網(wǎng)狀帶,進(jìn)而增強(qiáng)發(fā)送到丘腦的γ-氨基丁酸能纖維的抑制效應(yīng),最終導(dǎo)致丘腦及皮質(zhì)活動減弱[13]。曠場實驗是判斷小鼠運動功能和焦慮樣情緒的常見方法,其中通過統(tǒng)計單位時間內(nèi)運動總距離可以反映被測試鼠的水平運動情況和自發(fā)活動能力[14-17]。爬桿實驗是評價運動障礙性疾病模型小鼠的經(jīng)典行為學(xué)檢測方法,廣泛應(yīng)用于PD的研究,通過測定被測試鼠轉(zhuǎn)頭時間可以評價其運動協(xié)調(diào)能力,測定爬桿時間可以評價其運動遲緩等方面[18-20]。本實驗行為學(xué)結(jié)果顯示,雙側(cè)丘腦底核注射orexin-B的小鼠在曠場實驗中自發(fā)活動明顯減少,在爬桿實驗中其運動協(xié)調(diào)能力也顯著下降,提示丘腦底核給予外源性orexin-B可以調(diào)控小鼠的運動行為。進(jìn)一步進(jìn)行的電生理實驗結(jié)果顯示,orexin-B可提高丘腦底核神經(jīng)元的興奮性,在單細(xì)胞水平為丘腦底核orexin-B對運動行為的調(diào)控提供了電生理學(xué)基礎(chǔ)。本實驗結(jié)果為下一步研究丘腦底核orexin-B在PD模型小鼠運動障礙中的作用提供了實驗依據(jù)。
PD是一種因基底神經(jīng)節(jié)功能異常所致的神經(jīng)退行性疾病,具有靜止性震顫、運動遲緩、動作減少、姿勢平衡障礙等多種運動癥狀[21]。有研究報道,PD晚期病人腦脊液orexin水平降低[22]。然而另有報道,6-羥基多巴胺(6-OHDA)誘導(dǎo)的PD模型大鼠腦脊液中orexin-B水平?jīng)]有明顯改變[23]。本實驗結(jié)果顯示,丘腦底核給予外源性orexin-B能明顯抑制正常小鼠的運動行為。那么外源性orexin-B可否通過丘腦底核加重PD模型小鼠的運動障礙,使用OX2受體阻斷劑阻斷丘腦底核內(nèi)源性orexin-B后,可否改善PD運動癥狀以及其受體機(jī)制,有待本課題組進(jìn)一步研究。
綜上所述,orexin-B能夠興奮丘腦底核神經(jīng)元,抑制正常小鼠的運動行為,可能通過丘腦底核參與的基底神經(jīng)節(jié)間接通路調(diào)控運動。這為PD相關(guān)運動癥狀的研究與治療提供了方向與理論依據(jù)。
[參考文獻(xiàn)]
[1]TEPPER J M, ABERCROMBIE E D, BOLAM J P, et al.
Basal ganglia macrocircuits [J]. ?Prog Brain Res, 2007,160:3-7.
[2]CAZORLA M, KANG U J, KELLENDONK C. Balancing the basal ganglia circuitry: a possible new role for dopamine D2 receptors in health and disease[J]. ?Movement Disorders, 2015,30(7):895-903.
[3]SAKURAI T, AMEMIYA A, ISHII M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. ?Cell, 1998,92(4):573-585.
[4]AHN S, ZAUBER S E, WORTH R M, et al. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinsons disease[J]. ?European Journal of Neuroscience, 2015,42(5):2164-2171.
[5]DEGOS B, DENIAU J M, CHAVEZ M, et al. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat[J]. ?PLoS One, 2013,8(12):e83608.
[6]ARISTIETA A, AZKONA G, SAGARDUY A A, et al. The role of the subthalamic nucleus in L-DOPA induced dyskinesia in 6-hydroxydopamine lesioned rats[J]. ?PLoS One, 2012,7(8): e42652.
[7]DE LECEA L, KILDUFF T S, PEYRON C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 1998,95(1):322-327.
[8]GAO Heren, ZHUANG Qianxing, ZHANG Yongxiao, et al. Orexin directly enhances the excitability of globus pallidus internus neurons in rat by co-activating OX1 and OX2 receptors[J]. ?Neuroscience Bulletin, 2017,33(4):365-372.
[9]SAKURAI T. The role of orexin in motivated behaviours[J]. ?Nature Reviews Neuroscience, 2014,15(11):719-731.
[10]王英,薛雁,刁匯玲,等. Orexin-B對正常大鼠蒼白球神經(jīng)元自發(fā)放電及運動行為的影響[J]. ?青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2018,54(1):14-16.
[11]STARR E R, IMBERY J F, COLLINS S A. Subthalamic nucleus cell-specific expression of nicotinic acetylcholine receptors uncovers novel basal ganglia microcircuits[J]. Journal of ?Neurosci, 2015,35(30):10645-10647.
[12]NOVOTNY M, RUSZ J, CMEJLA R, et al. Hypernasality associated with basal ganglia dysfunction: evidence from Parkinsons disease and Huntingtons disease[J]. ?Peer J, 2016,4:e2530.
[13]MORITA M, HIKIDA T. Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism[J]. ?Nihon Shinkei Seishin Yakurigaku Zasshi, 2015,35(5/6):107-111.
[14]LAUREN R, HARMS, DARRYL W, et al. Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice[J]. ?Behavioural Brain Research, 2008,187(2):343-350.
[15]孫世光,王婧婧,李自發(fā),等. 曠場實驗:昆明小鼠行為學(xué)評價方法的重測信度檢驗[J]. ?中華行為醫(yī)學(xué)與腦科學(xué)雜志, 2010,19(12):1093-1095.
[16]DR O R, KIM Y, CHOI E J, et al. Antidepressant-like effects of vaccinium bracteatum in chronic restraint stress mice:functional actions and mechanism explorations[J]. ?The American Journal of Chinese Medicine, 2018,46(2):357-387.
[17]OH D R, KIM Y, JO A, et al. Sedative and hypnotic effects of Vaccinium bracteatum Thunb. through the regulation of serotonegic and GABA(A)-ergic systems: involvement of 5-HT1A receptor agonistic activity[J]. ?Biomedicine & Pharmacotherapy, 2019,109:2218-2227.
[18]MATSUURA K, KABUTO H, MAKINO H, et al. Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion[J]. ?Journal of Neuroscience Methods, 1997,73(1):45-48.
[19]LIU M F, XUE Y, LIU C, et al. Orexin-A exerts neuroprotective effects via OX1R in Parkinsons disease[J]. ?Frontiers in Neuroscience, 2018,12.https://doi.org/10.3389/fnins. 2018.00835.
[20]KIM D, KWON S, JEON H, et al. Proteomic change by Korean red Ginseng in the substantia nigra of a Parkinsons di-sease mouse model[J]. ?Journal of Ginseng Research, 2018,42(4):429-435.
[21]KAIA L V, LANG A E. Parkinsons disease[J]. ?Lancet, 2015,386(9996):896-912.
[22]CLUDERAY J E, HARRISON D C, HERVIEU G J. Protein distribution of the orexin-2 receptor in the rat central nervous system[J]. ?Regulatory Peptides, 2002,104(1/3, SI):131-144.
[23]CUI Longbiao, LI Bowei, JIN Xiaohang, et al. Progressive changes of orexin system in a rat model of 6-hydroxydopamine-induced Parkinsons disease[J]. ?Neuroscience Bulletin, 2010,26(5):381-387.