杜希恂 姜宏
[摘要]?帕金森病(PD)是一種與年齡密切相關(guān)的疾病,隨著老齡化社會(huì)的到來(lái),PD患病率在全球呈現(xiàn)顯著增高態(tài)勢(shì)。但到目前為止,PD的病因尚未明確,現(xiàn)有的治療方法及手段也具有其局限性及副作用。本文綜述了PD在病因、發(fā)病機(jī)制、非運(yùn)動(dòng)癥狀及治療領(lǐng)域的研究進(jìn)展,以期為PD的機(jī)制探索和個(gè)體化臨床治療提供理論基礎(chǔ)。
[關(guān)鍵詞]?帕金森病;神經(jīng)變性疾病;非運(yùn)動(dòng)癥狀;α突觸核蛋白;治療;綜述
[中圖分類號(hào)]?R742.5
[文獻(xiàn)標(biāo)志碼]?A
[文章編號(hào)]??2096-5532(2019)01-0001-06
帕金森?。≒D)是一種常見(jiàn)的神經(jīng)系統(tǒng)退行性疾病,以靜止性震顫、肌強(qiáng)直、運(yùn)動(dòng)遲緩等運(yùn)動(dòng)癥狀和嗅覺(jué)障礙、睡眠障礙、心血管功能異常、頑固性便秘等非運(yùn)動(dòng)癥狀為主要臨床表現(xiàn)。PD是第二大神經(jīng)退行性疾病,發(fā)病率逐年增長(zhǎng),預(yù)計(jì)到2030年我國(guó)PD患病人數(shù)將達(dá)494萬(wàn),約占全球半數(shù),給家庭和社會(huì)帶來(lái)了沉重的負(fù)擔(dān)。PD的主要病理特征是黑質(zhì)多巴胺能神經(jīng)元選擇性死亡及殘存的多巴胺能神經(jīng)元內(nèi)形成路易小體,后者主要成分是alpha-突觸核蛋白、泛素、神經(jīng)絲蛋白等。但到目前為止,PD的病因尚未明確,現(xiàn)有的治療方法及手段也具有其局限性及副作用。本文將從PD的病因及發(fā)病機(jī)制、非運(yùn)動(dòng)癥狀和治療等3個(gè)方面,對(duì)目前的研究進(jìn)展進(jìn)行綜述。
1?PD的病因及發(fā)病機(jī)制
PD的病因尚不清楚,可能與年齡老化、環(huán)境因素以及基因之間復(fù)雜的相互作用有關(guān)[1-2]。而具體發(fā)病機(jī)制與蛋白質(zhì)異常聚集、線粒體功能障礙、炎癥等因素有關(guān)。
1.1?PD的病因
流行病學(xué)調(diào)查結(jié)果表明,PD全人群患病率約為0.3%,其中,65歲以上人群的發(fā)病率為1%~2%,而85歲以上人群則為3%~5%[3]。雖然大多數(shù)的PD病人屬于散發(fā)型,但是仍有10%~15%的病人屬于遺傳型。已經(jīng)有19個(gè)致病基因被證實(shí)與PD相關(guān),它們?cè)诒硇?、致病年齡和遺傳方式方面存在一定程度的差異[4]。除了致病突變,全基因組關(guān)聯(lián)分析(GWAS)也證實(shí)這些基因,如編碼alpha-突觸核蛋白(SNCA)基因、微管相關(guān)蛋白tau(MAPT)基因、富亮氨酸重復(fù)激酶2(LRRK2)基因、葡萄糖神經(jīng)酰胺酶β(GBA)基因的常見(jiàn)遺傳變異,也能夠增加PD的易感性[5]。
同時(shí),大量研究報(bào)道證實(shí),環(huán)境中的多種因素,如農(nóng)藥、鐵離子、錳離子等與PD的發(fā)病相關(guān)。除草劑、殺蟲劑等能夠顯著增加PD的患病風(fēng)險(xiǎn),而經(jīng)典的制備PD動(dòng)物模型的神經(jīng)毒素1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP),正是除草劑的主要成分之一[6]。此外,金屬離子鐵也被證實(shí)能夠增加PD的發(fā)病風(fēng)險(xiǎn),流行病學(xué)證據(jù)已顯示職業(yè)性接觸或攝入高鐵均能增加PD發(fā)病風(fēng)險(xiǎn)[7-8]。前瞻性研究結(jié)果也表明,食物中攝入的非血紅蛋白鐵可以導(dǎo)致PD的發(fā)病風(fēng)險(xiǎn)增加30%[9]。鐵在黑質(zhì)區(qū)的選擇性聚集也是誘導(dǎo)PD發(fā)病的重要原因之一。尸檢報(bào)告指出,PD病人黑質(zhì)致密部殘存的多巴胺能神經(jīng)元內(nèi)有鐵沉積[10-11]。經(jīng)顱彩色超聲報(bào)告也指出,PD病人腦內(nèi)黑質(zhì)區(qū)鐵水平的增高要明顯早于其臨床癥狀的出現(xiàn)[12-13]。異常聚集的鐵不但可以通過(guò)Fenton反應(yīng)進(jìn)一步生成羥自由基(OH·),誘導(dǎo)神經(jīng)元損傷,還能夠直接與alpha-突觸核蛋白結(jié)合,促進(jìn)其聚集[14-15]。同時(shí),金屬離子錳、鎂、銅、鋅等亦被證實(shí)參與了PD的發(fā)病過(guò)程[16-20]。
1.2?PD的發(fā)病機(jī)制
1.2.1蛋白質(zhì)異常聚集?PD病人黑質(zhì)內(nèi)殘存的多巴胺能神經(jīng)元內(nèi)普遍存在由聚集的alpha-突觸核蛋白形成的路易小體[21]。alpha-突觸核蛋白是一種可溶性的小分子蛋白,在生理?xiàng)l件下,主要存在于神經(jīng)元突觸前末梢內(nèi),不具有神經(jīng)毒性作用。但在某些因素作用下,如氧化應(yīng)激、鐵離子或遺傳因素等,能夠引起alpha-突觸核蛋白的錯(cuò)誤折疊,當(dāng)alpha-突觸核蛋白由可溶單體結(jié)合為寡聚體或者是不可溶的淀粉樣沉積時(shí),就會(huì)通過(guò)改變神經(jīng)元膜電位以及神經(jīng)元內(nèi)氧化應(yīng)激狀態(tài)而最終導(dǎo)致神經(jīng)元死亡[22-24]。大量研究表明,錯(cuò)誤折疊的alpha-突觸核蛋白能夠像朊病毒一樣,通過(guò)神經(jīng)網(wǎng)絡(luò)在不同細(xì)胞之間傳播,并且能夠在新的宿主細(xì)胞內(nèi)誘導(dǎo)alpha-突觸核蛋白發(fā)生聚集[25-28]?;诋惓>奂腶lpha-突觸核蛋白的分布,有人提出了PD腦內(nèi)病理進(jìn)展的六級(jí)分級(jí)假說(shuō),認(rèn)為PD的發(fā)病部位首先在延髓,最先出現(xiàn)alpha-突觸核蛋白的異常聚集,進(jìn)而延伸累及藍(lán)斑、延髓上端、腦橋、黑質(zhì),最后彌漫整個(gè)大腦皮質(zhì)[25,29]。
1.2.2線粒體功能障礙?線粒體功能障礙也是引起PD黑質(zhì)多巴胺能神經(jīng)元損傷的原因之一[30-32]。DJ-1(PARK 7)、PINK1(PARK 6)和parkin(PARK 2)功能缺失突變能夠?qū)е鲁H旧w隱性、早發(fā)型PD的發(fā)生,而這3種基因編碼的產(chǎn)物都直接參與了線粒體的生物學(xué)活動(dòng),并能夠影響線粒體的正常功能[33-35]。而與常染色體顯性遺傳性PD相關(guān)的基因發(fā)生突變,包括SNCA(PARK 1)、LRRK2(PARK 8)和CHCHD2,也都能夠?qū)е戮€粒體功能障礙[32,36]。此外,魚藤酮作為一種經(jīng)典的制備PD模型的毒素,主要是通過(guò)抑制線粒體復(fù)合物Ⅰ的功能進(jìn)而引起神經(jīng)元的損傷[37]。尸檢報(bào)告也指出,PD病人黑質(zhì)區(qū)線粒體復(fù)合物Ⅰ的功能降低[38]。因此,在PD中,線粒體的損傷和氧化應(yīng)激之間形成惡性循環(huán)而引起生物能量危機(jī),最終導(dǎo)致多巴胺能神經(jīng)元死亡[32]。
1.2.3炎癥?炎癥也在多巴胺能神經(jīng)元的選擇性損傷和PD的發(fā)病機(jī)制中發(fā)揮著極為重要的作用。尸檢報(bào)告指出,PD病人腦內(nèi)黑質(zhì)區(qū)有小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的激活,黑質(zhì)-紋狀體系統(tǒng)內(nèi)的促炎性因子和趨化因子的表達(dá)也顯著增加[39],從而啟動(dòng)或加劇神經(jīng)元的損傷,而神經(jīng)元的損傷又會(huì)進(jìn)一步激活小膠質(zhì)細(xì)胞,最終形成一個(gè)惡性循環(huán)[40]。星形膠質(zhì)細(xì)胞還能將神經(jīng)元釋放的alpha-突觸核蛋白吞入,形成包涵體,促進(jìn)炎癥反應(yīng)的發(fā)生[41]。臨床研究表明,PD病人腦脊液中C-反應(yīng)蛋白等炎癥標(biāo)志物水平的改變與PD病人的抑郁、認(rèn)知障礙等非運(yùn)動(dòng)癥狀嚴(yán)重程度密切相關(guān)[42]。而動(dòng)物實(shí)驗(yàn)結(jié)果表明,在炎癥早期,應(yīng)用COX-2和促炎性細(xì)胞因子抑制劑可有效地抑制多巴胺能神經(jīng)元的損傷[43]。研究也證實(shí),腸道慢性炎癥也能夠促進(jìn)PD的發(fā)生進(jìn)程[44]。
2?PD的非運(yùn)動(dòng)癥狀
PD的運(yùn)動(dòng)癥狀包括靜止性震顫、肌強(qiáng)直、運(yùn)動(dòng)遲緩等,這方面的相關(guān)研究已很多,在這里不再贅述。而近年來(lái)的研究表明,在出現(xiàn)運(yùn)動(dòng)癥狀之前,絕大多數(shù)的PD病人會(huì)出現(xiàn)一系列的非運(yùn)動(dòng)癥狀,包括嗅覺(jué)障礙、睡眠障礙、心血管功能異常以及頑固性便秘等[45-46]。所以,隨著研究的進(jìn)一步深入,PD非運(yùn)動(dòng)癥狀及其在疾病早期診斷中的重要性越來(lái)越受到研究者的廣泛關(guān)注。
2.1?嗅覺(jué)障礙
嗅覺(jué)障礙已被證實(shí)是PD病人最早出現(xiàn)的非運(yùn)動(dòng)癥狀。大約85%的PD病人都會(huì)發(fā)生,50%左右的PD病人在運(yùn)動(dòng)癥狀出現(xiàn)之前就會(huì)發(fā)生嗅覺(jué)的減退[47]。嗅覺(jué)障礙既可以發(fā)生在運(yùn)動(dòng)癥狀出現(xiàn)之前,也可以發(fā)生在PD運(yùn)動(dòng)癥狀出現(xiàn)期間,有的病人甚至在其運(yùn)動(dòng)癥狀出現(xiàn)10年以后,才表現(xiàn)出嗅覺(jué)障礙。此外,嗅覺(jué)障礙與PD的嚴(yán)重程度以及疾病的發(fā)展速度密切相關(guān),有研究指出,若PD病人出現(xiàn)較為嚴(yán)重的嗅覺(jué)功能減退,則提示疾病發(fā)展為帕金森病癡呆(PDD)的風(fēng)險(xiǎn)性顯著增加[48]。
2.2?睡眠障礙
睡眠障礙也是PD常見(jiàn)的一種非運(yùn)動(dòng)癥狀,大約95%的PD病人出現(xiàn)睡眠障礙。睡眠障礙主要包括失眠、白天嗜睡、快速眼動(dòng)期睡眠行為障礙(RBD)及不寧腿綜合征等。其中,50%~74%的PD病人存在白天嗜睡,25%~50%的PD病人會(huì)發(fā)生RBD,白天嗜睡及RBD均可在PD的運(yùn)動(dòng)癥狀之前出現(xiàn)。而對(duì)原發(fā)性RBD病人的長(zhǎng)期隨訪研究表明,約85%的RBD會(huì)發(fā)展為PD或者其他神經(jīng)退行性疾病,提示RBD可能是PD的臨床前癥狀[49]。此外,也有研究報(bào)道,發(fā)生白天嗜睡的人群與未發(fā)生者相比,前者PD發(fā)病風(fēng)險(xiǎn)是后者的3.3倍,這也提示,白天嗜睡癥狀在對(duì)PD高危人群的識(shí)別中具有一定的價(jià)值[50]。
2.3?心血管功能異常
有80%以上的PD病人會(huì)在運(yùn)動(dòng)癥狀出現(xiàn)之前發(fā)生心血管的功能異常。例如,血壓變化異常,其中包括直立性低血壓、臥位高血壓及24 h血壓波動(dòng)大等,而在PD病人中最常見(jiàn)的就是直立性低血壓[51]。大約50%的PD病人,尤其是晚期病人,會(huì)相應(yīng)出現(xiàn)臥位高血壓[52-53]。也有文獻(xiàn)報(bào)道,與正常人相比,PD病人夜間血壓波動(dòng)較大[54]。此外,早期PD病人會(huì)出現(xiàn)壓力感受性反射敏感性下降和心血管系統(tǒng)自主神經(jīng)功能障礙[55]。本實(shí)驗(yàn)室前期研究顯示,這些非運(yùn)動(dòng)癥狀的出現(xiàn)與延髓心血管中樞兒茶酚胺能神經(jīng)元內(nèi)alpha-突觸核蛋白的過(guò)表達(dá)有關(guān)[56]。
2.4?胃腸道功能障礙
胃腸道功能障礙也是PD非運(yùn)動(dòng)癥狀之一,大約90%的PD病人運(yùn)動(dòng)癥狀出現(xiàn)之前會(huì)出現(xiàn)頑固性便秘,這種非運(yùn)動(dòng)癥狀的出現(xiàn)可以比運(yùn)動(dòng)癥狀早出現(xiàn)10~17年[57]。此外,流行病學(xué)調(diào)查發(fā)現(xiàn),與非便秘人群相比,頑固性便秘人群發(fā)生PD的風(fēng)險(xiǎn)大大增加[58]。本實(shí)驗(yàn)室前期對(duì)PD轉(zhuǎn)基因小鼠的研究顯示,在運(yùn)動(dòng)癥狀出現(xiàn)之前即出現(xiàn)結(jié)腸動(dòng)力的下降[59],而結(jié)腸功能紊亂與腦干中alpha-突觸核蛋白的沉積有關(guān)。除了頑固性便秘,胃排空延遲也是常見(jiàn)的胃腸道功能障礙癥狀之一,在PD病人中的發(fā)生率高達(dá)70%~100%[60]。在諸多調(diào)節(jié)胃腸運(yùn)動(dòng)的激素中,ghrelin的作用又恰巧與胃動(dòng)力緊密相關(guān),本實(shí)驗(yàn)室發(fā)現(xiàn)早期PD病人血漿中g(shù)hrelin水平降低[61]。而在運(yùn)動(dòng)癥狀出現(xiàn)之前,應(yīng)用ghrelin進(jìn)行早期干預(yù),可以延緩PD的進(jìn)程。
3?PD的治療進(jìn)展
目前,關(guān)于PD的治療策略主要是解決多巴胺能神經(jīng)元丟失引起的多巴胺減少及其功能喪失的問(wèn)題,但這些治療的效果受到副作用和缺乏長(zhǎng)期療效的限制。近年來(lái),基于對(duì)PD發(fā)病機(jī)制的進(jìn)一步認(rèn)識(shí),科研及臨床工作者已經(jīng)在嘗試一些創(chuàng)新療法[62]。
3.1?藥物治療
3.1.1左旋多巴(L-DOPA)?目前,國(guó)內(nèi)外應(yīng)用較多的PD治療藥物包括L-DOPA、多巴胺激動(dòng)劑、抗膽堿能激動(dòng)劑等。其中, L-DOPA是應(yīng)用最為廣泛、最為有效的能夠改善PD運(yùn)動(dòng)癥狀的藥物[63]。但隨著PD病人服藥時(shí)間延長(zhǎng),藥物療效的顯著下降以及由此引起的臨床上常見(jiàn)的“開關(guān)現(xiàn)象”等相關(guān)藥物副作用也慢慢顯現(xiàn)出來(lái)[64]。
3.1.2阿撲嗎啡?阿撲嗎啡是多巴胺受體激動(dòng)劑,最新的研究報(bào)道指出,皮下注射阿撲嗎啡能夠顯著改善晚期PD病人運(yùn)動(dòng)癥狀的波動(dòng),減少晚期PD病人的“關(guān)”期時(shí)間[65]。
3.1.3谷胱甘肽替代治療?早期PD病人,腦內(nèi)還原型谷胱甘肽水平已開始降低[66]。有研究證實(shí)還原型谷胱甘肽能夠參與清除活性氧,對(duì)神經(jīng)元起到保護(hù)作用。因此,谷胱甘肽替代治療也引起了PD研究者的興趣。但是谷胱甘肽替代療法最大的挑戰(zhàn)是如何將有效濃度的谷胱甘肽運(yùn)送到大腦,因?yàn)檫@種三肽在血漿中的半衰期短,而且人類對(duì)其口服利用率低。有報(bào)道指出,鼻腔吸入可能是一種潛在的有效提高谷胱甘肽利用率的給藥方式[67]。
3.1.4鐵離子螯合劑?越來(lái)越多的研究表明,鐵離子螯合劑在PD中具有神經(jīng)保護(hù)作用[68-69]。22例早期PD病人接受不同劑量鐵離子螯合劑——去鐵酮(DFO)治療6個(gè)月后,所有病人腦內(nèi)齒狀核和尾狀核區(qū)域內(nèi)鐵沉積減少,3例病人腦內(nèi)黑質(zhì)區(qū)鐵沉積減少,高劑量DFO治療組的運(yùn)動(dòng)癥狀有所改善[70]。隨后,在一項(xiàng)為期12個(gè)月的臨床試驗(yàn)中,40例早期PD病人在接受多巴胺藥物治療的同時(shí),一部分病人也接受了DFO的治療。結(jié)果表明,接受DFO治療的病人腦內(nèi)黑質(zhì)區(qū)鐵的聚集和運(yùn)動(dòng)能力都顯著改善[71]。
3.1.5胰高血糖素樣肽1(GLP1)受體激動(dòng)劑?流行病學(xué)和臨床研究結(jié)果顯示,PD和2型糖尿?。═2DM)同樣作為年齡相關(guān)的慢性疾病可能具有共同的潛在的病理機(jī)制[72]。在兩種疾病早期,病人都會(huì)出現(xiàn)葡萄糖和能量代謝方面的調(diào)節(jié)紊亂[73]。艾塞那肽(GLP1受體激動(dòng)劑)是一種已經(jīng)應(yīng)用于臨床的T2DM治療藥物,具有抗炎癥、抗氧化,通過(guò)促進(jìn)胰島素和抑制糖原釋放來(lái)調(diào)節(jié)血糖水平的作用[74]。初步臨床試驗(yàn)表明,艾塞那肽對(duì)于PD病人具有一定的療效[75],但其對(duì)PD病人生活質(zhì)量、抑郁、運(yùn)動(dòng)能力、認(rèn)知能力等指標(biāo)的療效有待于進(jìn)一步證實(shí)。
3.2?Alpha-突觸核蛋白的靶向免疫治療
PRX002是一種人源性的免疫球蛋白G1單克隆抗體,能直接作用于alpha-突觸核蛋白的羧基端,抑制alpha-突觸核蛋白的聚集。Ⅰ期臨床試驗(yàn)已證實(shí),PRX002能夠進(jìn)入中樞神經(jīng)系統(tǒng),降低血清中的alpha-突觸核蛋白水平[76]。此外,在轉(zhuǎn)基因動(dòng)物模型中,alpha-突觸核蛋白模擬肽疫苗也被證實(shí)能夠有效降低神經(jīng)元軸突和突觸中的alpha-突觸核蛋白寡聚體水平,進(jìn)而減少多巴胺能神經(jīng)元的死亡[77]。除免疫療法以外,阻止或降低alpha-突觸核蛋白的聚集也是策略之一。NPT200-11已被證實(shí)能夠通過(guò)阻斷alpha-突觸核蛋白與細(xì)胞膜的相互作用來(lái)減少寡聚體的形成[78]。
3.3?基因治療
ProSavin是一種病毒載體,它能夠?qū)⒍喟桶泛铣蛇^(guò)程中的三大關(guān)鍵酶運(yùn)送到腦內(nèi)[79]。在MPTP制備的獼猴PD模型中,這種三基因療法被證實(shí)能夠顯著改善PD動(dòng)物的運(yùn)動(dòng)癥狀,部分重塑正常紋狀體內(nèi)多巴胺水平[80]。臨床試驗(yàn)中,在接受ProSavin注射治療后的6~12個(gè)月內(nèi),PD病人的運(yùn)動(dòng)功能呈現(xiàn)顯著的劑量依賴性的提高[80]。另一種病毒載體VY-AADC,能夠在晚期PD病人黑質(zhì)紋狀體通路中重塑多巴胺脫羧酶的表達(dá),從而增強(qiáng)L-DOPA向多巴胺的轉(zhuǎn)換,顯著改善PD病人的運(yùn)動(dòng)協(xié)調(diào)能力[81-82]。
3.4?外科治療
到目前為止,全球已經(jīng)有超過(guò)10萬(wàn)例PD病人接受丘腦底核腦深部電刺激(DBS)手術(shù),手術(shù)后PD癥狀得到了有效緩解。因此,DBS也被認(rèn)為是治療PD最有前途的外科治療方法。早期的研究指出,DBS手術(shù)可以改善PD病人的運(yùn)動(dòng)評(píng)分以及減少治療藥物的劑量[83]。近年來(lái)的研究表明,DBS也可以改善PD的非運(yùn)動(dòng)癥狀,例如,改善胃腸功能障礙等[84]。但是,PD病人臨床表現(xiàn)具有異質(zhì)性,因此,針對(duì)不同亞型選擇刺激位點(diǎn)及刺激模式仍需深入研究。
4?結(jié)語(yǔ)
PD的發(fā)現(xiàn),距今已有200余年的歷史,經(jīng)過(guò)科研和臨床工作者的不懈努力,人們對(duì)于PD的發(fā)病機(jī)制、非運(yùn)動(dòng)癥狀及治療等方面的認(rèn)識(shí)在不斷加深。但到目前為止,PD的臨床診斷更多的是依靠運(yùn)動(dòng)癥狀,而此時(shí)腦內(nèi)黑質(zhì)多巴胺能神經(jīng)元的損傷程度已達(dá)到60%~80%。Braak分級(jí)也指出,黑質(zhì)病變已經(jīng)是PD發(fā)生的中期或中晚期。因此,基于運(yùn)動(dòng)癥狀的診斷所取得的治療效果甚微。但是,在PD運(yùn)動(dòng)癥狀出現(xiàn)之前的幾到十幾年的時(shí)間,會(huì)出現(xiàn)多種非運(yùn)動(dòng)癥狀,這就為PD的早期診斷及治療提供了重要的時(shí)間窗。因此,明確PD早期診斷的參考指標(biāo),針對(duì)PD高危人群研發(fā)靈敏度更高的生物學(xué)標(biāo)記物及分析技術(shù),勢(shì)必成為PD領(lǐng)域發(fā)展的主要研究方向。
[參考文獻(xiàn)]
[1]LESAGE S, BRICE A. Parkinsons disease: from monogenic forms to genetic susceptibility factors[J]. ?Hum Mol Genet, 2009,18(R1):R48-59.
[2]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. ?Nat Rev Neurosci, 2017,18(4):251-259.
[3]DE LAU L M, BRETELER M M. Epidemiology of Parkinsons disease[J]. ?Lancet Neurol, 2006,5(6):525-535.
[4]DEL REY N L, QUIROGA-VARELA A, GARBAYO E, et al. Advances in Parkinsons disease: 200 years later[J]. ?Front Neuroanat, 2018,12:113.
[5]LILL C M. Genetics of Parkinsons disease[J]. ?Mol Cell Probes, 2016,30(6):386-396.
[6]ASCHERIO A, SCHWARZSCHILD M A. The epidemiology of Parkinsons disease: risk factors and prevention[J]. ?Lancet Neurol, 2016,15(12):1257-1272.
[7]GORELL J M, JOHNSON C C, RYBICKI B A, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinsons disease[J]. ?Neurotoxico-logy, 1999,20(2/3):239-247.
[8]POWERS K M, SMITH-WELLER T, FRANKLIN G M, et al. Parkinsons disease risks associated with dietary iron, manganese, and other nutrient intakes[J]. ?Neurology, 2003,60(11):1761-1766.
[9]LOGROSCINO G, GAO X, CHEN H, et al. Dietary iron in-take and risk of Parkinsons disease[J]. ?Am J Epidemiol, 2008,168(12):1381-1388.
[10]REIMAO S, FERREIRA S, NUNES R G, et al. Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinsons disease[J]. ?Eur J Neurol, 2016,23(2):368-374.
[11]LANGLEY J, HUDDLESTON D E, MERRITT M, et al. Diffusion tensor imaging of the substantia nigra in Parkinsons disease revisited[J]. ?Hum Brain Mapp, 2016,37(7):2547-2556.
[12]BECKER G, SEUFERT J, BOGDAHN U, et al. Degeneration of substantia nigra in chronic Parkinsons disease visua-lized by transcranial color-coded real-time sonography[J]. ?Neurology, 1995,45(1):182-184.
[13]SUBRAMANIAN T, LIEU C A, GUTTALU K, et al. Detection of MPTP-induced substantia nigra hyperechogenicity in Rhesus monkeys by transcranial ultrasound[J]. ?Ultrasound Med Biol, 2010,36(4):604-609.
[14]OSTREROVA-GOLTS N, PETRUCELLI L, HARDY J, et al. The A53T alpha-synuclein mutation increases iron-depen-dent aggregation and toxicity[J]. ?J Neurosci, 2000,20(16):6048-6054.
[15]FEBBRARO F, ANDERSEN K J, SANCHEZ-GUAJARDO V, et al. Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkin-sons model[J]. ?Exp Neurol, 2013,247:45-58.
[16]TONG Y, YANG H, TIAN X, et al. High manganese, a risk for Alzheimers disease: high manganese induces amyloid-beta related cognitive impairment[J]. ?J Alzheimers Dis, 2014,42(3):865-878.
[17]GUILARTE T R. APLP1, Alzheimers-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates[J]. ?Neurotoxicology, 2010,31(5):572-574.
[18]MURAKAMI S, MIYAZAKI I, SOGAWA N, et al. Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in Parkinsonian mice[J]. ?Neurotox Res, 2014,26(3):285-298.
[19]HASHIMOTO T, NISHI K, NAGASAO J, et al. Magne-sium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons[J]. ?Brain Res, 2008,1197:143-151.
[20]ALTSCHULER E. Aluminum-containing antacids as a cause of idiopathic Parkinsons disease[J]. ?Med Hypotheses, 1999,53(1):22-23.
[21]GOEDERT M, SPILLANTINI M G, DEL TREDICI K, et al. 100 years of Lewy pathology[J]. ?Nat Rev Neurol, 2013,9(1):13-24.
[22]ROBERTS H L, BROWN D R. Seeking a mechanism for the toxicity of oligomeric alpha-synuclein[J]. ?Biomolecules, 2015,5(2):282-305.
[23]ILJINA M, GARCIA G A, HORROCKS M H, et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading[J]. ?Proc Natl Acad Sci USA, 2016,113(9):E1206-1215.
[24]SURMEIER D J. Determinants of dopaminergic neuron loss in Parkinsons disease[J]. ?FEBS J, 2018,285(19):3657-3668.
[25]BRAAK H, GHEBREMEDHIN E, RUB U, et al. Stages in the development of Parkinsons disease-related pathology[J]. ?Cell Tissue Res, 2004,318(1):121-134.
[26]HAWKES C H, DEL TREDICI K, BRAAK H. Parkinsons disease: a dual-hit hypothesis[J]. ?Neuropathol Appl Neuro-biol, 2007,33(6):599-614.
[27]LI J Y, ENGLUND E, HOLTON J L, et al. Lewy bodies in grafted neurons in subjects with Parkinsons disease suggest host-to-graft disease propagation[J]. ?Nat Med, 2008,14(5):501-503.
[28]KORDOWER J H, CHU Y, HAUSER R A, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinsons disease[J]. ?Nat Med, 2008,14(5):504-506.
[29]DEL TREDICI K, BRAAK H. Review: Sporadic Parkinsons disease: development and distribution of alpha-synuclein pathology[J]. ?Neuropathol Appl Neurobiol, 2016,42(1):33-50.
[30]DAUER W, PRZEDBORSKI S. Parkinsons disease: mechanisms and models[J]. ?Neuron, 2003,39(6):889-909.
[31]SCHAPIRA A H. Mitochondrial pathology in Parkinsons di-sease[J]. ?Mt Sinai J Med, 2011,78(6):872-881.
[32]HAELTERMAN N A, YOON W H, SANDOVAL H, et al. A mitocentric view of Parkinsons disease[J]. ?Annu Rev Neurosci, 2014,37:137-159.
[33]BEILINA A, COOKSON M R. Genes associated with Parkinsons disease: regulation of autophagy and beyond[J]. ?J Neurochem, 2016,139(Suppl 1):91-107.
[34]COOKSON M R. DJ-1, PINK1, and their effects on mitochondrial pathways[J]. ?Mov Disord, 2010,25(Suppl 1):S44-48.
[35]HEO J Y, PARK J H, KIM S J, et al. DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex Ⅰ assembly[J]. ?PLoS One, 2012,7(3):e32629.
[36]FUNAYAMA M, HATTORI N. CHCHD2 and Parkinsons disease-authors reply[J]. ?Lancet Neurol, 2015,14(7):682-683.
[37]GREENAMYRE J T, CANNON J R, DROLET R, et al. Lessons from the rotenone model of Parkinsons disease[J]. ?Trends Pharmacol Sci, 2010,31(4):141-142; author reply 142-143.
[38]GRUNEWALD A, RYGIEL K A, HEPPLEWHITE P D, et al. Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons[J]. ?Ann Neurol, 2016,79(3):366-378.
[39]DELEIDI M, GASSER T. The role of inflammation in spora-dic and familial Parkinsons disease[J]. ?Cell Mol Life Sci, 2013,70(22):4259-4273.
[40]WANG Q, LIU Y, ZHOU J. Neuroinflammation in Parkinsons disease and its potential as therapeutic target[J]. ?Transl Neurodegener, 2015,4:19.
[41]LEE H J, SUK J E, PATRICK C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies[J]. ?J Biol Chem, 2010,285(12):9262-9272.
[42]LINDQVIST D, HALL S, SUROVA Y, et al. Cerebrospinal fluid inflammatory markers in Parkinsons disease-associations with depression, fatigue, and cognitive impairment[J]. ?Brain Behav Immun, 2013,33:183-189.
[43]NOELKER C, MOREL L, LESCOT T, et al. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease[J]. ?Sci Rep, 2013,3:1393.
[44]HOUSER M C, TANSEY M G. The gut-brain axis: is intestinal inflammation a silent driver of Parkinsons disease pathogenesis[J]? ?NPJ Parkinsons Dis, 2017,3:3.
[45]SALSONE M, VESCIO B, FRATTO A, et al. Cardiac sympathetic index identifies patients with Parkinsons disease and REM behavior disorder[J]. ?Parkinsonism Relat Disord, 2016,26:62-66.
[46]SCHRAG A, HORSFALL L, WALTERS K, et al. Prediagnostic presentations of Parkinsons disease in primary care: a case-control study[J]. ?Lancet Neurol, 2015,14(1):57-64.
[47]PONT-SUNYER C, HOTTER A, GAIG C, et al. The onset of nonmotor symptoms in Parkinsons disease (the ONSET PD study)[J]. ?Mov Disord, 2015,30(2):229-237.
[48]CAVACO S, GONCALVES A, MENDES A, et al. Abnormal olfaction in Parkinsons disease is related to faster disease progression[J]. ?Behav Neurol, 2015,2015:976589.
[49]PFEIFFER R F. Non-motor symptoms in Parkinsons disease[J]. ?Parkinsonism Relat Disord, 2016,22(Suppl 1):S119-122.
[50]ABBOTT R D, ROSS G W, WHITE L R, et al. Excessive daytime sleepiness and subsequent development of Parkinson disease[J]. ?Neurology, 2005,65(9):1442-1446.
[51]ROY S, JARYAL A K, SRIVASTAVA A K, et al. Cardiovagal baroreflex sensitivity in Parkinsons disease and multiple-system atrophy[J]. ?J Clin Neurol, 2016,12(2):218-223.
[52]ASAHINA M, MATHIAS C J, KATAGIRI A, et al. Sudomotor and cardiovascular dysfunction in patients with early untreated Parkinsons disease[J]. ?J Parkinsons Dis, 2014,4(3):385-393.
[53]HAENSCH C A. Heart trouble comes early in Parkinsons disease before blood pressure falls[J]. ?Eur J Neurol, 2011,18(2):201-202.
[54]BENNETT M C. The role of alpha-synuclein in neurodegene-rative diseases[J]. ?Pharmacol Ther, 2005,105(3):311-331.
[55]OKA H, TOYODA C, YOGO M, et al. Cardiovascular dy-sautonomia in de novo Parkinsons disease without orthostatic hypotension[J]. ?Eur J Neurol, 2011,18(2):286-292.
[56]ZHANG Z, DU X, XU H, et al. Lesion of medullary catecholaminergic neurons is associated with cardiovascular dysfunction in rotenone-induced Parkinsons disease rats[J]. ?Eur J Neurosci, 2015,42(6):2346-2355.
[57]GAIG C, TOLOSA E. When does Parkinsons disease begin[J]? ?Mov Disord, 2009,24(Suppl 2): S656-664.
[58]SAVICA R, CARLIN J M, GROSSARDT B R, et al. Medical records documentation of constipation preceding Parkinson di-sease: a case-control study[J]. ?Neurology, 2009,73(21):1752-1758.
[59]WANG W, SONG N, JIA F, et al. Genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T Parkinsons disease mouse model[J]. ?Neurochem Int, 2018,114:71-79.
[60]HEETUN Z S, QUILEY E M. Gastroparesis and Parkinsons disease: a systematic review[J]. ?Parkinsonism Relat Disord, 2012,18(5):433-440.
[61]SONG N, WANG W, JIA F, et al. Assessments of plasma ghrelin levels in the early stages of Parkinsons disease[J]. ?Mov Disord, 2017,32(10):1487-1491.
[62]CHARVIN D, MEDORI R, HAUSER R A, et al. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs[J]. ?Nat Rev Drug Discov, 2018,17:804-822.
[63]CONNOLLY B S, LANG A E. Pharmacological treatment of Parkinson disease: a review[J]. ?JAMA, 2014,311(16):1670-1683.
[64]NUTT J G, WOODWARD W R, HAMMERSTAD J P, et al. The “on-off” phenomenon in Parkinsons disease. Relation to levodopa absorption and transport[J]. ?N Engl J Med, 1984,310(8):483-488.
[65]KATZENSCHLAGER R, POEWE W, RASCOL O, et al. Apomorphine subcutaneous infusion in patients with Parkinsons disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial[J]. ?Lancet Neurol, 2018,17(9):749-759.
[66]SIAN J, DEXTER D T, LEES A J, et al. Alterations in glutathione levels in Parkinsons disease and other neurodegenerative disorders affecting basal ganglia[J]. ?Ann Neurol, 1994,36(3):348-355.
[67]MISCHLEY L K, CONLEY K E, SHANKLAND E G, et al. Central nervous system uptake of intranasal glutathione in Parkinsons disease[J]. ?NPJ Parkinsons Dis, 2016,2:16002.
[68]KAUR D, YANTIRI F, RAJAGOPALAN S, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinsons disease[J]. ?Neuron, 2003,37(6):899-909.
[69]WEINREB O, MANDEL S, YOUDIM M B H, et al. Targeting dysregulation of brain iron homeostasis in Parkinsons disease by iron chelators[J]. ?Free Radic Biol Med, 2013,62:52-64.
[70]MARTIN-BASTIDA A, WARD R J, NEWBOULD R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinsons disease[J]. ?Sci Rep, 2017,7(1):1398.
[71]DEVOS D, MOREAU C, DEVEDJIAN J C, et al. Targeting chelatable iron as a therapeutic modality in Parkinsons disease[J]. ?Antioxid Redox Signal, 2014,21(2):195-210.
[72]ATHAUDA D, FOLTYNIE T. Insulin resistance and Parkinsons disease: a new target for disease modification[J]? ?Prog Neurobiol, 2016,145/146:98-120.
[73]DUNN L, ALLEN G F, MAMAIS A, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinsons disease[J]. ?Neurobiol Aging, 2014,35(5):1111-1115.
[74]AKSOY D, SOLMAZ V, CAVUSOGLU T, et al. Neuroprotective effects of eexenatide in a rotenone-induced rat model of
Parkinsons disease[J]. ?Am J Med Sci, 2017,354(3):319-324.
[75]AHMANN A J, CAPEHORN M, CHARPENTIER G, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial[J]. ?Diabetes Care, 2018,41(2):258-266.
[76]JANKOVIC J, GOODMAN I, SAFIRSTEIN B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with parkinson disease: a randomized clinical trial[J]. ?JAMA Neurol, 2018,75(10):1206-1214.
[77]MANDLER M, VALERA E, ROCKENSTEIN E, et al. Next-generation active immunization approach for synucleino-pathies: implications for Parkinsons disease clinical trials[J]. ?Acta Neuropathol, 2014,127(6):861-879.
[78]WRASIDLO W, TSIGELNY I F, PRICE D L, et al. A de novo compound targeting alpha-synuclein improves deficits in models of Parkinsons disease[J]. ?Brain, 2016,139(Pt 12):3217-3236.
[79]PALFI S, GURRUCHAGA J M, RALPH G S, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinsons disease: a dose escalation, open-label, phase 1/2 trial[J]. ?Lancet, 2014,383(9923):1138-1146.
[80]JARRAYA B, BOULET S, RALPH G S, et al. Dopamine gene therapy for Parkinsons disease in a nonhuman primate
without associated dyskinesia[J]. ?Sci Transl Med, 2009,1(2):2-4.
[81]CIESIELSKA A, SAMARANCH L, SAN SEBASTIAN W, et al. Depletion of AADC activity in caudate nucleus and putamen of Parkinsons disease patients; implications for ongoing AAV2-AADC gene therapy trial[J]. ?PLoS One, 2017,12(2):e0169965.
[82]SAN SEBASTIAN W, KELLS A P, BRINGAS J, et al. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate[J]. ?Mol Ther Me-thods Clin Dev, 2014,1:14049.
[83]WILLIAMS A, GILL S, VARMA T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinsons disease (PD SURG trial): a randomised, open-label trial[J]. ?Lancet Neurol, 2010,9(6):581-591.
[84]SCHULZ-SCHAEFFER W J, MARGRAF N G, MUNSER S, et al. Effect of neurostimulation on camptocormia in Parkinsons disease depends on symptom duration[J]. ?Mov Di-sord, 2015,30(3):368-372.