李娜 杜臣臣 董棟 謝俊霞 王俊
[摘要]?目的?探討雌二醇(E2)對原代小膠質(zhì)細(xì)胞鐵相關(guān)蛋白表達的影響。
方法原代培養(yǎng)Wistar大鼠腹側(cè)中腦的小膠質(zhì)細(xì)胞,分離純化后將細(xì)胞分為對照組和E2組,其中E2組培養(yǎng)液內(nèi)加入E2(終濃度為10 nmol/L),對照組培養(yǎng)液內(nèi)加入等體積的二甲基亞砜,兩組作用時間均為24 h。采用蛋白質(zhì)免疫印跡實驗檢測兩組細(xì)胞二價金屬離子轉(zhuǎn)運蛋白1(DMT1)、膜鐵轉(zhuǎn)運蛋白1(FPN1)和鐵調(diào)節(jié)蛋白1(IRP1)的表達。
結(jié)果與對照組相比,E2組細(xì)胞DMT1的表達水平顯著增高(t=2.937,P<0.05),F(xiàn)PN1的表達水平顯著降低(t=2.294,P<0.05);兩組IRP1的表達水平比較差異無顯著性(P>0.05)。
結(jié)論10 nmol/L的E2可引起原代小膠質(zhì)細(xì)胞DMT1的表達增加、FPN1的表達降低,且這種變化與IRP1調(diào)節(jié)無關(guān)。
[關(guān)鍵詞]?雌二醇;小神經(jīng)膠質(zhì)細(xì)胞;轉(zhuǎn)鐵蛋白類;鐵調(diào)節(jié)蛋白質(zhì)1;鐵
[中圖分類號]?R322.8
[文獻標(biāo)志碼]?A
[文章編號]??2096-5532(2019)01-0047-03
EFFECT OF ESTRADIOL ON EXPRESSION OF IRON-RELATED PROTEINS IN PRIMARY CULTURED MICROGLIAL CELLS
[WTBX]
LI Na, DU Chenchen, DONG Dong, XIE Junxia, WANG Jun
(Department of Physiology, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of estradiol (E2) on the expression of iron-related proteins in primary cultured microglial cells.
MethodsPrimary cultured microglial cells from the ventral midbrain of Wistar rats were divided into control group and E2 group after isolation and purification. The cells in the E2 group were treated with E2 at a final concentration of 10 nmol/L for 24 h and those in the control group were treated with an equal volume of dimethyl sulfoxide for 24 h. Western blot was used to measure the expression of divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1), and iron regulatory protein 1 (IRP1) in cells.
ResultsCompared with the control group, the E2 group had significantly higher expression of DMT1 (t=2.937,P<0.05) and significantly lower expression of FPN1 (t=2.294,P<0.05). There was no significant difference in the expression of IRP1 between the two groups (P>0.05).
ConclusionE2 at a concentration of 10 nmol/L can increase the expression of DMT1 and reduce the expression of FPN1 in primary cultured microglial cells, which is not associated with IRP1 regulation.
[KEY WORDS]estradiol; microglia; transferrins; iron regulatory protein 1; iron
鐵是所有生命形式的基本要素,也是具有氧輸送、電子轉(zhuǎn)移、能量代謝、轉(zhuǎn)錄調(diào)節(jié)和DNA復(fù)制等多種功能蛋白的必要組成成分[1-3]。因此,維持機體內(nèi)的鐵穩(wěn)態(tài)尤其重要。在阿爾茲海默病、肌萎縮側(cè)索硬化癥、多發(fā)性硬化癥等慢性退行性疾病病人中均觀察到鐵代謝異常[4-6]。且有大量研究表明細(xì)胞內(nèi)的鐵沉積與帕金森?。≒D)的發(fā)病密切相關(guān)[4,7-9]。小膠質(zhì)細(xì)胞作為一種重要的神經(jīng)膠質(zhì)細(xì)胞,在腦功能方面發(fā)揮重要作用。研究表明,雌二醇(E2)可通過抑制小膠質(zhì)細(xì)胞釋放腫瘤壞死因子-α(TNF-α)等炎癥遞質(zhì)發(fā)揮抗炎作用[10-13]。本實驗室前期研究顯示,E2可降低原代培養(yǎng)腹側(cè)中腦神經(jīng)元二價金屬離子轉(zhuǎn)運蛋白1(DMT1)的表達,增加膜鐵轉(zhuǎn)運蛋白1(FPN1)的表達,這可能與鐵調(diào)節(jié)蛋白1(IRP1)表達降低有關(guān)[14]。然而,E2是否影響小膠質(zhì)細(xì)胞鐵代謝仍不清楚。因此,本研究觀察了E2對原代小膠質(zhì)細(xì)胞DMT1和FPN1表達的影響,并分析其表達變化是否與IRP1的異常調(diào)節(jié)有關(guān)。
1?材料與方法
1.1?小膠質(zhì)細(xì)胞的原代培養(yǎng)與分離純化
1.1.1小膠質(zhì)細(xì)胞的原代培養(yǎng)?出生24 h內(nèi)的Wistar大鼠(由青島市藥檢所動物中心提供)用體積分?jǐn)?shù)0.75乙醇消毒5 min,在超凈工作臺(蘇州凈化,江蘇)上開顱取腦,快速剝除腦膜及血管,取腹側(cè)中腦組織置于裝有適量DMEM/F12培養(yǎng)基(Hyclone公司,美國)的培養(yǎng)皿中,用移液槍和10 mL一次性注射器反復(fù)吹打均勻至無大組織顆粒,移至50 mL大離心管中并用低速離心機(中科中佳科學(xué)儀器有限公司,安徽)以1 000 r/min離心5 min,棄上清,在沉淀物中加入含有體積分?jǐn)?shù)0.10胎牛血清(Gibco公司,美國)、10 g/L青/鏈霉素(Solarbio公司,美國)的培養(yǎng)液,重新吹打均勻接種于250 cm2培養(yǎng)瓶中,在37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱(Thermo Electron Corporation公司,美國)中倒置培養(yǎng)30 min,隨后正置繼續(xù)培養(yǎng)。第2天半量換液1次,第3天全量換液1次,所換液體均為DMEM/F12全培養(yǎng)液。繼續(xù)培養(yǎng)至第7天,細(xì)胞可鋪滿瓶底并充分分層生長。
1.1.2小膠質(zhì)細(xì)胞的分離純化?細(xì)胞培養(yǎng)至第7天,更換DMEM/F12全培養(yǎng)液,隨后將培養(yǎng)瓶置于37 ℃恒溫?fù)u床(東明醫(yī)療儀器廠,哈爾濱)中并以180 r/min振搖2 h,收集細(xì)胞懸液于50 mL大離心管中,用低速離心機以1 000 r/min離心5 min,去上清,沉淀物用新的DMEM/F12全培養(yǎng)液吹打成細(xì)胞懸液,將細(xì)胞密度調(diào)至約5×105/L,種植到至少提前4 h鋪好Poly-D-lysine(Sigma公司,美國)的6孔板內(nèi),每孔1 mL。在37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱內(nèi)靜置30 min后完全換液1次,加入新的DMEM/FI2完全培養(yǎng)液繼續(xù)培養(yǎng)1 d。一般板內(nèi)細(xì)胞培養(yǎng)1 d后即可加藥,加藥前所有孔內(nèi)培養(yǎng)液換為無血清DMEM/F12培養(yǎng)液。
1.2?實驗分組
分離純化后將細(xì)胞分為對照組和E2組,E2組細(xì)胞培養(yǎng)液內(nèi)加入1 μmol/L的E2 10 μL(E2的終濃度為10 nmol/L),對照組細(xì)胞培養(yǎng)液內(nèi)加入等體積的二甲基亞砜,孵育24 h后提取細(xì)胞內(nèi)總蛋白。
1.3?蛋白質(zhì)免疫印跡實驗檢測鐵相關(guān)蛋白表達
提取兩組原代小膠質(zhì)細(xì)胞蛋白,用BCA蛋白定量試劑盒(碧云天,江蘇)檢測蛋白濃度。根據(jù)蛋白濃度計算每個樣本的上樣量。配制分離膠和濃縮膠,兩組原代小膠質(zhì)細(xì)胞蛋白經(jīng)80 V、30 min和120 V、 60 min電泳,300 mA、100 min轉(zhuǎn)膜,100 g/L脫脂奶粉2 h封閉,再分別加入兔抗小鼠單克隆一抗DMT1(Origen公司,美國,1∶800)、兔抗人單克隆一抗FPN1(Sigma公司,美國,1∶800)和兔抗鼠單克隆一抗IRP1(ADI公司,美國,1∶1 000),4 ℃振搖過夜。用TBST洗3次,每次10 min,加入辣根過氧化物酶標(biāo)記的山羊抗兔IgG二抗(Absin公司,上海,1∶10 000)在室溫下孵育1 h,用TBST再洗滌3次,每次10 min。通過化學(xué)發(fā)光液進行顯影,使用Image J軟件分析條帶灰度值。以β-actin為內(nèi)參,以目的蛋白與內(nèi)參β-actin比值來反映各目的蛋白表達情況。
1.4?統(tǒng)計學(xué)分析
所得計量資料數(shù)據(jù)以[AKx-D]±s表示,采用SPSS 20.0軟件、兩樣本t檢驗進行統(tǒng)計學(xué)處理,以P<0.05表示差異有統(tǒng)計學(xué)意義。
2?結(jié)??果
E2組DMT1蛋白表達水平明顯高于對照組(t=2.937,P<0.05),F(xiàn)PN1蛋白表達水平明顯低于對照組(t=2.294,P<0.05);兩組IRP1的表達水平比較差異無顯著性(P>0.05)。見表1。
3?討??論
鐵相關(guān)蛋白調(diào)節(jié)細(xì)胞鐵攝取和釋放,在維持機體內(nèi)環(huán)境穩(wěn)態(tài)方面起到重要作用。DMT1是哺乳類動物中第一個被發(fā)現(xiàn)的跨膜鐵轉(zhuǎn)運蛋白,它參與二價鐵轉(zhuǎn)運,在細(xì)胞鐵攝取方面起到了至關(guān)重要的作用[15]。DMT1廣泛分布于人體各組織中,在腦內(nèi)的中腦黑質(zhì)區(qū)DMT1呈高水平表達[16]。已有研究證實,PD病人腦黑質(zhì)區(qū)DMT1表達異常增高[17]。FPN1是目前已知的唯一具有細(xì)胞轉(zhuǎn)出鐵功能的轉(zhuǎn)運蛋白[18]。它作為跨膜轉(zhuǎn)運蛋白,主要控制巨噬細(xì)胞和其他細(xì)胞的鐵釋放[19-20]。IRPs控制細(xì)胞鐵的攝取、貯存與釋放,在腦鐵平衡中起重要作用。在大多數(shù)哺乳動物細(xì)胞中,IRP1含量遠高于IRP2[21],而且IRP1與鐵反應(yīng)元件(IRE)的結(jié)合能力也大于IRP2[22]。IRP1作為細(xì)胞鐵代謝轉(zhuǎn)錄后調(diào)節(jié)最主要的調(diào)節(jié)器,它通過與DMT1和FPN1 mRNA中的IRE結(jié)合[22],上調(diào)DMT1的表達,下調(diào)FPN1的表達,從而調(diào)節(jié)鐵代謝[23]。本實驗室前期研究已證實,在6-羥基多巴胺誘導(dǎo)的PD動物模型和細(xì)胞模型中,細(xì)胞內(nèi)的鐵沉積與DMT1的上調(diào)和FPN1的下調(diào)有關(guān),且DMT1的上調(diào)和FPN1的下調(diào)依賴于IRE/IRP1的調(diào)節(jié)[24]。
有研究顯示,E2可引起小鼠骨髓來源的巨噬細(xì)胞內(nèi)的鐵蛋白增加,F(xiàn)PN表達減少[25]。且E2可逆
轉(zhuǎn)由卵巢切除術(shù)引起的脂肪組織細(xì)胞內(nèi)IRP1結(jié)合活性的降低[26]。本室前期研究證實,E2可降低原代培養(yǎng)的中腦神經(jīng)元DMT1表達,增加FPN1表達,這可能與IRP1表達降低有關(guān)[14]。而本實驗研究結(jié)果顯示,10 nmol/L的E2可增加原代培養(yǎng)小膠質(zhì)細(xì)胞DMT1的表達,降低FPN1的表達,而這種變化可能與IRP1的調(diào)節(jié)無關(guān),其具體機制有待進一步研究探討。
[參考文獻]
[1]SHEFTEL A, STEHLING O, LILL R. Iron-sulfur proteins in health and disease[J]. ?Trends in Endocrinology and Metabolism, 2010,21(5):302-314.
[2]GOZZELINO R, JENEY V, SOARES M P. Mechanisms of cell protection by heme oxygenase-1[J]. ?Annual Review of Pharmacology and Toxicology, 2010,50:323-354.
[3]EVSTATIEV R, GASCHE C. Iron sensing and signalling[J]. ?Gut, 2012,61(6):933-952.
[4]KELL D B. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded Iron:Parkinsons, Huntingtons, Alzheimers, prions, bactericides, chemical toxicology and others as examples[J]. ?Archives of Toxicology, 2010,84(11):825-889.
[5]KUMAR H, LIM H W, MORE S V, et al. ?The role of free radicals in the aging brain and Parkinsons disease:convergence and parallelism[J]. ?International Journal of Molecular Sciences, 2012,13(8):10478-10504.
[6]DIANA R H, IRIS C Y, GHEORGHE D P, et al. ?Alterations in brain transition metals in huntington disease: an evolving and intricate story[J]. ?Archives of Neurology, 2013,69(7):887-893.
[7]陳瑛,竺飛燕,王煉,等. DMT1在多巴胺能神經(jīng)元變性中的作用研究[J]. ?中國病理生理雜志, 2011,27(2):350-356.
[8]FARINA M, AVILA D S, DA ROCHA J B, et al. ?Metals, oxidative stress and neurodegeneration: a focus on iron,manganese and mercury[J]. ?Neurochemistry International, 2013,62(5):575-594.
[9]SCHIPPER H M. Neurodegeneration with brain iron accumulation-clinical syndromes and neuroimaging[J]. ?Biochimica et Biophysica Acta, 2012,1822(3):350-360.
[10]BRUCE-KELLER A J, KEELING J L, KELLER J N, et al. ?Antiinflammatory effects of estrogen on microglial activation[J]. ?Endocrinology, 2000,141(10):3646-3656.
[11]DREW P D, CHAVIS J A. Female sex steroids: effects upon microglial cell activation[J]. ?Journal of Neuroimmunology, 2000,111(1/2):77-85.
[12]VEGETO E, BELCREDITO S, GHISLETTI S, et al. ?The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation[J]. ?Endocrinology, 2006,147(5):2263-2272.
[13]VEGETO E, BONINCONTRO C, POLLIO G, et al. ?Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia[J]. ?The Journal of Neuroscience, 2001,21(6):1809-1818.
[14]XU Manman, TAN Xu, LI Na, et al. ?Differential regulation of estrogen in iron metabolism in astrocytes and neurons [J]. ?Journal of Cellular Physiology, 2018. doi:10.1002/jcp.27188.
[15]GUNSHIN H, MACKENZIE B, BERGER U V, et al. ?Cloning and characterization of a mammalian proton-coupled me-tal-ion transporter[J]. ?Nature, 1997,388(6641):482-488.
[16]HUANG E, ONG W Y, CONNOR J R. Distribution of divalent metal transporter-1 in the monkey basal ganglia[J]. ?Neuroscience, 2004,128(3):487-496.
[17]SALAZAR J, MENA N, HUNOT S, et al. ?Divalent metal transporter 1(DMT1)contributes to neurodegeneration in animal models of Parkinsons disease[J]. ?PNAS, 2008,105(47):18578-18583.
[18]MCKIE A T, MARCIANI P, ROLFS A, et al. ?A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation[J]. ?Molecular Cell, 2000,5(2):299-309.
[19]ABBOUD S, HAILE D J. A novel mammalian iron-regulated protein involved in intracellular Iron metabolism[J]. ?Journal of Biological Chemistry, 2000,275(26):19906-19912.
[20]DONOVAN A, BROWNLIE A, ZHOU Y, et al. ?Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate Iron exporter[J]. ?Nature, 2000,403(6771):776-781.
[21]CAMASCHELLA C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders[J]. ?Blood, 2005,106(12):3710-3717.
[22]CHRISTOVA T, TEMPLETON D M. Effect of hypoxia on the binding and subcellular distribution of Iron regulatory proteins[J]. ?Molecular and Cellular Biochemistry, 2007,301(1/2):21-32.
[23]WANG Jun, XU Huamin, YANG Haidong, et al. ?Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by re-gulating certain iron transport proteins[J]. ?Neurochemistry International, 2009,54(1):43-48.
[24]JIANG Hong, SONG Ning, XU Huamin, et al. ?Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent[J]. ?Cell Research, 2010,20(3):345-356.
[25]QIAN Yi, YIN Chunyang, CHEN Yue, et al. ?Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element[J]. ?Cellular Signalling, 2015,27(5):934-942.
[26]RASO G M, IRACE C, ESPOSITO E A, et al. ?Ovariectomy and estrogen treatment modulate iron metabolism in rat adipose tissue[J]. ?Biochemical Pharmacology, 2009,78(8):1001-1007.