成夢(mèng)群 尹健彬 張旋
[摘要] 巨噬細(xì)胞是機(jī)體重要的固有免疫細(xì)胞之一,參與免疫防御和炎癥調(diào)節(jié)。自噬能夠調(diào)控巨噬細(xì)胞的吞噬、抗原呈遞功能,還可通過(guò)調(diào)控巨噬細(xì)胞的極化方向來(lái)調(diào)節(jié)巨噬細(xì)胞在炎癥發(fā)生發(fā)展和消退中的作用。巨噬細(xì)胞自噬參與了膿毒癥、急性肺損傷、炎癥性肝損傷、動(dòng)脈粥樣硬化、類風(fēng)濕關(guān)節(jié)炎等許多炎癥性疾病的發(fā)生發(fā)展或消退過(guò)程。本文綜述了巨噬細(xì)胞自噬在炎癥性疾病中的作用研究進(jìn)展,并對(duì)其作為潛在治療靶點(diǎn)進(jìn)行了分析。
[關(guān)鍵詞] 巨噬細(xì)胞;自噬;炎癥性疾病;免疫
[中圖分類號(hào)] R392? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)07(c)-0035-04
Research progress on the role of macrophage autophagy in inflammatory diseases
CHENG Mengqun? ?YIN Jianbin? ?ZHANG Xuan
College of Pharmacy, Kunming Mecical University & Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan Province, Kunming? ?650500, China
[Abstract] Macrophages are one of the important innate immune cells in the body, which are involved in immune defense and regulation of inflammation. Autophagy can regulate the phagocytosis and antigen presenting function of macrophages. It can also regulate the role of macrophages in the occurrence, development and regression of inflammation by regulating the polarization direction of macrophages. Macrophage autophagy is involved in the occurrence, development and regression of many inflammatory diseases, such as sepsis, acute lung injury, inflammatory liver injury, atherosclerosis, rheumatoid arthritis and so on. This article reviews the research progress of macrophage autophagy in inflammatory diseases, and analyzes the possibility of macrophage autophagy as a potential target for treatment of inflammatory diseases.
[Key words] Macrophage; Autophagy; Inflammatory diseases; Immunity
巨噬細(xì)胞是機(jī)體重要的固有免疫細(xì)胞之一,具有吞噬、抗原呈遞、免疫防御和炎癥調(diào)節(jié)等多種功能。巨噬細(xì)胞通過(guò)不同的極化類型參與炎癥的發(fā)生發(fā)展和消退過(guò)程。巨噬細(xì)胞可分為兩種極化類型:經(jīng)典激活的巨噬細(xì)胞(M1型)和替代激活的巨噬細(xì)胞(M2型)。M1型巨噬細(xì)胞主要分泌大量促炎因子,發(fā)揮促炎作用和免疫防御功能。M2型巨噬細(xì)胞主要分泌抗炎因子,發(fā)揮抗炎作用和促進(jìn)組織修復(fù)功能[1-3]。自噬是細(xì)胞降解受損細(xì)胞器、錯(cuò)誤折疊蛋白質(zhì)和病原體的一種代謝過(guò)程,也是機(jī)體維持細(xì)胞自穩(wěn)態(tài)、保證細(xì)胞正常分化和功能的重要過(guò)程。研究發(fā)現(xiàn)[4-5],自噬在巨噬細(xì)胞吞噬、抗原呈遞、調(diào)節(jié)免疫應(yīng)答和炎性反應(yīng)過(guò)程中起重要作用。自噬還能調(diào)控巨噬細(xì)胞的極化方向,參與膿毒癥、急性肺損傷、炎癥性肝損傷、動(dòng)脈粥樣硬化、類風(fēng)濕關(guān)節(jié)炎等炎癥性疾病的進(jìn)程。本文主要綜述了巨噬細(xì)胞自噬在炎癥性疾病中的作用研究進(jìn)展,并對(duì)其作為潛在治療靶點(diǎn)進(jìn)行了分析。
1 自噬與巨噬細(xì)胞
1.1 自噬調(diào)控巨噬細(xì)胞吞噬功能
巨噬細(xì)胞是抗感染免疫應(yīng)答過(guò)程中的關(guān)鍵細(xì)胞,具有強(qiáng)大的吞噬功能,能夠識(shí)別、吞噬、清除病原體。巨噬細(xì)胞主要通過(guò)其表達(dá)的模式識(shí)別受體識(shí)別病原體相關(guān)分子被激活,從而吞噬病原體。巨噬細(xì)胞自噬功能下降會(huì)影響其吞噬功能。研究發(fā)現(xiàn),結(jié)核分枝桿菌可通過(guò)抑制或下調(diào)自噬來(lái)逃逸巨噬細(xì)胞免疫識(shí)別和吞噬;抑制自噬可減弱巨噬細(xì)胞吞噬金黃色葡萄球菌的能力;而激活自噬可增強(qiáng)巨噬細(xì)胞識(shí)別與吞噬功能[6-7]。
1.2 自噬調(diào)控巨噬細(xì)胞抗原呈遞功能
絕大多數(shù)抗原進(jìn)入機(jī)體后,都需經(jīng)巨噬細(xì)胞抗原呈遞,啟動(dòng)免疫應(yīng)答,通過(guò)主要組織相容性復(fù)合體(MHCⅡ)分子,調(diào)節(jié)抗原呈遞,抵抗微生物的感染。自噬能夠?qū)е翸HCⅡ從EB病毒轉(zhuǎn)化的B細(xì)胞,呈遞EBNA1到特異性CD4+T細(xì)胞[8]。因此,在EBV轉(zhuǎn)化的B細(xì)胞中,EBNA1能夠更有效地呈遞,導(dǎo)致CD4+T細(xì)胞識(shí)別更多抗原決定簇。饑餓誘導(dǎo)的自噬可引起巨噬細(xì)胞呈遞抗原能力增強(qiáng)[9]。在感染的巨噬細(xì)胞中,自噬誘導(dǎo)劑雷帕霉素可將結(jié)核分枝桿菌定位于自噬體,并增強(qiáng)DC識(shí)別抗原效率,從而刺激特異CD4+T細(xì)胞活化。表明巨噬細(xì)胞自噬可增強(qiáng)MHCⅡ類分子對(duì)抗原的呈遞作用。
1.3 自噬調(diào)控巨噬細(xì)胞極化方向和炎癥調(diào)節(jié)功能
自噬能夠調(diào)控巨噬細(xì)胞的極化方向,參與炎性反應(yīng)調(diào)節(jié)。研究發(fā)現(xiàn):自噬誘導(dǎo)劑雷帕霉素能抑制巨噬細(xì)胞RAW 264.7向促炎方向M1型極化,而自噬抑制劑3-MA能促進(jìn)RAW 264.7向M1型極化[10]。自噬可誘導(dǎo)人巨噬細(xì)胞向抗炎方向M2型極化[11]。脂肪干細(xì)胞(ADSC)外泌體可通過(guò)抑制自噬,促進(jìn)小膠質(zhì)細(xì)胞/巨噬細(xì)胞向M2型極化,從而顯著降低腦梗死面積[12]。TLR2依賴性自噬可誘導(dǎo)巨噬細(xì)胞向M2型極化,促進(jìn)炎癥信號(hào)蛋白NF-κB被降解[13]。高脂飲食可抑制小鼠巨噬細(xì)胞自噬,導(dǎo)致促炎性M1型細(xì)胞增加和抗炎性M2細(xì)胞減少[14]。然而,也有研究表明,自噬可誘導(dǎo)巨噬細(xì)胞向M1型極化,抑制向M2型極化。晚期糖基化終產(chǎn)物誘導(dǎo)巨噬細(xì)胞自噬可促進(jìn)巨噬細(xì)胞向M1型極化,從而阻礙皮膚傷口愈合[15]。自噬誘導(dǎo)劑雷帕霉素可抑制巨噬細(xì)胞向M2型極化,此過(guò)程可被自噬抑制劑3-MA逆轉(zhuǎn)[16]。自噬能抑制異丙腎上腺素誘導(dǎo)的巨噬細(xì)胞向M2型極化[10]。自噬缺陷的小鼠巨噬細(xì)胞會(huì)產(chǎn)生高水平的IL-1β,誘導(dǎo)CD4+細(xì)胞異常激活,造成自身免疫炎癥性疾病。在LPS誘導(dǎo)的巨噬細(xì)胞炎癥模型中,細(xì)胞自噬水平增加,促進(jìn)自噬可抑制促炎因子腫瘤壞死因子α(TNF-α)、白細(xì)胞介素(IL)-6、IL-1β和IL-12產(chǎn)生[17]。因此,自噬通過(guò)調(diào)控巨噬細(xì)胞的極化方向,調(diào)節(jié)細(xì)胞因子分泌,從而參與炎性反應(yīng)調(diào)節(jié)。
2 巨噬細(xì)胞自噬與炎癥性疾病
2.1 膿毒癥
膿毒癥是一種由感染導(dǎo)致的全身炎癥反應(yīng)綜合征。巨噬細(xì)胞在膿毒癥的發(fā)病過(guò)程中起著關(guān)鍵作用。膿毒癥時(shí),自噬可通過(guò)調(diào)節(jié)巨噬細(xì)胞的激活和極化方向減少炎癥小體激活和炎癥因子釋放來(lái)發(fā)揮保護(hù)作用。然而,過(guò)度自噬也會(huì)導(dǎo)致巨噬細(xì)胞死亡,進(jìn)一步加重炎性反應(yīng)[18]。研究發(fā)現(xiàn):膿毒癥中巨噬細(xì)胞自噬通過(guò)靶向降解IL-1β的溶酶體,抑制炎癥小體NLRP3活化,從而減少IL-1β分泌;而巨噬細(xì)胞自噬缺陷會(huì)增加NLRP3的異常激活,引發(fā)炎性反應(yīng)[19]。巨噬細(xì)胞自噬可調(diào)節(jié)巨噬細(xì)胞移動(dòng)抑制因子(MIF)的釋放,MIF是膿毒癥休克的重要致病因子,可誘導(dǎo)巨噬細(xì)胞分泌TNF-α。巨噬細(xì)胞自噬缺陷可導(dǎo)致ROS依賴性MIF釋放增加,而增強(qiáng)自噬可減少M(fèi)IF釋放,減輕血管內(nèi)皮損傷和炎性反應(yīng)[20]。腹腔巨噬細(xì)胞在膿毒癥小鼠免疫功能的變化中起重要作用,自噬可通過(guò)調(diào)節(jié)巨噬細(xì)胞功能如吞噬、抗原呈遞、分泌炎癥因子和清除凋亡淋巴細(xì)胞發(fā)揮保護(hù)免疫功能的作用[21]。因此,巨噬細(xì)胞自噬可能是治療膿毒癥的一個(gè)新靶點(diǎn)。
2.2 急性肺損傷
急性肺損傷(ALI)是多種原因引起的急性失控性炎癥性肺疾病。肺泡巨噬細(xì)胞在ALI發(fā)病機(jī)制中起著關(guān)鍵作用。研究發(fā)現(xiàn),在出血性休克誘導(dǎo)的ALI小鼠模型中,HMGB1/TLR4信號(hào)通路激活,上調(diào)肺泡巨噬細(xì)胞NOD2表達(dá),一方面增強(qiáng)肺部炎癥,另一方面可誘導(dǎo)巨噬細(xì)胞自噬,負(fù)反饋抑制炎癥,減輕ALI[22]。然而,肺泡巨噬細(xì)胞自噬也會(huì)進(jìn)一步加重ALI。研究發(fā)現(xiàn),在腸缺血-再灌注誘導(dǎo)的ALI小鼠模型中,補(bǔ)體C5a能激活肺泡巨噬細(xì)胞并與其表面C5a受體結(jié)合,促進(jìn)肺泡巨噬細(xì)胞自噬,導(dǎo)致細(xì)胞凋亡,破壞了肺動(dòng)態(tài)平衡,促進(jìn)ALI的發(fā)展[23]。因此,在不同原因?qū)е碌腁LI中,巨噬細(xì)胞自噬是否都可作為潛在的治療靶點(diǎn)尚存在爭(zhēng)議。
2.3 炎癥性肝損傷
炎癥性肝損傷是由多種原因?qū)е碌母窝装Y性疾病,包括病毒性肝炎、自身免疫性肝炎、酒精性肝損傷、血吸蟲(chóng)性肝炎等。巨噬細(xì)胞自噬能夠調(diào)節(jié)肝臟炎癥的發(fā)生發(fā)展與轉(zhuǎn)歸。研究發(fā)現(xiàn),精胺可通過(guò)上調(diào)ATG5表達(dá)誘導(dǎo)肝巨噬細(xì)胞自噬,促進(jìn)其向抗炎方向M2型極化,從而減輕硫代乙酰胺誘導(dǎo)的肝內(nèi)炎癥和肝細(xì)胞損傷[24]。日本血吸蟲(chóng)卵抗原(SEA)可以誘導(dǎo)巨噬細(xì)胞自噬,限制肝臟病變進(jìn)展。然而,血吸蟲(chóng)感染引起的IL-7可以與巨噬細(xì)胞上的IL-7受體(IL-7R/CD127)結(jié)合抑制SEA誘導(dǎo)的巨噬細(xì)胞自噬,加重肝臟病變,抗IL-7中和抗體可增強(qiáng)肝巨噬細(xì)胞自噬,從而抑制肝臟病變[25]。肝巨噬細(xì)胞表面大麻素受體2(CB2R)激活可誘導(dǎo)自噬,從而減輕酒精引起的肝臟炎性反應(yīng)和肝細(xì)胞脂肪變性[26]。巨噬細(xì)胞自噬可以通過(guò)抑制IL-1β的產(chǎn)生來(lái)限制急性毒素誘導(dǎo)的肝損傷,而巨噬細(xì)胞自噬缺陷可促進(jìn)肝臟炎癥[27]。巨噬細(xì)胞自噬基因Atg5敲除的小鼠更容易受到四氯化碳引起的慢性肝臟炎癥的影響,巨噬細(xì)胞自噬可通過(guò)抗炎作用來(lái)調(diào)節(jié)肝臟纖維化進(jìn)展[28]。因此,巨噬細(xì)胞自噬在炎癥性肝疾病中發(fā)揮了重要作用,有望成為治療炎癥性肝疾病的新靶點(diǎn)。
2.4 動(dòng)脈粥樣硬化
動(dòng)脈粥樣硬化是一種慢性血管炎癥性疾病,巨噬細(xì)胞參與了動(dòng)脈粥樣硬化的整個(gè)過(guò)程。研究證實(shí),巨噬細(xì)胞自噬可發(fā)揮血管保護(hù)作用,阻礙動(dòng)脈粥樣硬化的進(jìn)展,而巨噬細(xì)胞自噬缺陷可通過(guò)誘導(dǎo)炎癥小體過(guò)度激活、喪失對(duì)死亡細(xì)胞的胞葬作用、增加毒性蛋白聚積和阻礙脂質(zhì)降解來(lái)促進(jìn)動(dòng)脈粥樣硬化進(jìn)展[29]。巨噬細(xì)胞自噬基因(ATG5)缺陷小鼠,動(dòng)脈粥樣硬化斑塊形成加劇。脂質(zhì)處理巨噬細(xì)胞可誘導(dǎo)自噬分子伴侶p62大量聚積,與細(xì)胞內(nèi)毒性泛素化蛋白共同定位于細(xì)胞漿。自噬分子伴侶p62缺陷會(huì)促進(jìn)脂質(zhì)誘導(dǎo)巨噬細(xì)胞分泌炎癥細(xì)胞因子IL-1β增加,巨噬細(xì)胞ATG5和p62共同缺陷會(huì)進(jìn)一步增加小鼠動(dòng)脈粥樣硬化斑塊負(fù)荷[30]。在動(dòng)脈粥樣硬化早期,自噬誘導(dǎo)劑雷帕霉素可顯著降低巨噬細(xì)胞內(nèi)脂質(zhì)含量并防止其轉(zhuǎn)變成泡沫細(xì)胞,阻止動(dòng)脈粥樣硬化進(jìn)展,而自噬抑制劑3-MA可促進(jìn)泡沫細(xì)胞形成[31]。因此,巨噬細(xì)胞自噬可作為防治動(dòng)脈粥樣硬化的潛在藥物靶點(diǎn)。
2.5 類風(fēng)濕關(guān)節(jié)炎
類風(fēng)濕關(guān)節(jié)炎(RA)是一種以滑膜炎為主的慢性自身免疫性疾病。巨噬細(xì)胞參與了RA的發(fā)生發(fā)展。在RA中,巨噬細(xì)胞的高度活化,可以增加Toll樣受體如TLR2、TLR3、TLR4和TLR7的表達(dá),通過(guò)產(chǎn)生降解酶、細(xì)胞因子和化因子促進(jìn)滑膜炎癥和軟骨破壞[32]。自噬在RA發(fā)病中的作用已經(jīng)證實(shí)[33]。RA患者破骨細(xì)胞中發(fā)現(xiàn)BECN1與Atg7表達(dá)增高。巨噬細(xì)胞自噬激活可引起破骨細(xì)胞數(shù)量增多,骨吸收能力增強(qiáng),而敲除自噬基因后,破骨細(xì)胞數(shù)量減少,骨吸收能力下降,抑制自噬對(duì)TRAF3的降解,可以減少骨質(zhì)疏松癥小鼠破骨細(xì)胞生成[34]。巨噬細(xì)胞自噬還可能通過(guò)緩解滑膜成纖維樣細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激來(lái)促進(jìn)細(xì)胞存活。此外,Atg5和Atg16L1也是RA的易感基因。這些結(jié)果表明自噬參與了RA的發(fā)病,靶向調(diào)節(jié)巨噬細(xì)胞自噬有望發(fā)現(xiàn)治療RA新型藥物。
3 結(jié)語(yǔ)和展望
總之,巨噬細(xì)胞自噬能夠調(diào)控其功能以及極化方向,參與炎性反應(yīng)調(diào)節(jié),在許多炎癥性疾病的發(fā)生發(fā)展和轉(zhuǎn)歸中發(fā)揮了重要作用。多數(shù)情況下,自噬可調(diào)節(jié)巨噬細(xì)胞向M2型極化,發(fā)揮抗炎作用。然而,巨噬細(xì)胞過(guò)度自噬也會(huì)導(dǎo)致巨噬細(xì)胞應(yīng)激性死亡,喪失原有功能,加重炎性反應(yīng),促進(jìn)炎癥性疾病進(jìn)展。因此,巨噬細(xì)胞自噬可能成為治療炎癥性疾病的一個(gè)潛在靶點(diǎn),靶向調(diào)節(jié)巨噬細(xì)胞自噬,有望發(fā)現(xiàn)一些治療炎癥性疾病的新型藥物。
[參考文獻(xiàn)]
[1]? Zhao Q,Chu Z,Zhu L,et al. 2-Deoxy-d-Glucose Treatment Decreases Anti-inflammatory M2 Macrophage Polarization in Mice with Tumor and Allergic Airway Inflammation [J]. Front Immunol,2017,8:637.
[2]? Funes SC,Rios M,Escobar-Vera J,et al. Implications of macrophage polarization in autoimmunity [J]. Immunology,2018,154(2):186-195.
[3]? Reichel D,Tripathi M,Perez JM. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment [J]. Nanotheranostics,2019,3(1):66-88.
[4]? 何小燕,錢中清.自噬與巨噬細(xì)胞功能的關(guān)系研究進(jìn)展[J].蚌埠醫(yī)學(xué)院學(xué)報(bào),2017,42(9):1288-1290.
[5]? 李曉宇,白潔.細(xì)胞自噬與MHCⅡ處理及遞呈抗原的相關(guān)研究[J].免疫學(xué)雜志,2015,31(1):80-83.
[6]? 呂允相.自噬對(duì)巨噬細(xì)胞吞噬金黃色葡萄球菌的影響[D].合肥:安徽醫(yī)科大學(xué),2014:706-710.
[7]? Bah A,Vergne I. Macrophage Autophagy and Bacterial Infections [J]. Front Immunol,2017,8:1483.
[8]? Silva LM,Jung JU. Modulation of the autophagy pathway by human tumor viruses [J]. Semin Cancer Biol,2013,23(5):323-328.
[9]? Wolfkamp SC,Verseyden C,Vogels EW,et al. ATG16L1 and NOD2 polymorphisms enhance phagocytosis in monocytes of Crohn′s disease patients [J]. World J Gastroenterol,2014,20(10):2664-2672.
[10]? Shan M,Qin J,Jin F,et al. Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway [J]. Free Radic Biol Med,2017,110:432-443.
[11]? Sanjurjo L,Aran G,Téllez M,et al. CD5L Promotes M2 Macrophage Polarization through Autophagy-Mediated Upregulation of ID3 [J]. Front Immunol,2018,9:480.
[12]? Jiang M,Wang H,Jin M,et al. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization [J]. Cell Physiol Biochem,2018,47(2):864-878.
[13]? Chang CP,Su YC,Hu CW,et al. TLR2-dependent selective autophagy regulates NF-κB lysosomal degradation in hepatoma-derived M2 macrophage differentiation [J]. Cell Death Differ,2013,20(3):515-523.
[14]? Liu K,Zhao E,Ilyas G,et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization [J]. Autophagy,2015,11(2):271-284.
[15]? Guo Y,Lin C,Xu P,et al. AGEs Induced Autophagy Impairs Cutaneous Wound Healing via Stimulating Macrophage Polarization to M1 in Diabetes [J]. Sci Rep,2016,6:36416.
[16]? Wang Y,Li Y,Li H,et al. Brucella Dysregulates Monocytes and Inhibits Macrophage Polarization through LC3-Dependent Autophagy [J]. Front Immunol,2017,8:691.
[17]? 任彩瑗,張向穎,時(shí)紅波,等.自噬調(diào)控脂多糖誘導(dǎo)的巨噬細(xì)胞炎癥因子水平[J].細(xì)胞與分子免疫學(xué)雜志,2017, 33(5):581-585.
[18]? Qiu P,Liu Y,Zhang J. Review:the Role and Mechanisms of Macrophage Autophagy in Sepsis [J]. Inflammation,2019,42(1):6-19.
[19]? Saitoh T,Akira S. Regulation of inflammasomes by autophagy [J]. J Allergy Clin Immunol,2016,138(1):28-36.
[20]? Ko JH,Yoon SO,Lee HJ,et al. Rapamycin regulates mac-rophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy and p62-dependent manners [J]. Oncotarget,2017,8(25):40817-40831.
[21]? Zhang DL,Zhang SW,Cheng QH,et al. Effects of peritoneal macrophage autophagy on the immune function of sepsis mice [J]. Am J Clin Exp Immunol,2017,6(4):52-59.
[22]? Wen Z,F(xiàn)an L,Li Y,et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage:role in posthemorrhagic shock acute lung inflammation [J]. J Immunol,2014,193(9):4623-4633.
[23]? Hu R,Chen ZF,Yan J,et al. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis [J]. Cell Death Dis,2014,5:e1330.
[24]? Zhou S,Gu J,Liu R,et al. Spermine Alleviates Acute Liver Injury by Inhibiting Liver-Resident Macrophage Pro-Inflammatory Response Through ATG5-Dependent Autophagy [J]. Front Immunol,2018,9:948.
[25]? Zhu J,Zhang W,Zhang L,et al. IL-7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum-infected mice [J]. J Cell Mol Med,2018,22(7):3353-3363.
[26]? Dena?觕s T,Lodder J,Chobert MN,et al. The Cannabinoid Receptor 2 Protects Against Alcoholic Liver Disease Via a Macrophage Autophagy-Dependent Pathway [J]. Sci Rep,2016,6:28806.
[27]? Ilyas G,Zhao E,Liu K,et al. Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β [J]. J Hepatol,2016,64(1):118-127.
[28]? Lodder J,Dena?觕s T,Chobert MN,et al. Macrophage autophagy protects against liver fibrosis in mice [J]. Autophagy,2015,11(8):1280-1292.
[29]? Evans TD,Jeong SJ,Zhang X,et al. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis [J]. Autophagy,2018,14(4):724-726.
[30]? Sergin I,Bhattacharya S,Emanuel R,et al. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis [J]. Sci Signal,2016,9(409):ra2.
[31]? Liu X,Tang Y,Cui Y,et al. Autophagy is associated with cell fate in the process of macrophage-derived foam cells formation and progress [J]. J Biomed Sci,2016,23(1):57.
[32]? Cuda CM,Pope RM,Perlman H. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases [J]. Nat Rev Rheumatol,2016,12(9):543-558.
[33]? Vomero M,Barbati C,Colasanti T,et al. Autophagy and Rheumatoid Arthritis:Current Knowledges and Future Perspectives [J]. Front Immunol,2018,9:1577.
[34]? Xiu Y,Xu H,Zhao C,et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation [J]. J Clin Invest,2014,124(1):297-310.