董鳳嬌 胡貝貝
摘要:本文基于Fokas統(tǒng)一變換方法分析了廣義Sasa-Satsuma方程在半直線上的初邊值問題.假設(shè)廣義S asa-Satsuma方程的解u(x,t)存在,證明了其初邊值問題的解可用復(fù)譜參數(shù)λ平面上的3×3矩陣Riemann-Hilbert問題的形式解唯一表示.
關(guān)鍵詞:Riemann-Hilbert問題; 廣義Sasa-Satsuma方程; 初邊值問題; Fokas統(tǒng)一變換
中圖分類號(hào):0175.29
文獻(xiàn)標(biāo)志碼:A
DOI: 10.3969/j.issn.1000-5641.2019.04.004
0 引言
自Gardner, Green,Kruskal,Miura發(fā)現(xiàn)了反散射變換以來,一直到20世紀(jì)90年代,反散射變換幾乎只是用來分析純初值問題,但是在現(xiàn)實(shí)自然界中,越來越多的自然現(xiàn)象需要考慮邊值條件,這樣就自然地需要考慮初邊值問題來取代初值問題.1997年,F(xiàn)okas[1]基于反散射變換的思想首次提出了統(tǒng)一變換方法,很好地求解了可積方程的初邊值問題.在過去的20年里,該方法已經(jīng)用來分析了一些具有2x2矩陣Lax對(duì)的重要可積方程的初邊值問題[2-5].就像全直線上的反散射方法一樣,F(xiàn)okas方法也是將初邊值問題的解表示成相應(yīng)的Riemann-Hilbert問題的解.2012年,Lenells[6]首次將此方法推廣到3x3矩陣可積方程,并且研究了Degasperis-Procesi方程在半直線上的初邊值問題[7]在這之后,越來越多的學(xué)者開始關(guān)注Riemann-Hilbert問題,使得許多與高階矩陣譜問題相關(guān)的可積方程初邊值問題得以研究,比如,Novikov方程[8]、Sasa-Stsuma方程[9]、耦合NLS方程等[11-12],作者在這方面也做了一些工作[13-16].
眾所周知,非線性薛定諤方程
4 結(jié)論
在本文中,我們構(gòu)造了一個(gè)新的雙模耦合KdV方程,一方面,通過簡(jiǎn)化的Hirota方法和Cole-Hopf變換,對(duì)于特殊的α、β值可得到該方程的孤子解,但對(duì)于一般的α、β值,孤子解是否存在,我們還不能確定.另一方面,通過不同的函數(shù)展開法,對(duì)于一般的α、β值,我們得到了該方程的其他精確解.
[參考文獻(xiàn)]
[1]KORSUNSKY s V Soliton solutions for a second-order KdV equation[J]Phys Lett A,1994, 185: 174-176
[2]LEE c T.LIU J L.LEE c c.et al The second-order KdV equation and its soliton-like solution[J]ModernPhysics Letters B,2009. 23:1771-1780
[3]LEE c c,LEE c T,LIU J L,et al Quasi-solitons of the two-mode Korteweg-de Vries equation[J]Eur Phys JAppl Phys, 2010,52:11301
[4]LEE c T Some notes on a two-mode Korteweg-de Vries equation[J]Phys Scr. 2010,81:065006
[5]LEE c T.LIU J L A Hamiltonian model and soliton phenomenon for a two-mode KdV equation[J]Rocky Mtith, 2011, 41:1273-1289
[6]LEE C T, LEE C C. On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system [J].Waves in Random and Complex Media, 2013, 23: 56-76.
[7] LEE C T. LEE C C. Analysis of solitonic phenomenon for a two-mode KdV equation [J]. Physics of WavePhenomena, 2014, 22: 69-80.
[8] LEE C T, LEE C C. On the study of a nonlinear higher order dispersive wave equation: Its mathematical physicalstructure and anomaly soliton phenomena [J]. Waves in Random and Complex Media, 2015, 25: 197-222.
[9]LEE C T, LEE C C. Symbolic computation on a second-order KdV equation [J]. Journal of Symbolic Computa-tion, 2016, 74: 70-95.
[10] WAZWAZ A M. Multiple soliton solutions and other exact solutions for a two-mode KdV equation [J]. MathMethods Appl Sci, 2017, 40: 2277-2283.
[11] LEE C T. LEE C C. LIU M L. Double-soliton and conservation law structures for a higher-order type ofKorteweg-de Vries equation [J] Physics Essays, 2015, 28: 633-638.
[12] ALQURAN M, JARRAH A. Jacobi elliptic function solutions for a two-mode KdV equation [J/OL]. Journal ofKing Saud University-Science, (2017-07-03) [2018-06-28l. http://dx.doi.org/10.1016/j.jksus.2017.06.010.
[13]XIAO Z J, TIAN B. ZHEN H L, et al. Multi-soliton solutions and Backlund transformation for a two-mode KdVequation in a fluid [J]. Waves in Random and Complex Media, 2017, 27: 1-14.
[14] WAZWAZ A M. A two-mode modified KdV equation with multiple soliton solutions [Jl Appl Math Lett, 2017,70: 1-6.
[15] WAZWAZ A M. A two-mode Burgers equation of weak shock waves in a fluid: Multiple kink solutions and otherexact solutions [J]. Int J Appl Comput Math, 2017, 3: 3977-3985.
[16] WAZWAZ A M. A study on a two-wave mode Kadomtsev-Petviashvili equation: Conditions for multiple solitonsolutions to exist [J] Math Methods Appl Sci, 2017, 40: 4128-4133.
[17] JARADAT H M. SYAM M, ALQURAN M. A two-mode coupled Korteweg-de Vries: Multiple-soliton solutionsand other exact solutions [J] Nonlinear Dyn, 2017, 90: 371-377.
[18] WAZWAZ A M. Two-mode fifth-order KdV equations: Necessary conditions for multiple-soliton solutions toexist [J] Nonlinear Dyn, 2017. 87: 1685-1691.
[19]WAZWAZ A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiplekink solutions [J]. Alexandria Eng J, 2018, 57: 1971-1976.
[20] JARDAT H M. Two-mode coupled Burgers equation: Multiple-kink solutions and other exact solutions [J].Alexandria Eng J, 2018, 57: 2151-2155.
[21]SYAM M, JARADAT H M, ALQURAN M. A study on the two-mode coupled modified Korteweg-de Vries usingthe simplified bilinear and the trigonoruetric-function methods [J]. Nonlinear Dyn, 2017, 90: 1363-1371.
[22]WAZWAZ A M. Two wave mode higher-order modified KdV equations: Essential conditions for multiple solitonsolutions to exist [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27: 2223-2230.
[23] HEREMAN W, NUSEIR A. Symbolic methods to construct exact solutions of nonlinear partial differentialequations [J]. Mathematics and Computers in Simulation, 1997, 43: 13-27.
[24] WAZWAZ A M. Single and multiple-soliton solutions for the (2 + 1)-dimensional KdV equation [Jl Appl MathComput, 2008, 204: 20-26.
[25] ZUO J M, ZHANG Y M. The Hirota bilinear method for the coupled Burgers equation and the high-orderBoussinesq-Burgers equation [J]. Chin Phy B, 2011, 20: 010205.
[26] WAZWAZ A M. Multiple soliton solutions for the integrable couplings of the KdV and the KP equations [J].Open Physics, 2013. 11: 291-295.
[27]WAZWAZ A M. Multiple kink solutions for two coupled integrable (2 + 1)-dimensional systems [J]. Appl MathLett, 2016, 58: 1-6.
[28] YU F J. Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy [J]. Chin Phys B,2012, 21: 010201.
[29]MALFLIET W, HEREMAN W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Scr, 1996, 54: 563-568.
[30]FAN E, HONA Y C. Generalized tanh method extended to special types of nonlinear equations [J]. Zeitschriftfur Naturforschung A, 2002, 57: 692-700.
[31]WAZWAZ A M. The tanh method for traveling wave solutions of nonlinear equations [J]. Appl Math and Comput,2004, 154: 713-723.
[32] LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinearwave equations [J]. Phys Lett A, 2001, 289: 69-74.