趙倩 白喜瑞
摘要:根據(jù)簡(jiǎn)化的Hirota雙線性方法和Cole-Hopf變換,當(dāng)一個(gè)新的雙模耦合KdV方程中的非線性參數(shù)與耗散參數(shù)取特殊值時(shí),得到了該新的雙模耦合KdV方程的多孤子解.同時(shí),當(dāng)方程中的非線性參數(shù)與耗散參數(shù)取一般值時(shí),通過(guò)不同的函數(shù)展開法,如tanh/coth法和Jacobi橢圓函數(shù)法,可得到這個(gè)方程的其他精確解.
關(guān)鍵詞:雙模耦合KdV方程; 簡(jiǎn)化的Hirota方法; 多孤子解;周期解
中圖分類號(hào):0178
文獻(xiàn)標(biāo)志碼:A
DOI: 10.3969/j.issn.1000-5641.2019.04.005
0 引言
一般來(lái)說(shuō),大多數(shù)非線性方程都是關(guān)于時(shí)間t的一階導(dǎo)數(shù)的方程,它們描述了單一方向的波.例如,KdV方程,Burgers方程等,這些模型均是沿x軸正向傳播的.而關(guān)于時(shí)間t的二階導(dǎo)數(shù)方程Boussinesq方程,它是沿x軸正向和負(fù)向兩個(gè)方向傳播的.
4 結(jié)論
在本文中,我們構(gòu)造了一個(gè)新的雙模耦合KdV方程,一方面,通過(guò)簡(jiǎn)化的Hirota方法和Cole-Hopf變換,對(duì)于特殊的α、β值可得到該方程的孤子解,但對(duì)于一般的α、β值,孤子解是否存在,我們還不能確定.另一方面,通過(guò)不同的函數(shù)展開法,對(duì)于一般的α、β值,我們得到了該方程的其他精確解.
[參考文獻(xiàn)]
[1]KORSUNSKY s V Soliton solutions for a second-order KdV equation[J]Phys Lett A,1994, 185: 174-176
[2]LEE c T.LIU J L.LEE c c.et al The second-order KdV equation and its soliton-like solution[J]ModernPhysics Letters B,2009. 23:1771-1780
[3]LEE c c,LEE c T,LIU J L,et al Quasi-solitons of the two-mode Korteweg-de Vries equation[J]Eur Phys JAppl Phys, 2010,52:11301
[4]LEE c T Some notes on a two-mode Korteweg-de Vries equation[J]Phys Scr. 2010,81:065006
[5]LEE c T.LIU J L A Hamiltonian model and soliton phenomenon for a two-mode KdV equation[J]Rocky Mtith, 2011, 41:1273-1289
[6]LEE C T, LEE C C. On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system [J].Waves in Random and Complex Media, 2013, 23: 56-76.
[7] LEE C T. LEE C C. Analysis of solitonic phenomenon for a two-mode KdV equation [J]. Physics of WavePhenomena, 2014, 22: 69-80.
[8] LEE C T, LEE C C. On the study of a nonlinear higher order dispersive wave equation: Its mathematical physicalstructure and anomaly soliton phenomena [J]. Waves in Random and Complex Media, 2015, 25: 197-222.
[9]LEE C T, LEE C C. Symbolic computation on a second-order KdV equation [J]. Journal of Symbolic Computa-tion, 2016, 74: 70-95.
[10] WAZWAZ A M. Multiple soliton solutions and other exact solutions for a two-mode KdV equation [J]. MathMethods Appl Sci, 2017, 40: 2277-2283.
[11] LEE C T. LEE C C. LIU M L. Double-soliton and conservation law structures for a higher-order type ofKorteweg-de Vries equation [J] Physics Essays, 2015, 28: 633-638.
[12] ALQURAN M, JARRAH A. Jacobi elliptic function solutions for a two-mode KdV equation [J/OL]. Journal ofKing Saud University-Science, (2017-07-03) [2018-06-28l. http://dx.doi.org/10.1016/j.jksus.2017.06.010.
[13]XIAO Z J, TIAN B. ZHEN H L, et al. Multi-soliton solutions and Backlund transformation for a two-mode KdVequation in a fluid [J]. Waves in Random and Complex Media, 2017, 27: 1-14.
[14] WAZWAZ A M. A two-mode modified KdV equation with multiple soliton solutions [Jl Appl Math Lett, 2017,70: 1-6.
[15] WAZWAZ A M. A two-mode Burgers equation of weak shock waves in a fluid: Multiple kink solutions and otherexact solutions [J]. Int J Appl Comput Math, 2017, 3: 3977-3985.
[16] WAZWAZ A M. A study on a two-wave mode Kadomtsev-Petviashvili equation: Conditions for multiple solitonsolutions to exist [J] Math Methods Appl Sci, 2017, 40: 4128-4133.
[17] JARADAT H M. SYAM M, ALQURAN M. A two-mode coupled Korteweg-de Vries: Multiple-soliton solutionsand other exact solutions [J] Nonlinear Dyn, 2017, 90: 371-377.
[18] WAZWAZ A M. Two-mode fifth-order KdV equations: Necessary conditions for multiple-soliton solutions toexist [J] Nonlinear Dyn, 2017. 87: 1685-1691.
[19]WAZWAZ A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiplekink solutions [J]. Alexandria Eng J, 2018, 57: 1971-1976.
[20] JARDAT H M. Two-mode coupled Burgers equation: Multiple-kink solutions and other exact solutions [J].Alexandria Eng J, 2018, 57: 2151-2155.
[21]SYAM M, JARADAT H M, ALQURAN M. A study on the two-mode coupled modified Korteweg-de Vries usingthe simplified bilinear and the trigonoruetric-function methods [J]. Nonlinear Dyn, 2017, 90: 1363-1371.
[22]WAZWAZ A M. Two wave mode higher-order modified KdV equations: Essential conditions for multiple solitonsolutions to exist [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27: 2223-2230.
[23] HEREMAN W, NUSEIR A. Symbolic methods to construct exact solutions of nonlinear partial differentialequations [J]. Mathematics and Computers in Simulation, 1997, 43: 13-27.
[24] WAZWAZ A M. Single and multiple-soliton solutions for the (2 + 1)-dimensional KdV equation [Jl Appl MathComput, 2008, 204: 20-26.
[25] ZUO J M, ZHANG Y M. The Hirota bilinear method for the coupled Burgers equation and the high-orderBoussinesq-Burgers equation [J]. Chin Phy B, 2011, 20: 010205.
[26] WAZWAZ A M. Multiple soliton solutions for the integrable couplings of the KdV and the KP equations [J].Open Physics, 2013. 11: 291-295.
[27]WAZWAZ A M. Multiple kink solutions for two coupled integrable (2 + 1)-dimensional systems [J]. Appl MathLett, 2016, 58: 1-6.
[28] YU F J. Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy [J]. Chin Phys B,2012, 21: 010201.
[29]MALFLIET W, HEREMAN W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Scr, 1996, 54: 563-568.
[30]FAN E, HONA Y C. Generalized tanh method extended to special types of nonlinear equations [J]. Zeitschriftfur Naturforschung A, 2002, 57: 692-700.
[31]WAZWAZ A M. The tanh method for traveling wave solutions of nonlinear equations [J]. Appl Math and Comput,2004, 154: 713-723.
[32] LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinearwave equations [J]. Phys Lett A, 2001, 289: 69-74.