国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類代數(shù)上的弱可加交換映射

2019-10-28 02:19霍東華
關(guān)鍵詞:代數(shù)

霍東華

摘要:設(shè)A是一個(gè)有單位元1的代數(shù).稱映射f:A→A是一個(gè)弱可加映射,如果滿足對任意的x,y∈A,存在tx,y,sx,y∈IF使得f(x+y)=tx,yf(x)+sx,yf (y)成立.本文證明了在一定的假設(shè)下,如果,是交換映射,則存在Ao(x)∈4和一個(gè)從4到Z(A)的映射Ai,使得對所有的x∈A有f(x)=λ0(x)x+ λ1(x).作為應(yīng)用,刻畫了Mn (IF)上一類交換的弱可加映射.

關(guān)鍵詞:代數(shù); 交換映射; 弱可加映射

中圖分類號:0152.2

文獻(xiàn)標(biāo)志碼:A

DOI: 10.3969/j.issn.1000-5641.2019.04.001

[參考文獻(xiàn)]

[1]POSNER E c Derivation in prime rings [J]. Proceedings of American Mathematical Society. 1957, 8(6): 1093-1100

[2]BRESAR M. Centralizing mappings on von Neumann algebras [J]. Proceedings of American Mathematical So-ciety, 1991, 111(2): 501-510.

[3]BRESAR M. Centralizing mappings and derivations in prirue rings [J]. Journal of Algebra, 1993, 156(2) : 385-394.

[4] MAYNE J H. Centralizing automorphisms of prime rings [J]. Canadian Matheruatical Bulletin, 1976, 19(1):113-115.

[5]BRESAR M, MARTINDLE W S, MIERS C R. Centralizing maps in prime ring with involution [Jl Journal ofAlgebra, 1993, 161(2): 342-357.

[6]LEE T K.σ-Commuting mappings in semiprime rings [J]. Communications in Algebra, 2001, 29(7): 2945-2951.

[7]LEE T K. Derivations and centralizing mappings in prime rings [J]. Taiwanese Journal of Mathematics, 1997,1(3): 333-342.

[8]LEE T C. Derivations and centralizing maps on skew elements [J] . Soochow Journal of Mathematics, 1998, 24(4):273-290.

[9]FILIPPIS V D, DHARA B. Some results concerning n - σ-centralizing mappings in semiprime rings [J]. ArabianJournal of Mathematics, 2014, 3(1): 15-21.

[10] DU Y Q, WANG Y. k-Commuting maps on triangular algebras [J] Linear Algebra and its Applications, 2012,436(5): 1367-1375.

[11]LI Y B, WEI F. Semi-centralizing maps of generalized matrix algebras [J]. Linear Algebra and its Applications,2012, 436(5): 1122-1153.

[12]Qi x F, HOU J C. Characterization of k-commuting additive maps on rings [J]. Linear Algebra and its Applica-tions, 2015, 468: 48-62.

[13]ALI S, DAR N A. On *-centralizing mappings in rings with involution [J]. Georgian Mathematical Journal, 2014,21(1): 25-28.

[14]BRESAR M. Commuting Maps: A survey [J], Taiwanese Journal of Mathematics, 2004, 8(3): 361-397.

[15] BRESAR M, SEMRL P. Commuting traces of biadditive maps revisited [J] Comruunications in Algebra, 2003,31(1): 381-388.

[16]BAI Z F. DU S P. Strong commutativity preserving maps on rings [J]. Rocky Mountain Journal of Mathematics,2014, 44(3) : 733-742.

猜你喜歡
代數(shù)
無限維3-Pre-李代數(shù)
一個(gè)特殊四維左對稱代數(shù)上的Rota睟axter算子
3-李-Rinehart代數(shù)的結(jié)構(gòu)
山西省2018年專升本選拔考試 高等代數(shù)
一類代數(shù)系統(tǒng)正解的存在性與特征區(qū)間
單側(cè)π—模理想
構(gòu)造圖形法解一類代數(shù)題
三角問題向量化向量問題代數(shù)化
實(shí)施正、余弦函數(shù)代換破解一類代數(shù)問題
一個(gè)新發(fā)現(xiàn)的優(yōu)美代數(shù)不等式及其若干推論
乌兰县| 温泉县| 古田县| 确山县| 北安市| 平罗县| 淮南市| 福贡县| 湖北省| 吴旗县| 普兰店市| 泸西县| 高尔夫| 临颍县| 宜宾县| 九龙县| 榆林市| 屏山县| 浦北县| 江津市| 襄樊市| 宝应县| 太仆寺旗| 吉木萨尔县| 台前县| 海伦市| 泸水县| 兴山县| 法库县| 吴忠市| 德州市| 寻甸| 双辽市| 安化县| 岚皋县| 叶城县| 福安市| 炎陵县| 宝清县| 满洲里市| 中超|