摘要:給出了分形實(shí)線集Rα(O<α≤1)上廣義調(diào)和擬凸函數(shù)的定義,并且建立了一些關(guān)于廣義調(diào)和擬凸函數(shù)的推廣的Hermite-Hadamard型和Simpson型積分不等式,最后給出了文中得到的積分不等式在分形實(shí)線上關(guān)于α型特殊均值的一些應(yīng)用,
關(guān)鍵詞:廣義調(diào)和擬凸函數(shù);Hermite-Hadamard型不等式;Simpson型不等式;分形集;局部分?jǐn)?shù)階積分
中圖分類號:0178
文獻(xiàn)標(biāo)志碼:A
DOI: 10.3969/j.issn.1000-5641.2019.04.007
0 引言
函數(shù)凸性在數(shù)學(xué)與應(yīng)用數(shù)學(xué)領(lǐng)域起到非常重要的作用,如在優(yōu)化領(lǐng)域、經(jīng)濟(jì)領(lǐng)域等均有重要應(yīng)用.一些學(xué)者由此建立了許多涉及函數(shù)凸性的不等式,尤其像著名的Hermite-Hadamard不等式和Simpson不等式.
對于這兩類經(jīng)典不等式的推廣研究,讀者可以參考文獻(xiàn)[1-10].
近年來,分形理論受到廣泛關(guān)注,在分形集上.Yang介紹了局部分?jǐn)?shù)階微積分及其應(yīng)用,參見文獻(xiàn)[11-12].關(guān)于分形空間上局部分?jǐn)?shù)階微積分的相關(guān)結(jié)果,讀者可以參閱文獻(xiàn)[13-16].最近,越來越多的研究者把凸函數(shù)的相關(guān)理論以及Hermite-Hadamard型不等式的相關(guān)結(jié)果也推廣到分形空間,如文獻(xiàn)[17-24]。
基于分形空間上局部分?jǐn)?shù)階微積分理論,本文給出了廣義調(diào)和擬^函數(shù)的定義,并且建立了一些涉及廣義調(diào)和擬凸函數(shù)和局部分?jǐn)?shù)階微積分的推廣的Hermite-Hadamard型以及Simpson型不等式,
[參考文獻(xiàn)]
[1]LATIF M A, SHOAIB M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (a, m)-preinvex functions [J]. Journal of the Egyptian Mathematical Society, 2015, 23: 236-241.
[2]iSCAN i. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions[J/OL]. J Math, 2014, Article ID 346305, 10 pages. http://dx.doi.org/10.1155/2014/346305.
[3]CHUN L, QI F. Inequalities of Simpson type for functions whose third derivatives are extended s-convex functionsand applications to means [J] . J Comp Anal Appl, 2015, 19(3): 555 - 569.
[4]SUN W B, LIU Q. New Hermite-Hadamard type inequalities for (a, m)-convex functions and applications tospecial means [Jj. J Math Inequal, 2017, 11(2): 383-397.
[5]iSCAN i. Hermite - Hadamard type inequalities for harmonically convex functions [J]. Hacet J Math Stat, 2014,43(6): 935-942.
[6]ZHANG T, JI A, QI F. Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions[J] Proceedings of the Jangjeon Mathematical Society, 2013, 16(3): 399-407.
[7]LI Y, DU T. Some Simpson type integral inequalities for functions whose third derivatives are (a, m)-GA-convexfunctions [J]. Journal of the Egyptian Mathematical Society, 2016, 24(2): 175-180.
[8]QAISAR S, HE C J, HUSSAIN S. A generalizations of Simpson's type inequality for differentiable functionsusing (a, m)-convex functions and applications [J] J Inequal Appl, 2013: 158.
[9]WANG W, QI J B. Some new estimates of Hermite-Hadamard inequalities for harmonically convex functionswith applications [Jl International Journal of Analysis and Applications, 2017, 11(1): 15-21.
[10] CHEN F, WU S. Some Hermite-Hadamard type inequalities for harmonically s-convex functions [J] . The ScientificWorld Journal, 2014, Article ID 279158, 7 pages.
[11] YANG X J. Advanced Local Fractional Calculus and Its Applications [Ml. NewYork: World Science Publisher,2012.
[12] YANG X J. Local Fractional Functional Analysis and Its Applications [M]. Hong Kong: Asian Academic Pub-lisher, 2011.
[13]YANG X J, GAO F, SRIVASTAVA H M. New theological models within local fractional derivative [J]. Rom RepPhys, 2017, 69(3) , Article ID 113, 1-12.
[14] YANG X J, MACHADO J T, CATTANI C, et al. On a fractal LC-electric circuit modeled by local fractionalcalculus [Jl Communications in Nonlinear Science and Numerical Simulation, 2017, 47: 200-206.
[15] YANG X J, GAO, F, SRIVASTAVA H M. Non-differentiable exact solutions for the nonlinear odes defined onfractal sets [J]. Fractals, 2017, 25(4), 1740002 (9pages).
[16]YANG X J. MACHADO J T. On exact traveling-wave solution for local fractional Boussinesq equation in fractaldomain [J] FYactals, 2017, 25(4), 1740006 (7pages).
[17] 孫文兵分間上的J新 Hadamard等式及應(yīng)用 [J] .華東師范大學(xué)學(xué)報(bào) (自然科學(xué)版) , 2017(6) : 33-41.
[18] MO H X, SUI X, YU D. Generalized convex functions on fractal sets and two related inequalities [Jl Abstractand Applied Analysis, 2014, Article ID 636751 (7 pages).
[19] ERDENA S, SARIKAYA M Z. Generalized Pompeiu type inequalities for local fractional integrals and its ap-plications [J]. Applied Mathematics and Computation, 2016, 274: 282-291.
[20] 孫文兵,劉瓊數(shù)的上廣義凸函數(shù)的新 Hermite-Hadamard型不等式及其應(yīng)用 [J]浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2017, 44(1):47-52.
[21] SUN W B. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type in-equalities [J]. Journal of Nonlinear Sciences and Applications, 2017(10): 5869-5880.
[22]SET E, UYGUN N, TOMAR M. New inequalities of Hermite-Hadamard type for generalized quasi-convex func-tions with applications [Jl AIP Conference Proceedings, 2016, 1726(1): 1-5.
[23] MO H X, SUI X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractalset Ra(0 < a < 1) [Jl Mathematical Sciences, 2017, 11(3): 241-246.
[24]SARIKAYA M Z, BUDAK H. Generalized Ostrowski type inequalities for local fractional integrals [J]. Proceed-ings of the American Mathematical Society, 2017, 145(4): 1527-1538.