代麗麗
摘要:通過運用截斷方法研究了一類帶有變指數(shù)的橢圓方程.先利用變指數(shù)情形下的Marcinkiewicz估計,在得到逼近解序列的截斷函數(shù)先驗估計的基礎(chǔ)上,選取適當?shù)臋z驗函數(shù)對逼近解序列做出估計,以此得出這類橢圓方程在加權(quán)Sobolev空間中熵解的存在性.
關(guān)鍵詞:退化橢圓方程; 加權(quán)Sobolev空間; 變指數(shù); 截斷函數(shù)
中圖分類號:0175.2
文獻標志碼:A
DOI: 10.3969/j.issn.1000-5641.2019.04.006
0 引言
近幾十年來,因為橢圓方程在幾何學(xué)、電磁學(xué)、彈性力學(xué)、流體力學(xué)中都有著重要應(yīng)用,所以該選題一直都是學(xué)者們關(guān)注的重點內(nèi)容.隨著研究的不斷深入,帶有變指數(shù)的偏微分模型走進了學(xué)者們的視野,它主要來源于電流變流體[1],可以描述非Newton流體的熱對流效應(yīng)[2]以及熱動力學(xué)中的一些演化現(xiàn)象[3],非齊次媒質(zhì)的熱與物質(zhì)交換[4]等,還可應(yīng)用于力學(xué)[5],圖像學(xué)[6]等多方面.與常指數(shù)偏微分模型相比它具有更多的優(yōu)勢,能夠更為實際和精準地描述擴散過程.
[參考文獻]
[1]RUZICKA M. Electrorheological fluids: Modeling and Mathematical Theory [M]. Berlin: Springer-Verlag, 2000.
[2]ANTONTSEV S N, DfAZ J I, DE OLIVEIRA H B. Thermal effects without phase changing [J]. Progress inNonlinear Differential Equations and Their Application, 2015, 61: 1-14.
[3]ELEUTERI M, HABERMANN J. Calderon-Zygmund type estimates for a class of obstacle problems with p(x)growth[J]. J Math Anal Appl, 2010, 372: 140-161.
[4]RODRIGUES J F, SANCHON M. URBANO J M. The obstacle problem for nonlinear elliptic equations withvariable growth and L1-data[J]. Monatsh Math, 2008, 154: 303-322.
[5]BLANCHARD D, GUIBE 0. Existence of a solution for a nonlinear system in thermoviscoelasticity[Jl. AdvDifferential Equations, 2000, 5: 1221-1252.
[6]HARJULEHTO P, HASTO P, LATVALA V, et al. Critical variable exponent functionals in image restoration[J].Appl Math Lett, 2013. 26: 56-60.
[7]GOL'DSHTEIN V. UKHLOV A. Weighted Sobolev spaces and embedding theorems[J]. Trans Amer Math Soc,2009. 361: 3829-3850.
[8]BLANCHARD D, MURAT F, REDWANE H. Existence and uniqueness of a renormalized solution for a fairlygeneral class of nonlinear parabolic problems [J]. J Differential Equations, 2001, 177(2): 331-374.
[9]DAI L L, GAO W J, LI Z Q. Existence of solutions for degenerate elliptic problems in weighted Sobolev space[J].Journal of Function Spaces, 2015, 2015: 1-9.
[10]ZHANG C, ZHOU S. Entropy and renormalized solutions for the p(x)-Laplacian equation with measure data[Jl.Bull Aust Math Soc, 2010. 82: 459-479.
[11] 代麗麗,曹春玲. 一類具權(quán)函數(shù)的退化橢圓方程的性質(zhì)[J].吉林大學(xué)學(xué)報(理學(xué)版), 2018, 56: 589-593.
[12]LIONS J L. Quelques methodes de resolution des problemes aux limites non lineaires[M]. Paris: Dunod, 1969.