(浙江工業(yè)大學(xué) 建筑工程學(xué)院,浙江 杭州 310023)
自1956年世界第一座現(xiàn)代斜拉橋——瑞典的斯特洛姆桑特橋建造以后,斜拉橋以其較強(qiáng)的跨越能力和良好的經(jīng)濟(jì)性能在400~1 000 m跨徑范圍得到了廣泛的應(yīng)用。本世紀(jì)以來(lái),蘇通長(zhǎng)江大橋(1 088 m)、香港昂船洲大橋(1 018 m)和俄羅斯海參威Russky島大橋(主跨1 104 m)的相繼建成實(shí)現(xiàn)了斜拉橋主跨超千米的突破。為適應(yīng)世界橋梁工程的跨海聯(lián)島工程建設(shè)的需要,斜拉橋的跨徑仍將持續(xù)增大[1]。當(dāng)前,大跨度斜拉橋基本都采用斜拉索全自錨體系。全自錨式斜拉橋主跨進(jìn)入超千米領(lǐng)域后,塔梁交界處主梁承受的過(guò)大軸向壓力以及由此產(chǎn)生的主梁屈曲問(wèn)題,已成為限制斜拉橋跨徑進(jìn)一步增大的關(guān)鍵問(wèn)題[1]。為解決塔梁交接處主梁軸壓過(guò)大問(wèn)題,丹麥Gimsing[2]和法國(guó)Muller[3]等學(xué)者研究相繼提出了部分地錨式斜拉橋結(jié)構(gòu)體系,該體系將邊跨部分斜拉索集中錨固于地錨上,中跨跨中部分區(qū)段采用纜索吊裝施工,該部分斜拉索索力水平分力轉(zhuǎn)化為主梁中的拉力,從而減小塔梁交接處主梁承受的軸向壓力。已有研究表明:部分地錨斜拉橋的結(jié)構(gòu)設(shè)計(jì)和施工都是可行的,且相對(duì)于同跨徑全自錨式斜拉橋具有主梁壓力減小、穩(wěn)定性提高和結(jié)構(gòu)剛度增大等優(yōu)點(diǎn)[4]。
近年來(lái),國(guó)內(nèi)外學(xué)者對(duì)部分地錨斜拉橋的結(jié)構(gòu)體系[4-5]、靜力性能[6-9]、經(jīng)濟(jì)性能[10]、動(dòng)力特性[11]以及抗風(fēng)性能[12-13]等方面開(kāi)展了大量的研究工作,但對(duì)重要的結(jié)構(gòu)抗震問(wèn)題基本未涉及。眾所周知,大跨度部分地錨式斜拉橋是一種柔性結(jié)構(gòu)體系,水平剛度小,地震作用下的結(jié)構(gòu)性能是其設(shè)計(jì)需要考慮的重要因素。為此,筆者以一主跨1 400 m的部分地錨式斜拉橋設(shè)計(jì)方案為背景,采用反應(yīng)譜法和時(shí)程分析法進(jìn)行E1和E2地震作用下的結(jié)構(gòu)地震反應(yīng)分析,揭示其抗震性能特點(diǎn)以及結(jié)構(gòu)非線性對(duì)地震反應(yīng)的影響,在此基礎(chǔ)上通過(guò)與相同主跨的全自錨式斜拉橋方案地震反應(yīng)的對(duì)比分析,從抗震性能角度探討部分地錨式斜拉橋結(jié)構(gòu)應(yīng)用于超千米主跨橋梁的適用性。
如圖1所示為主跨1 400 m的部分地錨式斜拉橋設(shè)計(jì)方案[14],采用全漂浮體系,橋跨布置為444+1 400+444 m,邊主跨徑比為0.317,兩側(cè)邊跨內(nèi)距離邊墩144 m處各設(shè)置一個(gè)輔助墩;中跨自錨梁段長(zhǎng)度1 000 m,跨中400 m梁段通過(guò)邊跨拉索錨固在地錨上;主梁為高4.5 m和寬41 m的扁平鋼箱梁,跨高比為311,跨寬比為34.1,寬高比為9.1;橋塔為A型橋塔,采用鋼筋混凝土結(jié)構(gòu),塔高357 m,其中橋面以上高度為287 m,高跨比為0.205。橋塔分別在塔梁連接處設(shè)置下橫梁,并在拉索錨索區(qū)下端設(shè)置上橫梁;斜拉索采用空間傾斜扇形雙索面布置,共計(jì)304 根(38×2×4),其中兩側(cè)邊跨共計(jì)52(13×4)根斜拉索錨于地錨上。
圖1 主跨1 400 m部分地錨式斜拉橋立面布置圖(單位:m)Fig.1 Elevation of a partially ground-anchored cable-stayed bridge with main span of 1 400 m
采用Midas/Civil有限元分析軟件,建立了如圖2所示的結(jié)構(gòu)三維有限元模型,共計(jì)663 個(gè)節(jié)點(diǎn)和932 個(gè)單元,主梁、橋塔和橫梁采用空間梁?jiǎn)卧M,斜拉索則采用空間桁架單元模擬,橋面主梁采用魚(yú)骨式計(jì)算模型,斜拉索與主梁之間連接采用剛臂單元模擬。結(jié)構(gòu)模型約束信息為:主梁縱向漂浮,主梁與邊墩和輔助墩之間的橫橋向、豎向、繞縱軸三個(gè)方向自由度保持從屬關(guān)系,沿橋縱向位移、繞橫軸和豎軸轉(zhuǎn)動(dòng)自由;主梁與橋塔下橫梁之間只有豎向約束,其他方向位移自由;橋塔底部和地錨處均按固結(jié)處理。
圖2 結(jié)構(gòu)三維有限元模型Fig.2 3D structural finite element model
采用Midas/Civil有限元分析軟件的“未知荷載系數(shù)”功能和調(diào)索工具對(duì)該橋成橋狀態(tài)的斜拉索初始索力進(jìn)行分析,在此基礎(chǔ)上考慮斜拉索初始索力、結(jié)構(gòu)自重和二期恒載的共同作用,通過(guò)結(jié)構(gòu)三維幾何非線性有限元分析計(jì)算出成橋狀態(tài)結(jié)構(gòu)的幾何和內(nèi)力狀態(tài),以此作為后續(xù)結(jié)構(gòu)動(dòng)力特性和地震反應(yīng)分析的基準(zhǔn)態(tài)。
在計(jì)算成橋狀態(tài)基礎(chǔ)上,采用Midas/Civil有限元分析軟件的子空間迭代法分析了成橋狀態(tài)結(jié)構(gòu)的前230 階振型,成橋狀態(tài)橋面主梁的相關(guān)主要振型如表1所示。
表1 橋面主梁振型及自振頻率Table 1 Natural frequencies and modes of the girder
① 數(shù)字表示振型序號(hào);S表示對(duì)稱振型;AS表示反對(duì)稱振型。下同。
從表1結(jié)果可知:部分地錨式斜拉橋結(jié)構(gòu)動(dòng)力特性具有如下的特點(diǎn):1) 結(jié)構(gòu)基頻小,基本周期長(zhǎng)(達(dá)到了14.6 s),說(shuō)明大跨度部分地錨式斜拉橋是一種柔性結(jié)構(gòu),結(jié)構(gòu)的非線性效應(yīng)將會(huì)比較顯著;2) 橋面主梁的側(cè)彎振型最早出現(xiàn),緊接著是豎彎振型,而扭轉(zhuǎn)振型出現(xiàn)比較晚,一階豎彎和側(cè)彎振型的基頻比值達(dá)到2.893∶1,說(shuō)明了大跨度部分地錨式斜拉橋的平面外剛度小,對(duì)風(fēng)和地震等橫向動(dòng)力作用將會(huì)非常敏感;3) 結(jié)構(gòu)自振頻率密集分布,較窄的頻帶上分布著較多的振型,說(shuō)明振型間的運(yùn)動(dòng)耦合強(qiáng)烈,因此大跨度部分地錨式斜拉橋的地震反應(yīng)譜分析時(shí)其振型組合應(yīng)采用CQC法。
采用Midas/Civil有限元分析軟件,對(duì)設(shè)計(jì)方案橋進(jìn)行E1和E2地震作用下的反應(yīng)譜分析和時(shí)程分析,揭示其地震反應(yīng)特點(diǎn)以及結(jié)構(gòu)非線性的影響。
設(shè)計(jì)方案橋?yàn)锳類橋梁,橋址處抗震設(shè)防烈度為7 度;水平向設(shè)計(jì)基本地震動(dòng)加速度峰值為0.10 g;場(chǎng)地類型為Ⅲ類,場(chǎng)地土特征周期為0.55 s;結(jié)構(gòu)阻尼比為3%。根據(jù)《公路橋梁抗震細(xì)則》(JTG/T B02-01—2008)[15]確定分析采用的地震動(dòng)反應(yīng)譜,E1和E2地震作用的水平設(shè)計(jì)加速度反應(yīng)譜如圖3所示,豎向地震動(dòng)加速度反應(yīng)譜取為相應(yīng)水平設(shè)計(jì)加速度反應(yīng)譜的1/2。
圖3 水平設(shè)計(jì)加速度反應(yīng)譜Fig.3 Horizontal design acceleration spectrum
以上述規(guī)范反應(yīng)譜為目標(biāo),采用三角級(jí)數(shù)迭加法擬合水平和豎向地震動(dòng)加速度時(shí)程曲線,作為后續(xù)時(shí)程分析的地震動(dòng)輸入。限于篇幅,圖4僅給出E1和E2地震動(dòng)作用下各一條人工水平地震動(dòng)加速度時(shí)程曲線及其反應(yīng)譜與目標(biāo)譜的比較。
圖4 人工擬合的水平震動(dòng)加速度時(shí)程及其反應(yīng)譜與目標(biāo)譜的比較Fig.4 Comparison of the artificial horizontal seismic time histories and response spectrums with target spectrums
基于MIDAS/Civil有限元分析軟件,在E1和E2地震作用下,采用多振型地震反應(yīng)譜分析方法,考慮結(jié)構(gòu)前230 階振型參與,對(duì)該設(shè)計(jì)方案橋分別進(jìn)行縱向、橫向和豎向地震作用的結(jié)構(gòu)地震反應(yīng)分析,各振型的地震反應(yīng)采用CQC方法組合。限于篇幅,在此僅給出橋塔和主梁的地震反應(yīng)峰值,如表2所示。
表2 結(jié)構(gòu)地震反應(yīng)峰值Table 2 Structural seismic response peak values
注:縱向和豎向地震作用下橋塔的彎矩和剪力均為縱橋向,主梁的彎矩和剪力則為豎向。下同。
由于重要性系數(shù)Ci的取值不同,E2地震作用的加速度反應(yīng)譜最大值是E1地震作用的1.7倍,表3的E2各向地震作用下的結(jié)構(gòu)內(nèi)力和位移峰值約為表2的E1地震作用下相應(yīng)反應(yīng)峰值的1.7倍,說(shuō)明了分析結(jié)果的可靠性。結(jié)合結(jié)構(gòu)的地震反應(yīng)包絡(luò)圖以及對(duì)表2,3的結(jié)構(gòu)地震反應(yīng)峰值進(jìn)行綜合分析,超大跨度部分地錨式斜拉橋的地震反應(yīng)具有以下特點(diǎn):
1) 縱向地震作用下,橋塔順橋向振動(dòng),主梁則表現(xiàn)為順橋向和豎向耦合振動(dòng)。橋塔塔頂處的縱向位移最大,并在塔底截面產(chǎn)生最大縱橋向彎矩、剪力和軸力;主梁沿橋軸向的縱向位移基本一致,并在中跨跨中附近產(chǎn)生最大豎向位移。主梁的最大豎向彎矩和剪力均出現(xiàn)在邊跨輔助墩處,其次為中跨跨中處。與主梁相比,縱向地震作用下橋塔受力更加顯著,并應(yīng)特別重視塔底截面的抗震設(shè)計(jì)。
2) 橫向地震作用下,橋塔和主梁同時(shí)產(chǎn)生橫橋向振動(dòng)。橋塔最大位移發(fā)生在橋塔上橫梁附近,最大橫向彎矩出現(xiàn)在塔梁連接處,最大橫向剪力和軸力則出現(xiàn)在塔底。主梁最大橫向位移出現(xiàn)在中跨跨中;最大橫向彎矩發(fā)生在塔梁連接處,中跨跨中橫向彎矩次之;最大橫向剪力發(fā)生在邊跨輔助墩附近,塔梁連接處次之。與縱向地震作用相比,橋塔和主梁的橫向地震反應(yīng)更為顯著,橫向地震作用對(duì)結(jié)構(gòu)受力更為不利,同時(shí)應(yīng)特別重視塔梁交接處橋塔塔柱和主梁截面的抗震設(shè)計(jì)。
3) 豎向地震作用下,橋塔和主梁的振動(dòng)形式與縱向地震作用基本相同。橋塔最大縱向位移出現(xiàn)在塔頂處,最大縱向彎矩、剪力和軸力都出現(xiàn)在塔底;主梁最大豎向位移出現(xiàn)在中跨跨中;最大豎向彎矩出現(xiàn)在輔助墩附近,中跨跨中次之;最大剪力也出現(xiàn)在輔助墩附近,最大軸力則出現(xiàn)在跨中。
4) 縱向和橫向地震作用下結(jié)構(gòu)的地震反應(yīng)均顯著大于豎向地震作用,因此應(yīng)重視水平地震作用下超大跨度部分地錨式斜拉橋的抗震性能。同時(shí),在縱向、橫向和豎向地震綜合作用下,橋塔的塔底和塔梁交接處、主梁的塔梁交接處和邊跨輔助墩處的地震反應(yīng)均非常大,應(yīng)特別重視這些截面的抗震設(shè)計(jì)。
表3 結(jié)構(gòu)地震時(shí)程反應(yīng)峰值Table 3 Structural time-history seismic response peak values
從前述的結(jié)構(gòu)動(dòng)力特性分析可知超大跨度部分地錨式斜拉橋是一種柔性結(jié)構(gòu),結(jié)構(gòu)的幾何非線性效應(yīng)將比較顯著。為了揭示結(jié)構(gòu)幾何非線性對(duì)超大跨度部分地錨式斜拉橋地震反應(yīng)的影響,采用如圖4的人工地震動(dòng)時(shí)程曲線,對(duì)該橋進(jìn)行E1和E2地震作用的縱向、橫向和豎向地震動(dòng)輸入的非線性時(shí)程分析。分析時(shí),每個(gè)方向均分別采用3條人工地震動(dòng)時(shí)程曲線輸入進(jìn)行分析,最后提取3組地震動(dòng)計(jì)算結(jié)果的最大值列于表3。
與反應(yīng)譜分析結(jié)果相比較發(fā)現(xiàn),時(shí)程分析得到的主梁和橋塔的位移和內(nèi)力峰值和出現(xiàn)位置基本相同,結(jié)構(gòu)的地震反應(yīng)特點(diǎn)一致。
為了揭示結(jié)構(gòu)幾何非線性對(duì)大跨度部分地錨式斜拉橋地震反應(yīng)的影響,在此將上述的反應(yīng)譜和時(shí)程分析結(jié)果進(jìn)行比較。規(guī)范指出:若同時(shí)考慮順橋向、橫橋向和豎向地震作用時(shí),可分別單獨(dú)計(jì)算各方向地震作用產(chǎn)生的最大效應(yīng),總的最大地震作用效應(yīng)取為各方向最大地震效應(yīng)平方和的平方根[14]。為使分析結(jié)果比較更直觀,在此采用規(guī)范組合值進(jìn)行比較,E1和E2地震作用下結(jié)構(gòu)地震反應(yīng)譜與時(shí)程分析結(jié)果比較如表4所示。
表4 結(jié)構(gòu)地震反應(yīng)譜與時(shí)程分析結(jié)果比較Table 4 Comparison of the results obtained by response spectrum and time-history analysis
從表4結(jié)果比較可以看出:E1和E2地震作用下,除了主塔軸力和主梁的豎向位移外,其余內(nèi)力和位移的峰值結(jié)果均為時(shí)程分析大于反應(yīng)譜分析,且E2地震作用下兩者的差異顯著大于E1地震作用情況。究其原因主要是時(shí)程分析考慮結(jié)構(gòu)的幾何非線性效應(yīng),結(jié)構(gòu)的整體剛度降低,使其地震反應(yīng)明顯增大。因此,在進(jìn)行大跨度尤其是超大跨度部分地錨式斜拉橋地震反應(yīng)分析時(shí),建議采用非線性時(shí)程分析方法以準(zhǔn)確評(píng)估結(jié)構(gòu)的抗震性能。
以蘇通大橋?yàn)樵?,擬定了如圖5的全自錨式斜拉橋方案,采用全漂浮體系,橋跨布置為(636+1 400+636) m,邊主跨徑比為0.454,兩側(cè)邊跨內(nèi)距離邊墩156 m和336 m處各設(shè)置1 個(gè)輔助墩。主梁和橋塔結(jié)構(gòu)形式與前述部分地錨式斜拉橋設(shè)計(jì)方案一致,斜拉索采用空間傾斜扇形雙索面布置,共計(jì)304 根(38×4×2)。
圖5 主跨1 400 m全自錨式斜拉橋立面布置圖(單位:m)Fig.5 Elevation of a fully self-anchored cable-stayed bridge with main span of 1 400 m
采用Midas/Civil有限元分析軟件建立了全自錨式方案橋的三維有限元模型,如圖6所示,總計(jì)有741 個(gè)節(jié)點(diǎn),1 014 個(gè)單元。采用子空間迭代法分析了全自錨式斜拉橋方案成橋狀態(tài)的前200階振型,與相同跨徑的部分地錨式斜拉橋成橋狀態(tài)自振頻率的比較見(jiàn)表5。
圖6 結(jié)構(gòu)三維有限元模型Fig.6 3D structural finite element model
單位:Hz
由表5的結(jié)果比較發(fā)現(xiàn):兩者的一階頻率都很小,基本周期均很長(zhǎng),說(shuō)明兩者均屬于大跨柔性結(jié)構(gòu);部分地錨式斜拉橋的各階正對(duì)稱豎彎頻率和側(cè)彎頻率均大于全自錨式斜拉橋,扭轉(zhuǎn)基頻略小,說(shuō)明邊跨部分斜拉索由自錨改為地錨后結(jié)構(gòu)的豎向和側(cè)向剛度均得到提高,部分地錨式斜拉橋的結(jié)構(gòu)剛度優(yōu)于全自錨式斜拉橋。
采用“4.1地震動(dòng)輸入”所述的加速度反應(yīng)譜和地震動(dòng)加速度時(shí)程曲線,對(duì)自錨式斜拉橋方案進(jìn)行E1和E2地震作用下的反應(yīng)譜分析和時(shí)程分析,其計(jì)算結(jié)果與部分地錨式斜拉橋的比較如表6,7所示。
表6 不同橋型反應(yīng)譜分析的地震反應(yīng)峰值比較Table 6 Comparison of seismic response peak values of different bridges by response spectrum analysis
表7 不同橋型地震時(shí)程反應(yīng)峰值比較Table 7 Comparison of seismic time-history response peak values of different bridges
在相同地震作用下,全自錨式斜拉橋主塔的內(nèi)力和位移均顯著大于部分地錨式斜拉橋,特別是縱向彎矩和縱向位移,說(shuō)明邊跨部分斜拉索采用地錨后,地錨式斜拉索對(duì)橋塔的縱橋向約束明顯增強(qiáng),橋塔的抗震性能顯著提高。同樣地,在相同地震作用下,除橫向彎矩和橫向剪力外,部分地錨式斜拉橋主梁的各項(xiàng)內(nèi)力均大于全自錨式斜拉橋;部分地錨式斜拉橋主梁縱向位移遠(yuǎn)小于全自錨式斜拉橋,但其豎向和橫向位移則顯著大于全自錨式斜拉橋。由于部分地錨式斜拉橋邊跨長(zhǎng)度(邊中跨比0.317)明顯小于全自錨式斜拉橋方案(邊中跨比0.454),較短邊跨受到的橫向和豎向地震荷載對(duì)于抵消中跨的相應(yīng)方向的地震荷載作用效果有限,導(dǎo)致中跨跨中產(chǎn)生更大的橫向和豎向位移及其相應(yīng)的結(jié)構(gòu)內(nèi)力。因此,部分地錨式斜拉橋的邊跨不宜太小。總體上看,邊跨地錨索對(duì)控制橋塔的地震反應(yīng)和主梁的縱向位移效果比較理想。同時(shí),橋塔的地震內(nèi)力均顯著大于主梁,是結(jié)構(gòu)抗震設(shè)計(jì)的關(guān)鍵控制對(duì)象,因此采用部分地錨式斜拉橋方案將會(huì)更有利于改善結(jié)構(gòu)的整體抗震性能。
結(jié)合主跨1 400 m的超大跨度部分地錨式斜拉橋設(shè)計(jì)方案,采用地震反應(yīng)譜和時(shí)程分析方法,進(jìn)行E1和E2水平和豎向地震作用下的結(jié)構(gòu)地震反應(yīng)分析,在此基礎(chǔ)上與相同主跨的全自錨式斜拉橋進(jìn)行地震反應(yīng)的對(duì)比分析,并得出了以下主要結(jié)論:
1) 超大跨度部分地錨式斜拉橋在縱向和橫向地震作用下的地震反應(yīng)都顯著大于豎向地震作用,因此應(yīng)重視水平地震作用下結(jié)構(gòu)的抗震性能。在縱向、橫向和豎向地震綜合作用下,橋塔的地震內(nèi)力顯著大于主梁,是結(jié)構(gòu)抗震設(shè)計(jì)的關(guān)鍵構(gòu)件,同時(shí)應(yīng)特別重視橋塔的塔底和塔梁交接處、主梁的塔梁交接處和邊跨輔助墩處等截面的抗震設(shè)計(jì)。
2) 考慮結(jié)構(gòu)的幾何非線性效應(yīng)后,時(shí)程分析得到的結(jié)構(gòu)地震位移和內(nèi)力峰值均比反應(yīng)譜分析結(jié)果大,特別是在E2地震作用下兩者相差較大。因此,超大跨度部分地錨式斜拉橋的地震反應(yīng)分析宜采用非線性時(shí)程分析法。
3) 與相同跨度的全自錨式斜拉橋相比,邊跨部分斜拉索改為地錨后,結(jié)構(gòu)剛度和自振頻率增大,橋塔的地震反應(yīng)和主梁的縱向位移均顯著減小,改善了結(jié)構(gòu)的整體抗震性能。因此,從抗震性能而言,超千米主跨斜拉橋更適宜采用部分地錨式結(jié)構(gòu)形式。