屈亮,李素,仇華吉
綜 述
單細(xì)胞RNA測(cè)序技術(shù)在病毒研究中的應(yīng)用
屈亮,李素,仇華吉
中國農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所,獸醫(yī)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150069
單細(xì)胞RNA測(cè)序(single-cell RNA sequencing, scRNA-seq)技術(shù)已經(jīng)成為不同領(lǐng)域中研究細(xì)胞異質(zhì)性的有效工具。在病毒研究領(lǐng)域中,利用該技術(shù)分析病毒和細(xì)胞的轉(zhuǎn)錄組,可以在單細(xì)胞水平上檢測(cè)病毒感染的動(dòng)態(tài)變化,了解病毒與細(xì)胞間復(fù)雜的相互作用。本文簡(jiǎn)述了scRNA-seq技術(shù),著重介紹病毒感染宿主細(xì)胞后scRNA-seq研究的最新進(jìn)展,同時(shí)也描述了細(xì)胞周期、基因表達(dá)、細(xì)胞狀態(tài)等細(xì)胞異質(zhì)性對(duì)病毒感染過程的影響,以及病毒變異對(duì)其本身感染過程的影響。此外,本文還分析了scRNA-seq在研究病毒–宿主互作動(dòng)態(tài)變化方面具有的獨(dú)特優(yōu)勢(shì),及其在病毒研究領(lǐng)域中廣闊的應(yīng)用前景,為揭示病毒的感染與致病機(jī)制、抗病毒靶標(biāo)的開發(fā)等提供參考。
單細(xì)胞RNA測(cè)序技術(shù);細(xì)胞異質(zhì)性;病毒感染
單細(xì)胞測(cè)序(single-cell sequencing, SCS)技術(shù)是在單個(gè)細(xì)胞水平上測(cè)序基因組和轉(zhuǎn)錄組的技術(shù),主要分為單細(xì)胞DNA測(cè)序(single cell genomic DNA sequencing)與單細(xì)胞RNA測(cè)序(single-cell RNA se-quencing, scRNA-seq)。SCS技術(shù)能夠區(qū)分細(xì)胞群體中單個(gè)細(xì)胞間的差異,從而反映出一些少量細(xì)胞所具有的獨(dú)特表型。近年來,這些少量的具有異質(zhì)性的獨(dú)特細(xì)胞受到了越來越多的關(guān)注。
細(xì)胞異質(zhì)性是生物組織所具有的普遍特征[1]。生物個(gè)體內(nèi)的細(xì)胞最初都來自于相同的受精卵細(xì)胞。但隨著細(xì)胞分裂和不同的微環(huán)境影響,細(xì)胞逐漸累積基因突變,最終形成具有不同異質(zhì)性的細(xì)胞。通過SCS技術(shù)分析單個(gè)細(xì)胞的核酸數(shù)據(jù),可以揭示是否存在稀有細(xì)胞,發(fā)現(xiàn)新型功能基因,探究疾病進(jìn)程中的分子機(jī)制[2~4]。本文在簡(jiǎn)單介紹scRNA-seq技術(shù)的基礎(chǔ)上,著重綜述了該技術(shù)在病毒研究領(lǐng)域中的應(yīng)用進(jìn)展,旨在探索病毒多樣性以及單個(gè)細(xì)胞異質(zhì)性對(duì)病毒復(fù)制周期的影響,為深入揭示病毒的感染和致病機(jī)制提供科學(xué)依據(jù)。
細(xì)胞群體分析是研究細(xì)胞生物學(xué)和病原體感染反應(yīng)的重要方法,通過分析細(xì)胞群體的轉(zhuǎn)錄組可以進(jìn)一步發(fā)掘未知轉(zhuǎn)錄本。群體轉(zhuǎn)錄組分析技術(shù)主要包括微陣列技術(shù)以及RNA測(cè)序(RNA-seq)技術(shù)。與微陣列技術(shù)相比,RNA-seq檢測(cè)范圍更廣,能夠直接測(cè)定片段序列,是研究基因表達(dá)和鑒定新RNA種類的首選方法。然而,細(xì)胞群體含有多種細(xì)胞,這些細(xì)胞在很多方面存在差異,如細(xì)胞類型、亞群、譜系、周期、晝夜節(jié)律以及一些隨機(jī)性變化,群體轉(zhuǎn)錄組分析結(jié)果無法評(píng)價(jià)單個(gè)細(xì)胞的轉(zhuǎn)錄組水平,具有特定表型的稀有細(xì)胞和亞群在群體分析中極易被忽略掉。Tang等[5]于2009年首次開發(fā)出scRNA- seq技術(shù),該技術(shù)能夠精確地檢測(cè)單個(gè)細(xì)胞中的RNA分子,可用于評(píng)估細(xì)胞群體內(nèi)的轉(zhuǎn)錄相似性及差異。如何分離單細(xì)胞是scRNA-seq技術(shù)的難點(diǎn),針對(duì)單細(xì)胞的初期研究主要通過熒光激活細(xì)胞分選技術(shù)(fluorescence activated cell sorting, FACS)或延時(shí)顯微鏡研究攜帶熒光的報(bào)告病毒在單個(gè)細(xì)胞中的表達(dá)情況[6]。
scRNA-seq技術(shù)包括3個(gè)基本步驟:?jiǎn)渭?xì)胞分離、RNA-seq過程和數(shù)據(jù)分析(圖1)。目前單細(xì)胞分離方法可以根據(jù)兩個(gè)標(biāo)準(zhǔn)劃分:細(xì)胞分離能力以及細(xì)胞選擇方法。細(xì)胞分離依據(jù)分離能力的不同可分為高通量和低通量分離方法,而細(xì)胞選擇方法可分為隨機(jī)篩選和特異性篩選,如FACS能夠根據(jù)細(xì)胞大小、形狀或特定的表面標(biāo)志物分選細(xì)胞,微流體技術(shù)則是隨機(jī)的分離單個(gè)細(xì)胞[7,8]。
單細(xì)胞分離出來后,隨即開展的是RNA-seq過程。但由于一個(gè)單細(xì)胞平均僅含有約10 pg的總RNA,所以需要調(diào)整優(yōu)化RNA-seq過程以適應(yīng)單細(xì)胞檢測(cè)。首先需要裂解分離的單細(xì)胞以獲得RNA,然后通過polyA選擇富集mRNA,并利用修飾過的oligo(dT)引物進(jìn)行反轉(zhuǎn)錄,接著進(jìn)行體外轉(zhuǎn)錄或聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction, PCR)擴(kuò)增cDNA,擴(kuò)增后的cDNA用于后續(xù)的測(cè)序[9]。
最后為數(shù)據(jù)分析階段,因單細(xì)胞的RNA測(cè)序無法進(jìn)行重復(fù)實(shí)驗(yàn),所以對(duì)于單細(xì)胞RNA測(cè)序的數(shù)據(jù)分析必須通過質(zhì)量控制保證數(shù)據(jù)的可靠性,如向細(xì)胞裂解物中添加已知序列和質(zhì)量的mRNA作為質(zhì)控標(biāo)準(zhǔn)[10]。
目前,scRNA-seq技術(shù)已經(jīng)在癌癥、免疫學(xué)、細(xì)胞生物學(xué)、病毒學(xué)、胚胎學(xué)和微生物學(xué)等多個(gè)領(lǐng)域中得到了廣泛的應(yīng)用[11]。例如,在腫瘤研究方面,利用scRNA-seq可以識(shí)別腫瘤細(xì)胞之間基因突變的情況,區(qū)分瘤內(nèi)細(xì)胞形成的不同類型[12],為研究腫瘤異質(zhì)性及臨床診斷治療提供有效工具。在免疫學(xué)研究方面,利用scRNA-seq揭示CD4+細(xì)胞毒性T淋巴細(xì)胞在人體中的異質(zhì)性和轉(zhuǎn)錄本,從而探究其產(chǎn)生機(jī)制和功能特性[13]。在細(xì)胞生物學(xué)研究方面,scRNA-seq能夠更為精細(xì)地區(qū)分細(xì)胞亞群,通過分析單個(gè)細(xì)胞的轉(zhuǎn)錄組識(shí)別整體細(xì)胞中的各種細(xì)胞類型,可發(fā)掘已有細(xì)胞標(biāo)記無法識(shí)別的新細(xì)胞類型[14]。在病毒研究方面,scRNA-seq用以區(qū)分單個(gè)細(xì)胞間病毒豐度差異,鑒定宿主細(xì)胞中的抗病毒因子,探究病毒與宿主相互作用機(jī)制[15]。在胚胎學(xué)研究中,利用scRNA-seq可分析不同分化階段細(xì)胞之間的差異,進(jìn)而解析干細(xì)胞分化過程的分子機(jī)制[16];還可以通過scRNA-seq技術(shù)可建立早期胚胎發(fā)育過程的基因表達(dá)動(dòng)態(tài)圖譜,探究發(fā)育過程中細(xì)胞內(nèi)部的轉(zhuǎn)錄調(diào)控及表觀遺傳重編程,使得研究胚胎發(fā)育早期階段基因表達(dá)成為可能[17]。在微生物學(xué)研究中,scRNA-seq能夠顯示非生長(zhǎng)和生長(zhǎng)中沙門氏菌()感染不同的宿主反應(yīng)狀態(tài),從而揭示了沙門氏菌免疫逃逸的機(jī)制[18]。本文將重點(diǎn)介紹scRNA- seq技術(shù)在病毒研究中的應(yīng)用。
圖1 單細(xì)胞RNA測(cè)序流程圖
A:組織樣品消化;B:微流體或FACS分離單個(gè)細(xì)胞;C:?jiǎn)蝹€(gè)細(xì)胞核酸提取;D:全轉(zhuǎn)錄組擴(kuò)增;E:體外轉(zhuǎn)錄及反轉(zhuǎn)錄或PCR擴(kuò)增構(gòu)建cDNA文庫;F:測(cè)序數(shù)據(jù)分析。
隨著科學(xué)研究的不斷深入,對(duì)技術(shù)手段的要求不斷提高,scRNA-seq技術(shù)在許多領(lǐng)域中迅速優(yōu)化,發(fā)展成為適合不同領(lǐng)域的測(cè)序技術(shù)。例如,分析冷凍固定樣本的單細(xì)胞核測(cè)序技術(shù)(single nuclei RNA- sequence, sNuc-seq),突破了scRNA-seq只能分離新鮮組織樣本的限制,使其在癌癥研究及神經(jīng)元研究中發(fā)揮著極其重要的作用[19]。sNuc-seq不需要通過蛋白酶消化和加熱的方式即可快速解離樣品,減少了異常轉(zhuǎn)錄的可能性。在sNuc- seq的基礎(chǔ)上,有研究結(jié)合了5-乙炔基-2'-脫氧尿苷(5-ethynyl-2'-deox-yuridine, EdU)標(biāo)記分裂細(xì)胞的特性,開發(fā)出了單分裂細(xì)胞核測(cè)序技術(shù)(Div-seq),能夠敏感地分析中樞神經(jīng)系統(tǒng)神經(jīng)元多樣性和動(dòng)態(tài)過程[20]。成對(duì)單細(xì)胞RNA測(cè)序技術(shù)(paired dual scRNA-seq)能夠同時(shí)分析單個(gè)宿主細(xì)胞和單個(gè)細(xì)菌之間的相互作用[21],可同時(shí)捕獲和檢測(cè)宿主與細(xì)菌的轉(zhuǎn)錄本,為微生物學(xué)研究提供重要技術(shù)支撐。
隨著scRNA-seq技術(shù)的不斷發(fā)展,其在病毒研究領(lǐng)域中的應(yīng)用也得到了更進(jìn)一步地提升(表1)。利用scRNA-seq技術(shù),可以研究病毒感染后單個(gè)細(xì)胞中病毒與宿主細(xì)胞的轉(zhuǎn)錄組。依據(jù)病毒感染特點(diǎn),分析不同狀態(tài)的病毒轉(zhuǎn)錄組差異,探究某些病毒發(fā)生潛伏感染的基因表達(dá)情況與所需的細(xì)胞環(huán)境差異。已有研究發(fā)現(xiàn),人腺病毒(human adenovirus, HAdV)潛伏感染與裂解性感染的單個(gè)細(xì)胞中病毒核酸含量有所差異,從而使得病毒E1A 13S和12S mRNA呈現(xiàn)出不同的表達(dá)方式[22]。另外,不同細(xì)胞對(duì)病毒的易感性不同,根據(jù)病毒感染水平的不同,分析所感染的單個(gè)細(xì)胞之間有何差異及共性。例如,單核細(xì)胞分化為巨噬細(xì)胞時(shí)其對(duì)病毒的易感性會(huì)發(fā)生變化。與單核細(xì)胞相比,巨噬細(xì)胞對(duì)于甲型流感病毒(influenza A virus, IAV)及HIV更為易感[23]。細(xì)胞對(duì)于HIV易感性的差異是由于細(xì)胞分化狀態(tài)的不同引起的,也與細(xì)胞內(nèi)基因表達(dá)差異有關(guān),包括APOBEC3A與3G、CCR5、靶向HIV-1 3¢UTR的miRNA[24,25]。由于病毒與宿主之間的相互關(guān)系比較復(fù)雜,將從細(xì)胞異質(zhì)性及病毒異質(zhì)性對(duì)病毒感染過程的影響兩方面進(jìn)行介紹。
表1 scRNA-seq在病毒研究中的應(yīng)用
2.1.1 細(xì)胞周期影響病毒感染
細(xì)胞周期是影響病毒感染效率的一個(gè)關(guān)鍵因素,許多病毒會(huì)編碼靶向細(xì)胞周期調(diào)節(jié)因子的蛋白質(zhì),使宿主細(xì)胞處于有利于病毒復(fù)制的狀態(tài),如HCV和HIV感染細(xì)胞后G1期和S期的細(xì)胞數(shù)量會(huì)顯著減少,但G2/M期的細(xì)胞數(shù)量會(huì)增加[33]。病毒介導(dǎo)的細(xì)胞周期改變雖有利于病毒生長(zhǎng),但對(duì)細(xì)胞本身會(huì)產(chǎn)生不利影響。反之,細(xì)胞大小和細(xì)胞周期的不同也會(huì)顯著影響水皰性口炎病毒(vesicular stomatitis virus, VSV)子代病毒的產(chǎn)生數(shù)量[34]及口蹄疫病毒(foot-and-mouth disease virus, FMDV)的復(fù)制能力[35]。
為探究細(xì)胞周期對(duì)FMDV感染能力的影響,將FMDV感染后的細(xì)胞分選為大小、重量和周期相異的單個(gè)細(xì)胞,通過scRNA-seq方法對(duì)單個(gè)細(xì)胞進(jìn)行分析,確定細(xì)胞間的差異以及不同細(xì)胞對(duì)FMDV感染的影響[35]。結(jié)果顯示,單個(gè)FMDV感染細(xì)胞中病毒RNA數(shù)量差異達(dá)100倍,說明宿主細(xì)胞周期異質(zhì)性對(duì)于FMDV復(fù)制有顯著影響。在脊髓灰質(zhì)炎病毒(poliovirus, PV)及IAV感染的細(xì)胞中,不同細(xì)胞中病毒RNA水平相差1~3個(gè)數(shù)量級(jí)[36,37],說明細(xì)胞周期異質(zhì)性會(huì)影響多數(shù)病毒復(fù)制。對(duì)感染細(xì)胞大小及內(nèi)容物進(jìn)行研究,發(fā)現(xiàn)形態(tài)較大、含有較多細(xì)胞器的細(xì)胞中病毒蛋白及RNA含量、感染陽性率及FMDV吸附水平更高。與FMDV研究結(jié)果類似,VSV在較大的細(xì)胞中能產(chǎn)生更多的子代病毒[38]。多數(shù)蛋白質(zhì)與mRNA含量、細(xì)胞器的大小和數(shù)量都隨細(xì)胞形態(tài)變大而增加[39],所以形態(tài)較大或細(xì)胞器較多的細(xì)胞內(nèi)含有更多病毒感染復(fù)制所需的物質(zhì)。
部分RNA病毒會(huì)在特定的細(xì)胞周期干擾細(xì)胞從而導(dǎo)致細(xì)胞停滯生長(zhǎng)。例如,HCV誘導(dǎo)細(xì)胞停滯于G2/M期[33],流感病毒(influenza virus, IV)使細(xì)胞停滯于G0/G1期[40],使病毒復(fù)制處于更有利的環(huán)境。FMDV感染細(xì)胞后對(duì)細(xì)胞周期沒有顯著影響,但不同細(xì)胞周期FMDV復(fù)制能力差異顯著。G2/M期相比于其他階段的細(xì)胞內(nèi)病毒RNA含量及感染率也更高。利用藥物在不同階段阻斷細(xì)胞周期,發(fā)現(xiàn)G2/M期停滯的細(xì)胞更有利于病毒復(fù)制以及子代病毒的產(chǎn)生。不僅是細(xì)胞周期,細(xì)胞的大小及細(xì)胞器含量均會(huì)對(duì)病毒感染產(chǎn)生顯著影響,針對(duì)宿主細(xì)胞的異質(zhì)性因素進(jìn)行調(diào)控,找到限制病毒感染復(fù)制的優(yōu)化條件。
2.1.2 病毒感染引起細(xì)胞基因表達(dá)差異
病毒感染本身會(huì)觸發(fā)細(xì)胞基因表達(dá),差異表達(dá)基因因細(xì)胞而異,并增加細(xì)胞的異質(zhì)性。對(duì)HIV潛伏感染及激活后裂解性感染的細(xì)胞進(jìn)行scRNA-seq分析,發(fā)現(xiàn)兩類細(xì)胞有著顯著的差異[41,42],潛伏感染的細(xì)胞大部分會(huì)表達(dá)特定的轉(zhuǎn)錄因子,并且在復(fù)制能力高的細(xì)胞中更易發(fā)生潛伏感染。對(duì)單純皰疹病毒(herpes simplex virus, HSV)潛伏感染的scRNA- seq分析顯示了相似的結(jié)果,HSV裂解性感染階段的基因表達(dá)影響了宿主細(xì)胞的基因表達(dá)[43],說明裂解性感染與潛伏感染的細(xì)胞中存在細(xì)胞微環(huán)境的差異及胞內(nèi)基因表達(dá)的差異。為檢測(cè)病毒感染細(xì)胞差異基因表達(dá),開發(fā)出包含病毒的單細(xì)胞RNA-seq (viscRNA-seq)[32]用于量化分析登革熱患者體內(nèi)單個(gè)免疫細(xì)胞的宿主mRNA以及vRNA豐度,同時(shí)還可鑒定新的抗病毒因子。該方法首先分離患者的外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cell, PBMC),通過FACS將其分離為T細(xì)胞、NK細(xì)胞、B細(xì)胞、單核細(xì)胞以及樹突狀細(xì)胞,利用viscRNA- seq對(duì)每個(gè)細(xì)胞進(jìn)行深度測(cè)序,觀察每個(gè)細(xì)胞的細(xì)胞類型、免疫激活狀態(tài)、vRNA水平和毒株的序列,檢測(cè)到多個(gè)在登革熱患者細(xì)胞中上調(diào)表達(dá)的基因,并以此作為登革熱疾病嚴(yán)重程度的預(yù)測(cè)指標(biāo)。
研究ZIKV的過程中同樣利用viscRNA-seq分析其感染神經(jīng)干細(xì)胞后的基因表達(dá)差異[29]。該研究在構(gòu)建ZIKV-Dak-MA小鼠適應(yīng)性毒株時(shí)發(fā)現(xiàn),NS4B蛋白存在氨基酸突變,且突變后毒株致病性增強(qiáng),通過viscRNA-seq確定這些突變?nèi)绾斡绊慫IKV致病性。結(jié)果顯示,突變毒株感染細(xì)胞內(nèi)的干擾素刺激基因(interferon-stimulated gene, ISG)表達(dá)水平低于野生型毒株感染細(xì)胞,說明突變毒株有效拮抗干擾素(interferon, IFN)反應(yīng),揭示突變毒株在細(xì)胞內(nèi)感染性和致病力增強(qiáng)的機(jī)制。此外,利用該技術(shù)研究DENV和ZIKV感染所致的差異[44],比較兩者與宿主細(xì)胞相互作用有何不同。鑒定出黃病毒復(fù)制過程中所涉及的幾種細(xì)胞功能,包括內(nèi)質(zhì)網(wǎng)易位、N-連接糖基化和細(xì)胞內(nèi)膜運(yùn)輸。首先驗(yàn)證DENV感染后引起的差異基因表達(dá)與病毒感染的相關(guān)性,大多具有強(qiáng)正相關(guān)的基因均參與了非折疊蛋白反應(yīng)(unfolded protein response, UPR),與前任的研究結(jié)果一致[45],而強(qiáng)負(fù)相關(guān)的基因很大部分是肌動(dòng)蛋白和微管的組分,說明在病毒感染過程中細(xì)胞骨架遭到破壞。感染后不同時(shí)間點(diǎn)采樣,發(fā)現(xiàn)在感染后4 h觀察到細(xì)胞內(nèi)參與翻譯和抑制mRNA加工的基因上調(diào),而在48 h,UPR上調(diào),ERAD蛋白降解。隨著感染時(shí)間的增加,有6種基因的表達(dá)從下調(diào)變?yōu)樯险{(diào),部分蛋白在之前已有過報(bào)道,例如RPN1和HM13對(duì)DENV感染有很重要的作用[46],COPB1的亞基在DENV復(fù)制中發(fā)揮關(guān)鍵作用[47]。
2.1.3 病毒感染觸發(fā)先天免疫應(yīng)答
病毒入侵細(xì)胞后病原相關(guān)分子模式(pathogen- associated molecular patterns, PAMP)被胞內(nèi)模式識(shí)別受體(pattern recognition receptor, PRR)所識(shí)別,產(chǎn)生IFN及其他細(xì)胞因子誘導(dǎo)先天免疫應(yīng)答。但I(xiàn)V感染后只有部分感染細(xì)胞會(huì)激活先天免疫應(yīng)答[48],利用scRNA-seq技術(shù)檢測(cè)單個(gè)細(xì)胞水平IFN的誘導(dǎo)激活情況,發(fā)現(xiàn)NS1蛋白在感染細(xì)胞的過程中能夠抑制IFN表達(dá)[49],缺失NS1蛋白的IV感染能檢測(cè)到更高水平IFN表達(dá),說明IV只能在部分感染細(xì)胞中誘導(dǎo)IFN表達(dá)。WNV感染細(xì)胞的scRNA-seq分析顯示了同樣的結(jié)果[50],只有少數(shù)細(xì)胞能夠誘導(dǎo)IFN-β的有效表達(dá),且不依賴于同一細(xì)胞內(nèi)病毒RNA的豐度。此外,細(xì)胞內(nèi)ISG表達(dá)與病毒RNA豐度也呈現(xiàn)出兩種截然不同的相關(guān)性,有部分ISG的表達(dá)隨病毒RNA增加而急劇下降。與前人研究一致[51],WNV能夠直接或間接地拮抗IFN信號(hào)轉(zhuǎn)導(dǎo)和JAK/STAT信號(hào)通路,以對(duì)抗細(xì)胞的抗病毒效應(yīng)。然而只有少部分感染細(xì)胞觸發(fā)先天免疫應(yīng)答的機(jī)制仍不清楚,可能是由于隨機(jī)現(xiàn)象或者病毒感染前細(xì)胞狀態(tài)就存在一些差異。即使利用合成的先天免疫配體[52]處理細(xì)胞,也只有一部分細(xì)胞能誘導(dǎo)產(chǎn)生IFN,這種效應(yīng)可能與細(xì)胞處理前的染色質(zhì)狀態(tài)有關(guān)[53]。
病毒具有高度的遺傳變異性,該特性使其能夠快速進(jìn)化并適應(yīng)新的環(huán)境,是病毒逃逸先天免疫,產(chǎn)生耐藥性的關(guān)鍵[54]。在單細(xì)胞水平分析病毒核酸序列可直接觀察其遺傳多樣性,并且能夠量化不同時(shí)間內(nèi)病毒產(chǎn)生的遺傳變異水平。有研究結(jié)合單細(xì)胞分離技術(shù)及高通量測(cè)序分析了VSV感染細(xì)胞后的兩個(gè)感染周期內(nèi)其遺傳多樣性的變化[55],發(fā)現(xiàn)單個(gè)細(xì)胞中會(huì)感染一種以上的突變體病毒,且不同細(xì)胞中產(chǎn)生遺傳變異的病毒數(shù)量變化很大,說明病毒的遺傳多樣性對(duì)于病毒的生存和免疫逃逸至關(guān)重要。scRNA-seq作為分析單細(xì)胞序列的有效工具,在病毒遺傳多樣性研究中同樣發(fā)揮著巨大的作用。例如,針對(duì)HSV感染細(xì)胞的scRNA-seq分析發(fā)現(xiàn)單個(gè)細(xì)胞中病毒基因表達(dá)有顯著差異[15]。
對(duì)于IV這種具有高突變率的病毒來說,病毒遺傳多樣性會(huì)影響病毒感染過程。IV已進(jìn)化出抑制IFN誘導(dǎo)的機(jī)制,但在病毒感染細(xì)胞的過程中發(fā)生突變導(dǎo)致病毒粒子失去免疫逃逸機(jī)制進(jìn)而誘導(dǎo)細(xì)胞產(chǎn)生先天免疫應(yīng)答。Russell等[56]首次從單細(xì)胞水平研究IV的遺傳缺陷對(duì)于細(xì)胞內(nèi)IFN表達(dá)的影響。已有大量研究表明NS蛋白在先天免疫中發(fā)揮拮抗作 用[57],但該研究證實(shí)了缺乏NS基因或NS1蛋白發(fā)生氨基酸突變后的IV是誘導(dǎo)單個(gè)細(xì)胞內(nèi)IFN產(chǎn)生的主要原因。除此之外,PB1蛋白也參與了細(xì)胞先天免疫的調(diào)控,PB1發(fā)生氨基酸突變后能夠增強(qiáng)IFN的誘導(dǎo),說明該突變能夠增強(qiáng)先天免疫。IFN表達(dá)不是由一種因素決定的,并非所有缺乏NS基因的IV均能誘導(dǎo)IFN表達(dá),說明IV感染的先天免疫由多種因素共同調(diào)控。此外,病毒遺傳缺陷也不能完全解釋IV感染后的細(xì)胞異質(zhì)性。即使利用未突變的野生型病毒粒子感染細(xì)胞,仍有少量細(xì)胞會(huì)誘導(dǎo)產(chǎn)生IFN,并且在IFN受到抑制的細(xì)胞中也觀察到了IV的免疫刺激缺陷,隨機(jī)性與細(xì)胞狀態(tài)也同樣影響著病毒感染細(xì)胞的先天免疫應(yīng)答。因此,scRNA-seq可用于研究病毒變異對(duì)于單個(gè)感染細(xì)胞先天免疫調(diào)控,利用該方法能夠有效地分析病毒變異。
近10年來,scRAN-seq技術(shù)得到了迅猛的發(fā)展。許多研究人員還開創(chuàng)了新的scRNA-seq方法,發(fā)展出了質(zhì)量控制和數(shù)據(jù)分析的新型生物信息學(xué)技術(shù),更多的是利用該方法發(fā)現(xiàn)了新的生物學(xué)現(xiàn)象,包括新細(xì)胞類型的鑒定、預(yù)測(cè)細(xì)胞狀態(tài)及基因表達(dá)以及研究隨機(jī)轉(zhuǎn)錄的功能和意義。傳統(tǒng)的RNA-seq技術(shù)只能分析整個(gè)細(xì)胞群體的平均值,具有異質(zhì)性的少數(shù)細(xì)胞不能體現(xiàn)出特異性的結(jié)果,而scRNA-seq技術(shù)則可分析得到細(xì)胞異質(zhì)性的結(jié)果。當(dāng)然,scRNA- seq技術(shù)也存在一些挑戰(zhàn)。相對(duì)于宿主細(xì)胞的RNA,病毒RNA的含量要少很多,并且在不同細(xì)胞類型中病毒RNA含量差異也很大,需要提高文庫構(gòu)建的質(zhì)量以使病毒RNA檢測(cè)更加可行;如何有效捕獲病毒mRNA也是難點(diǎn)之一,盡管許多病毒會(huì)將其病毒mRNA聚腺苷酸化,但也有些病毒mRNA缺少polyA尾,需要采用新的文庫構(gòu)建方法來滿足病毒mRNA的檢測(cè);單細(xì)胞的分離是scRNA-seq技術(shù)的關(guān)鍵,如何從組織中快速分離單個(gè)細(xì)胞并且完整保留其轉(zhuǎn)錄組也是該技術(shù)發(fā)展的一大難題;此外,該技術(shù)所需硬件的價(jià)格仍然很昂貴,且后續(xù)制備cDNA文庫以及深度測(cè)序成本很高,因此,如何降低成本也是目前所面臨的困難。
scRNA-seq技術(shù)拓寬了對(duì)細(xì)胞異質(zhì)性的理解,認(rèn)識(shí)到許多領(lǐng)域中稀有細(xì)胞類型的存在和重要性。宿主細(xì)胞與病毒的異質(zhì)性導(dǎo)致病毒的感染過程有著不同的結(jié)果。宿主細(xì)胞類型的不同,決定了何種細(xì)胞易被感染,何種細(xì)胞對(duì)病毒感染產(chǎn)生反應(yīng);細(xì)胞狀態(tài)的不同,也影響了病毒與宿主間的相互作用。例如細(xì)胞周期的差異會(huì)導(dǎo)致病毒復(fù)制能力及子代病毒產(chǎn)生能力的差異;細(xì)胞內(nèi)基因表達(dá)的情況也會(huì)影響病毒感染的階段,體現(xiàn)疾病的嚴(yán)重程度;不同狀態(tài)的細(xì)胞感染病毒后的反應(yīng)也不同。病毒的異質(zhì)性也會(huì)影響感染宿主細(xì)胞的過程,病毒遺傳多樣性提供給其進(jìn)化能力的同時(shí),也可能會(huì)使其產(chǎn)生免疫缺陷的遺傳變異,產(chǎn)生不同突變的病毒感染細(xì)胞后也會(huì)有不一樣的結(jié)果。scRNA-seq技術(shù)為病毒感染細(xì)胞過程提供高分辨率的視角,了解細(xì)胞的保護(hù)性反應(yīng),指導(dǎo)新型保護(hù)措施的發(fā)展并確定病毒感染的關(guān)鍵分子,鑒定具有保護(hù)性免疫應(yīng)答的特定細(xì)胞類型,開發(fā)更有效的疫苗。關(guān)于scRNA-seq技術(shù)的研究仍處于早期階段,未來的scRNA-seq技術(shù)將會(huì)與更多的方法相結(jié)合,如蛋白質(zhì)組學(xué)、代謝組學(xué)、表觀遺傳學(xué),為全面觀察單個(gè)細(xì)胞提供基礎(chǔ),期待未來的10年人們能夠更加接近單個(gè)細(xì)胞的真實(shí)面目。
[1] Kalisky T, Blainey P, Quake SR. Genomic analysis at the single-cell level., 2011, 45: 431–445.
[2] Di Palma S, Bodenmiller B. Unraveling cell populations in tumors by single-cell mass cytometry., 2015, 31: 122–129.
[3] Yuan JD, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, Robins H, Song WR, Stack EC, Wang EN, Whiteside TL, Zhao YD, Zwierzina H, Butterfield LH, Fox BA. Novel technologies and emerging biomarkers for personalized cancer immunotherapy., 2016, 4(1): 3.
[4] Winter DR, Ledergor G, Amit I. From mass cytometry to cancer prognosis. Nat Biotechnol, 2015, 33(9): 931–932.
[5] Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell., 2009, 6(5): 377–382.
[6] Razooky BS, Gutierrez E, Terry VH, Spina CA, Groisman A, Weinberger LS. Microwell devices with finger-like channels for long-term imaging of HIV-1 expression kinetics in primary human lymphocytes., 2012, 12(21): 4305–4312.
[7] Hu P, Zhang WH, Xin HB, Deng G. Single cell isolation and analysis., 2016, 4: 116.
[8] Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices., 2017, 18(6): 345–361.
[9] Yao YX, La YF, Di R, Liu QY, Hu WP, Wang XY, Chu MX. Comparison of different single cell whole genome amplification methods and MALBAC applications in assisted reproduction., 2018, 40(8): 620–631.姚雅馨, 喇永富, 狄冉, 劉秋月, 胡文萍, 王翔宇, 儲(chǔ)明星. 不同單細(xì)胞全基因組擴(kuò)增方法的比較及MALBAC在輔助生殖中的應(yīng)用. 遺傳, 2018, 40(8): 620–631.
[10] Stoeger T, Battich N, Pelkmans L. Passive noise filtering by cellular compartmentalization., 2016, 164(6): 1151–1161.
[11] Wang Y, Navin NE. Advances and applications of single- cell sequencing technologies., 2015, 58(4): 598– 609.
[12] Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, Varvares MA, Mylvaganam R, Rozenblatt- Rosen O, Rocco JW, Faquin WC, Lin DT, Regev A, Bernstein BE. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer., 2017, 171(7): 1611–1624.
[13] Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'rourke P, De Silva AD, Harris E, Peters B, Seumois G, Weiskopf D, Sette A, Vijayanand P. Precursors of human CD4+cytotoxic T lymphocytes identified by single-cell transcriptome analysis., 2018, 3(19): eaan8664.
[14] Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I. Massively parallel single-cell rna-seq for marker-free decomposition of tissues into cell types., 2014, 343(6172): 776–779.
[15] Drayman N, Patel P, Vistain L, Tay S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations., 2019, 8: e46339.
[16] Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells., 2014, 32(4): 381–386.
[17] Yan LY, Yang MY, Guo HS, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng XY, Yan J, Huang J, Li M, Wu XL, Wen L, Lao KQ, Li RQ, Qiao J, Tang FC. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells., 2013, 20(9): 1131–1139.
[18] Saliba AE, Li L, Westermann AJ, Appenzeller S, Stapels DA, Schulte LN, Helaine S, Vogel J. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella., 2016, 2: 1–8.
[19] Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung HL, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan JB, Wang W, Chun J, Zhang K. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain., 2016, 352(6293): 1586–1590.
[20] Habib N, Li YQ, Heidenreich M, Swiech L, Avraham- Davidi I, Trombetta JJ, Hession C, Zhang F, Regev A. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons., 2016, 353(6302): 925–928.
[21] Wesolowska-Andersen A, Everman JL, Davidson R, Rios C, Herrin R, Eng C, Janssen WJ, Liu AH, Oh SS, Kumar R, Fingerlin TE, Rodriguez-Santana J, Burchard EG, Seibold MA. Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome., 2017, 18(1): 12.
[22] Krzywkowski T, Ciftci S, Assadian F, Nilsson M, Punga T. Simultaneous single-cell in situ analysis of human adenovirus type 5 dna and mrna expression patterns in lytic and persistent infection., 2017, 91(11): e00166-17.
[23] Hoeve MA, Nash AA, Jackson D, Randall RE, Dransfield I. Influenza virus A infection of human monocyte and macrophage subpopulations reveals increased susceptibility associated with cell differentiation., 2012, 7(1): e29443.
[24] Mussil B, Suspène R, Caval V, Durandy A, Wain-Hobson S, Vartanian JP. Genotoxic stress increases cytoplasmic mitochondrial DNA editing by human APOBEC3 mutator enzymes at a single cell level., 2019, 9(1): 3109.
[25] Lodge R, Gilmore JC, Ferreira Barbosa JA, Lombard- Vadnais F, Cohen éA. Regulation of CD4 receptor and HIV-1 entry by microRNAs-221 and -222 during differentiation of THP-1 cells., 2017, 10(1): 13.
[26] Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, Swadling L, Douek DC, Klenerman P, Barnes EJ, Sharpe AH, Haining WN, Yosef N. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state., 2017, 45(16): e148.
[27] Wu L, Zhang XL, Zhao ZK, Wang L, Li B, Li GB, Dean M, Yu QC, Wang YH, Lin XX, Rao WJ, Mei ZL, Li Y, Jiang RZ, Yang H, Li FQ, Xie GY, Xu LQ, Wu K, Zhang J, Chen JH, Wang T, Kristiansen K, Zhang XQ, Li YR, Yang HM, Wang J, Hou Y, Xu X. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells., 2015, 4(1): 51.
[28] Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JN, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing., 2015, 7(12): 1587–1597.
[29] Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger- Lucarelli J, Uccellini MB, Tripathi S, Morrison J, Yount BL, Dinnon KH 3rd, Rückert C, Young MC, Zhu Z, Robertson SJ, Mcnally KL, Ye J, Cao B, Mysorekar IU, Ebel GD, Baric RS, Best SM, Artyomov MN, Garcia- Sastre A, Diamond MS. An immunocompetent mouse model of zika virus infection., 2018, 23(5): 672–685.
[30] Johnson TS, Abrams ZB, Mo XK, Zhang Y, Huang K. Lack of human cytomegalovirus expression in single cells from glioblastoma tumors and cell lines., 2017, 23(5): 671–678.
[31] Golumbeanu M, Cristinelli S, Rato S, Munoz M, Cavassini M, Beerenwinkel N, Ciuffi A. Single-Cell RNA-Seq Reveals transcriptional heterogeneity in latent and reactivated hiv-infected cells., 2018, 23(4): 942–950.
[32] Zanini F, Robinson ML, Croote D, Sahoo MK, Sanz AM, Ortiz-Lasso E, Albornoz LL, Rosso F, Montoya JG, Goo L, Pinsky BA, Quake SR, Einav S. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue., 2018, 115(52): E12363–E21369.
[33] Kannan RP, Hensley LL, Evers LE, Lemon SM, Mcgivern DR. Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis., 2011, 85(16): 7989–8001.
[34] Timm A, Yin J. Kinetics of virus production from single cells., 2012, 424(1): 11–17.
[35] Xin X, Wang HL, Han LL, Wang MZ, Fang H, Hao Y, Li JD, Zhang H, Zheng CY, Shen C. Single-cell analysis of the impact of host cell heterogeneity on infection with foot-and-mouth disease virus., 2018, 92(9): e00179–18.
[36] Schulte MB, Andino R. Single-cell analysis uncovers extensive biological noise in poliovirus replication., 2014, 88(11): 6205–6212.
[37] Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection., 2015, 6: 8938.
[38] Zhu Y, Yongky A, Yin J. Growth of an RNA virus in single cells reveals a broad fitness distribution., 2009, 385(1): 39–46.
[39] Kempe H, Schwabe A, Crémazy F, Verschure PJ, Bruggeman FJ. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise., 2015, 26(4): 797–804.
[40] He Y, Xu K, Keiner B, Zhou JF, Czudai V, Li TX, Chen Z, Liu JH, Klenk HD, Shu YL, Sun B. Influenza A virus replication induces cell cycle arrest in G0/G1phase., 2010, 84(24): 12832–12840.
[41] Bradley T, Ferrari G, Haynes BF, Margolis DM, Browne EP. Single-cell analysis of quiescent HIV infection reveals host transcriptional profiles that regulate proviral latency., 2018, 25(1): 107–117..
[42] Golumbeanu M, Cristinelli S, Rato S, Munoz M, Cavassini M, Beerenwinkel N, Ciuffi A. Single-cell RNA-seq reveals transcriptional heterogeneity in latent and reactivated HIV-infected cells., 2018, 23(4): 942–950.
[43] Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC. Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response., 2014, 10(7): e1004237.
[44] Zanini F, Pu SY, Bekerman E, Einav S, Quake SR. Single-cell transcriptional dynamics of flavivirus infection., 2018, 7: e32942.
[45] Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, Früh K, Mason PW, Nikolich-Zugich J, Nelson JA. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis., 2007, 81(20): 10849–10860.
[46] Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens., 2016, 535(7610): 159–163.
[47] Metz P, Chiramel A, Chatel-Chaix L, Alvisi G, Bankhead P, Mora-Rodriguez R, Long G, Hamacher-Brady A, Brady NR, Bartenschlager R. Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62., 2015, 89(15): 8026–8041.
[48] Killip MJ, Jackson D, Pérez-Cidoncha M, Fodor E, Randall RE. Single-cell studies of IFN-β promoter activation by wild-type and NS1-defective influenza A viruses., 2017, 98(3): 357–363.
[49] Jackson D, Killip MJ, Galloway CS, Russell RJ, Randall RE. Loss of function of the influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase (PI3K)., 2010, 396(1): 94–105.
[50] O'neal JT, Upadhyay AA, Wolabaugh A, Patel NB, Bosinger SE, Suthar MS. West Nile virus-inclusive single-cell RNA sequencing reveals heterogeneity in the type i interferon response within single cells., 2019, 93(6): e01778–18.
[51] Quicke KM, Suthar MS. The innate immune playbook for restricting West Nile virus infection., 2013, 5(11): 2643–2658.
[52] Wimmers F, Subedi N, Van Buuringen N, Heister D, Vivie J, Beeren-Reinieren I, Woestenenk R, Dolstra H, Piruska A, Jacobs JFM, Van Oudenaarden A, Figdor CG, Huck WTS, De Vries IJM, Tel J. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon- alpha production by plasmacytoid dendritic cells., 2018, 9(1): 3317.
[53] Bhushal S, Wolfsmüller M, Selvakumar TA, Kemper L, Wirth D, Hornef MW, Hauser H, K?ster M. Cell polarization and epigenetic status shape the heterogeneous response to type III interferons in intestinal epithelial cells., 2017, 8: 671.
[54] Lauring AS, Frydman J, Andino R. The role of mutational robustness in RNA virus evolution., 2013, 11(5): 327–336.
[55] Combe M, Garijo R, Geller R, Cuevas JM, Sanjuán R. Single-cell analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units., 2015, 18(4): 424–432.
[56] Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJW, Bloom JD. Single-cell virus sequencing of influenza infections that trigger innate immunity., 2019, 93(14): e00500–19.
[57] Hale BG, Randall RE, Ortín J, Jackson D. The multifunctional NS1 protein of influenza A viruses., 2008, 89: 2359–2376.
Applications of single-cell RNA sequencing in virology
Liang Qu, Su Li, Huaji Qiu
Single-cell RNA sequencing (scRNA-seq) is now emerging as a powerful tool to characterize the roles of cell heterogeneity in many fields, including virus infection. Transcriptional profiling at the single-cell level has enabled a greater appreciation of the dynamic changes of virus infection and the complex interactions between viruses and host cells. In this review, we briefly introduce the scRNA-seq technology, and the researches progress of scRNA-seq applied to virus infection. Moreover, we summarize the effects of cell heterogeneity, such as cell cycle, gene expression, and cell state, and virus mutations on the virus infection. We also analyze the unique advantages of scRNA-seq in researches of the dynamic changes of virus-host interaction, and the profound prospects of this technology used in virology for future studies. This review aims to provide a useful reference for the application of scRNA-seq in the understanding of the viral infection and pathogenicity mechanisms which may lead to the development of potential antiviral targets.
single cell RNA sequencing; heterogeneity; virus infection
2019-10-31;
2020-01-10
國家自然科學(xué)基金項(xiàng)目(編號(hào):31630080,31672537)資助[Supported by the National Natural Science Foundation of China (Nos.31630080, 31672537)]
屈亮,碩士研究生,專業(yè)方向:獸醫(yī)學(xué)。E-mail: tierno831143@outlook.com
仇華吉,博士,研究員,研究方向:動(dòng)物疫苗與分子免疫學(xué)。E-mail: qiuhuaji@caas.cn
10.16288/j.yczz.19-223
2020/1/17 17:18:00
URI: http://kns.cnki.net/kcms/detail/11.1913.r.20200117.0949.002.html
(責(zé)任編委: 岑山)