国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

新疆春小麥品種Pins基因等位變異及其對(duì)新疆拉面加工品質(zhì)的影響

2020-10-14 11:08相吉山劉鵬鵬桑偉崔鳳娟韓新年聶迎彬孔德真鄒波徐紅軍穆培源
關(guān)鍵詞:春小麥拉面基因型

相吉山,劉鵬鵬,桑偉,崔鳳娟,韓新年,聶迎彬,孔德真,鄒波,徐紅軍,穆培源

新疆春小麥品種基因等位變異及其對(duì)新疆拉面加工品質(zhì)的影響

相吉山1,劉鵬鵬2,桑偉2,崔鳳娟2,韓新年2,聶迎彬2,孔德真2,鄒波2,徐紅軍2,穆培源2

(1赤峰學(xué)院農(nóng)業(yè)科學(xué)研究院/蒙東農(nóng)業(yè)生態(tài)保護(hù)與動(dòng)植物資源開發(fā)利用實(shí)驗(yàn)室,內(nèi)蒙古赤峰 024000;2新疆農(nóng)墾科學(xué)院作物研究所/谷物品質(zhì)與遺傳改良兵團(tuán)重點(diǎn)實(shí)驗(yàn)室,新疆石河子 832000)

【目的】檢測(cè)新疆春小麥品種等位變異分布規(guī)律,分析不同基因型春小麥品種籽粒硬度的差異,探討對(duì)春小麥品種主要品質(zhì)性狀和新疆拉面加工品質(zhì)的影響,明確籽粒硬度影響新疆拉面加工品質(zhì)的分子遺傳基礎(chǔ)及機(jī)理?!痉椒ā恳?86份新疆春小麥品種資源為材料,用分子標(biāo)記檢測(cè)籽粒硬度,測(cè)定品質(zhì)性狀(籽粒性狀、磨粉品質(zhì)、面粉品質(zhì)、面團(tuán)特性、淀粉糊化特性等),制作新疆拉面并進(jìn)行評(píng)鑒。【結(jié)果】等位變異分布規(guī)律:在新疆春小麥品種資源中,有2種等位變異,分別為(占比86.79%)、(13.21%);有3種等位變異,分別為(64.77%)、(32.12%)和(3.11%);有6種基因型組合,分別為(58.81%)、(25.39%)、(2.59%)、(5.96%)、(6.74%)和(0.52%)。對(duì)春小麥品種品質(zhì)性狀的影響:的籽粒蛋白含量、灰分含量、白度、濕面筋含量、Zeleny沉淀值均顯著高于;籽粒硬度、黃度(b*值)、面筋指數(shù)、峰值時(shí)間、8分鐘面積、稀懈值均顯著低于。與其他等位變異相比,的白度、濕面筋含量,的出粉率、黃度(b*值),的籽粒硬度、面筋指數(shù)均最高且達(dá)顯著差異水平。與其他基因型組合相比,的白度,的籽粒硬度、面筋指數(shù)、8分鐘面積,的淀粉稀懈值,的籽粒蛋白含量、出粉率、面粉的濕面筋含量均最高且達(dá)顯著差異水平。對(duì)新疆拉面加工品質(zhì)的影響:的拉面手感、粘彈性、總分極顯著低于;的拉面手感最好,、和的粘彈性最高;、的總分最高。【結(jié)論】突變會(huì)使新疆春小麥胚乳質(zhì)地變硬、主要品質(zhì)性狀顯著升高,促進(jìn)新疆拉面的拉面手感和粘彈性等性狀得到顯著改善,最終促使新疆拉面的加工品質(zhì)(總分)顯著提升;變異對(duì)新疆拉面加工品質(zhì)的影響不顯著。、是優(yōu)質(zhì)新疆拉面小麥品種品質(zhì)改良中重點(diǎn)選擇的基因型組合類型。

新疆春小麥;品種資源;;品質(zhì)性狀;新疆拉面

0 引言

【研究意義】籽粒硬度作為國(guó)際通用小麥(L.)分類指標(biāo)之一,是決定磨粉品質(zhì)和食品加工品質(zhì)的主要因素[1],也是決定小麥品質(zhì)優(yōu)劣、貿(mào)易價(jià)格和最終用途的重要指標(biāo),已成為小麥品質(zhì)改良的重要目標(biāo)性狀之一[2-3]?!厩叭搜芯窟M(jìn)展】小麥籽粒硬度決定磨粉能耗、潤(rùn)麥加水量和出粉率,也影響面粉色澤和灰分含量[4]。硬質(zhì)麥胚乳與麩皮的分離程度高、篩理性好、出粉率較高、面粉白度高;軟質(zhì)麥篩分效果差、出粉率較低[5]。籽粒硬度基因和()變化會(huì)影響Puroindolin蛋白的變化,Puroindolin蛋白的變化將直接影響小麥胚乳質(zhì)地的變化。籽粒硬度基因變化的主要來源為和編碼區(qū)單核苷酸的替代、缺失或的缺失[6]。迄今為止,在普通小麥和近緣植物中已經(jīng)發(fā)現(xiàn)了23種變異類型([7-18])和31種變異類型([7,9-10,13-14,19-26]、[27]、[28]、[29]、、和[18]),其中,(野生型)是中國(guó)小麥最為常見的變異類型[22]。目前,研究一致認(rèn)為,普通小麥的不表達(dá)、或發(fā)生突變,均會(huì)導(dǎo)致小麥胚乳質(zhì)地變硬[2,30]。新疆拉面(Xinjiang hand-stretched noodle,XHSN)屬手工鮮食白鹽面條(white salted noodle,WSN),與蘭州拉面[31]在面條配方、外觀形態(tài)、食用方法、佐餐食料等方面有著本質(zhì)的區(qū)別,是新疆地區(qū)獨(dú)具特色的面條種類,深受廣大消費(fèi)者的喜愛。新疆小麥面粉年產(chǎn)量的80%都用于制作新疆拉面[32]。哈力旦·依克熱木等[33]對(duì)部分新疆小麥品種進(jìn)行檢測(cè),發(fā)現(xiàn)有2種突變類型和;王亮等[34]對(duì)新疆小麥品種籽粒硬度及進(jìn)行研究,發(fā)現(xiàn)有6種突變類型,其中的籽粒硬度最高,最低,并且、和3種硬質(zhì)類型的籽粒硬度沒有顯著性差異;叢花等[35]對(duì)新疆小麥地方品種籽粒硬度及進(jìn)行研究,發(fā)現(xiàn)有9種突變類型,以為主導(dǎo)類型;(野生型)的籽粒硬度顯著低于突變型,的籽粒硬度最高?!颈狙芯壳腥朦c(diǎn)】突變會(huì)導(dǎo)致籽粒硬度發(fā)生變化[2,30],籽粒硬度影響加工品質(zhì)[1,4-5]。目前,針對(duì)新疆小麥的研究主要圍繞等位變異檢測(cè)[33]及其對(duì)籽粒硬度的影響[34-35],有關(guān)與加工品質(zhì)關(guān)系的研究鮮見報(bào)道?!緮M解決的關(guān)鍵問題】本研究以386份新疆春小麥品種資源為材料,利用已開發(fā)的分子標(biāo)記檢測(cè),并測(cè)定品質(zhì)性狀和新疆拉面加工品質(zhì),分析不同等位變異對(duì)籽粒硬度、品質(zhì)性狀和新疆拉面加工品質(zhì)的影響,為新疆小麥品質(zhì)改良以及優(yōu)質(zhì)新疆拉面品種選育提供參考信息。

1 材料與方法

1.1 材料來源

供試材料為新疆農(nóng)墾科學(xué)院作物所小麥研究室收集整理的386份新疆春小麥品種資源,包括地方品種54份、國(guó)外引進(jìn)品種(系)22份、國(guó)內(nèi)引進(jìn)品種(系)103份、新疆自育品系152份和新疆審定品種55份。2012—2013年,將供試材料在新疆農(nóng)墾科學(xué)院作物研究所農(nóng)業(yè)試驗(yàn)站(新疆石河子)進(jìn)行2年種植試驗(yàn)。人工撒播,行長(zhǎng)1.8 m,行距0.25 m,每個(gè)材料種植5行。田間管理同大田,正常成熟后及時(shí)收獲,人工收割、機(jī)器脫粒,室溫存放1個(gè)月后用于磨粉。面粉樣品室溫存放1個(gè)月后用于品質(zhì)測(cè)定。

1.2 品質(zhì)測(cè)定

2013—2014年,在新疆農(nóng)墾科學(xué)院作物研究所/谷物品質(zhì)與遺傳改良兵團(tuán)重點(diǎn)實(shí)驗(yàn)室進(jìn)行籽粒及面粉品質(zhì)的測(cè)定。使用瑞典Perten公司4100型單粒谷物特性測(cè)定儀(SKCS)按AACC 55-31方法測(cè)定籽粒硬度。使用丹麥FOSS公司1241型近紅外谷物成分分析儀按AACC 39-11方法和AACC 08-01方法測(cè)定籽粒蛋白質(zhì)含量(14%水分基,下同)以及面粉灰分含量。使用德國(guó)Brabender公司Quandrmat Senior磨進(jìn)行面粉磨制并計(jì)算出粉率,即所得面粉與全粉(面粉和麩皮總和)的比值。使用日本KONICA MINOLTA公司Minolta CR-310型色差儀測(cè)定面粉色澤,采用D65CIEL*、a*、b*的色度系統(tǒng),L*值表示黑-白(亮)度,值越大越白(亮);a*值表示綠-紅色,值越大越紅;b*值表示藍(lán)-黃色,值越大越黃;使用杭州大成光電儀器有限公司W(wǎng)SB-IV智能白度測(cè)定儀測(cè)量面粉白度,該儀器測(cè)量物體表面的蘭光白度,值越大表明白度高。使用瑞典Perten公司2200型面筋儀按國(guó)標(biāo)GB/T14608-2006方法測(cè)定濕面筋含量,面筋指數(shù)為強(qiáng)面筋含量占總面筋含量的比值。使用中國(guó)農(nóng)業(yè)大學(xué)BAU21型沉淀值測(cè)定儀按AACC56-61A方法測(cè)定Zeleny沉淀值。使用美國(guó)National manufacturing公司10 g電子型和面儀按AACC54-40A方法測(cè)定和面儀參數(shù),軟件Mixsmart自動(dòng)處理數(shù)據(jù)、繪圖和顯示結(jié)果。主要使用圖譜中線(midline)的幾個(gè)參數(shù):峰值時(shí)間(midline peak time)、峰值高度(midline peak value)、8分鐘寬度(8 min width)和8分鐘面積(8 min integral)。使用瑞典Perten公司TECMASTER快速黏度測(cè)試儀(RVA)按照AACC76-21的方法測(cè)定淀粉糊化參數(shù),黏度單位為里泊(cp),RVA參數(shù)包括峰值黏度(peak viscosity)、低谷黏度(trough viscosity)、稀懈值(breakdown)、最終黏度(final viscosity)和反彈值(setback)。按照新疆農(nóng)墾科學(xué)院作物研究所和谷物品質(zhì)與遺傳改良兵團(tuán)重點(diǎn)實(shí)驗(yàn)室制定的《新疆拉面實(shí)驗(yàn)室制作及評(píng)價(jià)方法》[44],對(duì)上述樣品進(jìn)行新疆拉面的制作和評(píng)鑒,明確供試材料的拉面加工品質(zhì)優(yōu)劣。

1.3 分子標(biāo)記檢測(cè)

2014—2015年,每個(gè)供試材料選3粒有代表性的種子,按照Lagudah等[36]方法提取基因組DNA,參考王亮等[34]方法檢測(cè)供試材料籽粒硬度基因()。根據(jù)每個(gè)品種(系)DNA檢測(cè)結(jié)果判斷該品種(系)的類型。對(duì)出現(xiàn)3粒種子帶型不一致的材料,進(jìn)行二次取樣,重新檢測(cè),以2次檢測(cè)一致的結(jié)果為準(zhǔn)。

1.4 統(tǒng)計(jì)分析

采用SAS8.0軟件對(duì)2年的檢測(cè)結(jié)果進(jìn)行測(cè)驗(yàn)及方差分析。

2 結(jié)果

2.1 新疆春小麥品種Pins分子標(biāo)記檢測(cè)

利用目前已開發(fā)的小麥分子標(biāo)記,檢測(cè)386份新疆春小麥品種資源(表1和表2)。結(jié)果顯示,在新疆春小麥品種中,位點(diǎn)存在和等位變異類型,占比分別為86.79%和13.21%;位點(diǎn)存在、和等位變異類型,占比依次為64.77%、32.12%和3.11%。基因型組合類型有、、、、和,占比依次為58.81%、25.39%、2.59%、5.96%、6.74%和0.52%。說明、和是新疆春小麥品種資源的主要基因型和基因型組合。

2.2 Pins對(duì)春小麥品種品質(zhì)性狀的影響

分別對(duì)不同基因型品種的品質(zhì)性狀進(jìn)行成組數(shù)據(jù)的測(cè)驗(yàn)和單因素方差分析,比較不同基因型和不同基因型組合對(duì)新疆春小麥品種品質(zhì)性狀的影響。

2.2.1對(duì)籽粒性狀和磨粉品質(zhì)的影響 在不同基因型品種間(表3),的籽粒蛋白含量和面粉灰分含量極顯著高于;面粉白度顯著高于;籽粒硬度和面粉b*值分別極顯著和顯著低于。在不同基因型品種間,的面粉白度極顯著高于;的籽粒出粉率極顯著高于;和的面粉b*值顯著高于;的籽粒硬度顯著高于和。在不同基因型組合品種間,的面粉白度顯著高于;和的籽粒出粉率顯著高于和;的籽粒硬度極顯著高于其他組合;的籽粒蛋白含量極顯著高于其他組合。說明顯著影響春小麥籽粒硬度、蛋白含量、出粉率以及面粉灰分含量、黃度(b*值)、白度。

2.2.2對(duì)小麥品種面粉品質(zhì)和面團(tuán)特性的影響 在不同基因型品種間(表4),的濕面筋含量和Zeleny沉淀值分別極顯著和顯著高于,而面筋指數(shù)極顯著低于;在不同基因型品種間,的濕面筋含量極顯著高于,的面筋指數(shù)極顯著高于;在不同基因型組合品種間,和的面筋指數(shù)極顯著高于,的總面筋含量極顯著高于、、和。說明顯著影響春小麥品種面粉的濕面筋含量、面筋指數(shù)和Zeleny沉淀值。

2.2.3對(duì)和面儀指標(biāo)的影響 在不同基因型品種間(表4),的峰值時(shí)間、8分鐘面積顯著、極顯著低于;在不同基因型品種間,的8分鐘面積極顯著高于;在不同基因型組合品種間,的8分鐘面積極顯著高于。說明顯著影響春小麥品種面團(tuán)特性中的峰值時(shí)間和8分鐘面積。

表1 新疆春小麥品種Pins分子標(biāo)記檢測(cè)結(jié)果

表2 新疆春小麥品種Pins不同組合類型的數(shù)量及其比例

表3 Pins對(duì)新疆春小麥品種籽粒性狀和磨粉品質(zhì)的影響

**和大寫字母表示經(jīng)LSD法多重比較差異極顯著(<0.01),*和小寫字母表示經(jīng)LSD法多重比較差異顯著(<0.05)。下同

** and capital letters indicate significant difference at<0.01 according to LSD multiple-comparison, * and lowercase letters indicate significant difference at<0.05 according to LSD multiple-comparison. the same as below

表4 Pins對(duì)新疆春小麥品種面粉品質(zhì)和面團(tuán)特性的影響

2.2.4 Pins對(duì)淀粉糊化特性的影響 在Pina不同基因型品種間(表5),Pina-D1a的稀懈值極顯著低于Pina-D1b;在Pinb不同基因型品種間,淀粉糊化特性的差異不顯著;在Pina/Pinb不同基因型組合品種間,Pina-D1b/Pinb-D1b、Pina-D1b/Pinb-D1a、Pina-D1a/ Pinb-D1b和Pina-D1a/Pinb-D1a的稀懈值顯著高于Pina-D1b/Pinb-D1p。說明Pins顯著影響春小麥淀粉的稀懈值。

2.3 Pins對(duì)春小麥品種新疆拉面加工品質(zhì)的影響

在Pina不同基因型品種間(表6),Pina-D1b的拉面手感、粘彈性、總分顯著高于Pina-D1a;在Pinb不同基因型品種間,新疆拉面加工品質(zhì)的差異不顯著;Pina/Pinb不同基因型組合品種間,Pina-D1b/Pinb-D1p的拉面手感顯著高于Pina-D1a/Pinb-D1b、Pina-D1a/ Pinb-D1p和Pina-D1a/Pinb-D1a;Pina-D1a/Pinb-D1p、Pina-D1b/Pinb-D1a和Pina-D1b/Pinb-D1b的粘彈性顯著高于Pina-D1a/Pinb-D1a、Pina-D1b/Pinb-D1p;Pina- D1b/Pinb-D1b和Pina-D1b/Pinb-D1a的總分顯著高于Pina-D1b/Pinb-D1p、Pina-D1a/Pinb-D1b和Pina-D1a/ Pinb-D1a。說明Pins顯著影響新疆拉面加工品質(zhì)的拉面手感、粘彈性和總分。

表5 Pins對(duì)新疆春小麥品種淀粉糊化特性的影響

表6 Pins對(duì)春小麥品種新疆拉面加工品質(zhì)的影響

3 討論

3.1 新疆春小麥Pins等位變異類型

在已經(jīng)發(fā)現(xiàn)的23種變異類型和31種變異類型中,(野生型)是中國(guó)小麥中最為常見的變異類型[37]。Ma等[38]對(duì)來自中國(guó)、美國(guó)、澳大利亞、歐洲、日本小麥品種的檢測(cè)發(fā)現(xiàn),在中國(guó)和國(guó)外品種中,最常見的基因型是/;在中國(guó)地方品種中,最常見的基因型是/。本研究發(fā)現(xiàn),新疆春小麥品種資源中,存在2種等位變異,其中(野生型)占比最高(86.79%);存在3種等位變異,其中(野生型)占比最高(64.77%);基因型組合有6種,其中(野生型)占比最高(58.81%)。與Ma等[38]的檢測(cè)結(jié)果相似。

3.2 Pins對(duì)籽粒硬度和蛋白質(zhì)含量的影響

籽粒硬度是最重要的小麥品質(zhì)性狀之一,是形成小麥籽粒硬度的基礎(chǔ)。PINA蛋白的缺失或編碼PINB蛋白的基因突變均造成小麥胚乳質(zhì)地變硬[39]。本研究發(fā)現(xiàn),新疆春小麥和的籽粒硬度顯著高于野生型;和的籽粒硬度極顯著高于其他組合,說明的突變會(huì)顯著提高春小麥的籽粒硬度,擁有的品種比擁有品種的籽粒硬度值高[40]。本研究還發(fā)現(xiàn),的不同變異類型會(huì)顯著影響籽粒蛋白質(zhì)含量,其中的籽粒蛋白質(zhì)含量極顯著低于野生型,而的籽粒蛋白質(zhì)含量極顯著高于其他組合。

3.3 Pins對(duì)主要品質(zhì)性狀的影響

已有研究表明,不同小麥品種的品質(zhì)性狀和加工品質(zhì)不同[2]。的出粉率、面粉顆粒大小、亮度(L*值)、紅度(a*值)、面團(tuán)形成時(shí)間、延展性均高于,但灰分含量、吸水率較低[30];具有更高的灰分含量和紅度(a*值)[41]。的破損淀粉率高于其他組合,但亮度(L*值)較低;的出粉率、黃度(b*值)低于其他組合,但亮度(L*值)較高[2]。與野生型()面粉顏色和淀粉糊化特性間均有顯著差異;的峰值黏度最高;并且野生型的面條亮度(L*值)、黃亮度(L*-b*)值和軟硬度分值顯著高于,但黃度(b*值)顯著較低[42]。的面團(tuán)吸水率比高,但出粉率和面團(tuán)形成時(shí)間明顯比后者偏低[43]。本研究發(fā)現(xiàn)的出粉率最高且差異達(dá)顯著水平,這與Nagamine等[43]的研究結(jié)果一致。的面粉白度最高且差異達(dá)顯著水平,這與Eagles等[42]的研究結(jié)果相似。

3.4 Pins對(duì)新疆拉面加工品質(zhì)的影響

新疆拉面是獨(dú)具特色的面條種類,深受新疆各族人民的喜愛。以往的研究發(fā)現(xiàn)[44-45],不同小麥品種對(duì)新疆拉面加工品質(zhì)的影響存在差異。Chen等[46]認(rèn)為的面條紅度(a*值)、粘彈性和評(píng)價(jià)總分高于和野生型。Eagles等[42]認(rèn)為的面條品質(zhì)優(yōu)于和。本研究還發(fā)現(xiàn)的拉面手感、粘彈性、總分極顯著低于,這與Chen等[46]的研究結(jié)果不同。和的總分最高且差異達(dá)極顯著水平,這與Eagles等[42]的研究結(jié)果不同。說明新疆拉面加工品質(zhì)不同于其他類型的面條,且影響不同類型面條加工品質(zhì)的分子基礎(chǔ)各異。因此,在選育優(yōu)質(zhì)新疆拉面加工品質(zhì)品種時(shí),應(yīng)重點(diǎn)關(guān)注、基因型組合。

新疆拉面加工品質(zhì)是春小麥品種籽粒特性、磨粉品質(zhì)、面粉品質(zhì)、面團(tuán)流變學(xué)特性、淀粉糊化特性等品質(zhì)性狀共同作用的結(jié)果,拉面手感、表面狀況和色澤是制約新疆拉面加工品質(zhì)的關(guān)鍵因素[45]。本研究發(fā)現(xiàn),新疆春小麥突變后,籽粒特性(籽粒硬度)、面粉品質(zhì)(面粉黃度和面筋指數(shù))、面團(tuán)流變學(xué)特性(峰值時(shí)間和8分鐘面積)、淀粉糊化特性(稀懈值)等品質(zhì)性狀顯著升高,使得新疆拉面的拉面手感和粘彈性等性狀得到顯著改善,最終促使新疆拉面的加工品質(zhì)(總分)顯著提升。

4 結(jié)論

在新疆春小麥種質(zhì)資源中,和均以野生型為主。突變會(huì)使新疆春小麥胚乳質(zhì)地變硬、主要品質(zhì)性狀顯著升高,促進(jìn)新疆拉面的拉面手感和粘彈性等性狀得到顯著改善,最終促使新疆拉面的加工品質(zhì)(總分)顯著提升。突變對(duì)新疆拉面加工品質(zhì)的影響不顯著在優(yōu)質(zhì)新疆拉面小麥品種選育時(shí),應(yīng)優(yōu)先選擇突變型材料。、是優(yōu)質(zhì)新疆拉面小麥品種改良中重點(diǎn)選擇的基因型組合。

[1] Pomeranz Y, Willams P C. Wheat hardness: Its genetic, structure and biochemical background, measurement, and significance. In ‘Advances in cereal science and technology’.

, 1990: 471-548.

[2] Ma D Y, Zhang Y, Xia X C, Morris C F, He Z H. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles., 2009, 50: 126-130.

[3] Erkinbaev C, Derksen K, Paliwal J. Single kernel wheat hardness estimation using near infrared hyperspectral imaging., 2019(98): 250-255.

[4] 胡瑞波, 田紀(jì)春. 小麥主要品質(zhì)性狀與面粉色澤的關(guān)系. 麥類作物學(xué)報(bào), 2006, 26(3): 96-101.

HU R B, TIAN J C. Relationship between main quality characteristics and wheat flour color., 2006, 26(3): 96-101. (in Chinese)

[5] 周艷華, 何中虎, 閻俊, 張艷, 王德森, 周桂英. 中國(guó)小麥硬度分布及遺傳分析. 中國(guó)農(nóng)業(yè)科學(xué), 2002, 35(10): 1177-1185.

ZHOU Y H, HE Z H, YAN J, ZHANG Y, WANG D S, ZHOU G Y. Distribution of grain hardness in Chinese wheat and genetic analysis., 2002, 35(10): 1177-1185. (in Chinese)

[6] Lillemo M, Simeone M C, Morris C F. Analysis of puroindoline a and b sequences fromcv. ‘Penawawa’ and related taxa., 2002, 126: 321-331.

[7] Giroux M J, Morris C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin., 1997, 95: 857-864.

[8] Morris C F, Bhave M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data., 2008, 48: 277-287.

[9] Massa A N, Morris C F, Gill B S. Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes incross., 2004, 44: 1808-1816.

[10] Gedye K R, Morris C F, Bettge A D. Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat., 2004, 109: 1597-1603.

[11] Ikeda T M, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H. Identification of new puroindoline genotypes and their protein products among wheat cultivars., 2004, 41: 1-6.

[12] Gazza L, Nocente F, Ng P K W, Pogna N E. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a., 2005, 110: 470-478.

[13] Chen F, He Z H, Xia X C, Xia L Q, Zhang X Y, Lillemo M, Morris C F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars., 2006, 112: 400-409.

[14] Chang C, Zhang H P, Xu J, Li W H, Liu G T, You M S, Li B Y. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE., 2006, 152: 225-234.

[15] Chen F, Zhang F Y, Xia X C, Dong Z D, Cui D Q. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein.. 2012, 29: 371-378.

[16] Chen F, Li H, Cui D Q. Discovery, distribution and diversity ofgenes in bread wheat from five countries (L.)., 2013, 125: 1-13.

[17] Ramalingam A, Palombo E A, Bhave M. Thegenes in wheat comprise a multigene family with great sequence diversity and important variants., 2012, 56: 171-180.

[18] Kumar R, Arora S, Singh K, Garg M. Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants., 2015, 65(4): 319-326.

[19] Lillemo M, Morris C F. Aleucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe., 2000, 100: 1100-1107.

[20] Morris C F, Lillemo M, Simeone M C, Giroux M J, Babb S L, Kimberlee K K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats., 2001, 41: 218-228.

[21] Simeone M, Gedye K R, Mason-Gamer R, Gill B S, Morris C F. Conserved regulator elements identified from a comparative puroindoline gene sequence survey ofanddiploid taxa., 2006, 44: 21-33.

[22] Xia L Q, Chen F, He Z H, Chen X M, Morris C F. Occurrence of puroindoline alleles in Chinese winter wheats., 2005, 82: 38-43.

[23] Chen F, He Z H, Xia X C, Lillemo M, Morris C F. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11., 2005, 42: 267-269.

[24] Ram S, Jain N, Shoran J, Singh R. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and Ni5439., 2005, 14: 45-48.

[25] Chen F, Yu Y X, Xia X C, He Z H. Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (ssp.King)., 2007, 156: 39-46.

[26] Wang J, Sun J J, Liu D C, Yang W L, Wang D W, Tong Y P, Zhang A M. Analysis ofandalleles in the micro-core collections of Chinese wheat germplasm by ecotilling and identification of a novelallele., 2008, 48: 836-842.

[27] Li G, He Z, Lillemo M, Sun Q, Xia X. Molecular characterization of allelic variations atandloci in Shandong wheat landraces, historical and current cultivars., 2008, 47: 510-517.

[28] Tanaka H, Morris C F, Haruna M, Tsujimoto H. Prevalence of puroindoline alleles in wheat from eastern Asia including the discovery of a new SNP in puroindoline b., 2008, 6: 142-152.

[29] Wang L, Li G Y, Xia X C, He Z H, Mu P Y. Molecular characterization ofandallelic variations in Xinjiang landraces and commercial wheat cultivars., 2008, 164: 745-752.

[30] Martin J M, Sherman J D, Lanning S P, Talbert L E, Giroux M J. Effect of variation in amylase content and puroindoline composition on bread quality in a hard spring wheat population., 2008, 85: 266-269.

[31] 周顯青, 張玉榮. 拉面的實(shí)驗(yàn)室制作及評(píng)價(jià)方法的研究. 中國(guó)糧油學(xué)報(bào), 2000, 15(4): 53-56.

Zhou X Q, Zhang Y R. Laboratory procedure and evaluation of hand-extended noodles., 2000, 15(4): 53-56. (in Chinese)

[32] 蘆靜, 張新忠, 吳新元, 黃天榮. 小麥品質(zhì)性狀與面制食品加工特性相關(guān)性研究. 新疆農(nóng)業(yè)科學(xué), 2002, 39 (5): 290-292.

LU J, ZHANG X Z, WU X Y, HUANG T R. Investigation on correlation between quality characters of wheat and processing quality of flour food., 2002, 39(5): 290-292. (in Chinese)

[33] 哈力旦·依克熱木, 蘆靜, 周安定, 曾潮武, 曹俊梅, 梁曉東, 劉聯(lián)正, 范貴強(qiáng), 張新忠, 黃天榮, 高永紅, 吳新元. 新疆部分小麥材料籽粒硬度基因等位變異的分子鑒定及其分布. 新疆農(nóng)業(yè)科學(xué), 2016, 53(6): 981-986.

Halidan Y, LU J, ZHOU A D, ZENG C W, CAO J M, LIANG X D, Liu L Z, FAN G Q, ZHANG X Z, HUANG T R, GAO Y H, WU X Y. Distribution and molecular identification of kernel hardness gene alleles in part of wheat germplasms of Xinjiang., 2016, 53(6): 981-986. (in Chinese)

[34] 王亮, 穆培源, 桑偉, 徐紅軍, 莊麗, 鄒波. 新疆小麥品種籽粒硬度及puroindoline基因等位變異的分子檢測(cè). 麥類作物學(xué)報(bào), 2010, 30(1): 17-22.

WANG L, MU P Y, SANG W, XU H J, ZHUANG L, ZOU B. Kernel hardness and allelic variations of Puroindoline genes in Xinjiang wheat cultivars., 2010, 30(1): 17-22. (in Chinese)

[35] 叢花, 王宏飛, 章艷鳳, 嚴(yán)勇亮, 池田達(dá)哉, 高田兼則, 長(zhǎng)峰司. 新疆小麥地方品種籽粒硬度及其Puroindoline基因等位變異研究. 新疆農(nóng)業(yè)科學(xué), 2011, 48(6): 1056-1063.

CONG H, WANG H F, ZHANG Y F, YAN Y L, Tatsuya I, Kanenori T, Tsukasa N. Identification of the allelic variation of puroindoline alleles in Xinjiang wheat landraces., 2011, 48(6): 1056-1063. (in Chinese)

[36] Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of: natural variation and genetic linkage to makers on chromosome 5., 1991, 34: 387-395.

[37] Xia L Q, Chen F, He Z H, Chen X M, Morris C F. Occurrence of puroindoline alleles in Chinese winter wheat., 2005, 82: 38-43.

[38] Ma X L, Sajjad M, Wang J, Yang W L, Sun J Z, Li X, Zhang A M, Liu D C. Diversity, distribution ofgenes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm., 2017, 17(1): 158.

[39] Morris C F. Puroindolines: the molecular genetic basis of wheat grain hardness., 2002, 48: 633-647.

[40] 楊保安, 張建偉, 張福彥, 陳建峰, 程仲杰, 陳曉杰, 崔黨群. 81份國(guó)外小麥品種(系)Puroindoline基因分子鑒定與分析. 核農(nóng)學(xué)報(bào), 2014, 28(5): 2014, 28(5): 817-824.

YANG B A, ZHANG J W, ZHANG F Y, CHEN J F, CHENG Z J, CHEN X J, CUI D Q. Molecular identification and analysis of puroindoline alleles in 81 foreign wheat varieties., 2014, 28(5): 817-824. (in Chinese)

[41] 陳鋒, 夏先春, Manila William, Morten Lillemo, Richard Trethowan, Roberto J Peňa, 何中虎. CIMMYT小麥puroindoline 基因型的進(jìn)一步鑒定與分析. 中國(guó)農(nóng)業(yè)科學(xué), 2006, 39(8): 1518-1525.

CHEN F, XIA X C, Manila W, Morten L, Richard T, Roberto J P, HE Z H. Determination and evaluation of puroindoline alleles in CIMMYT wheats., 2006, 39(8): 1518-1525. (in Chinese)

[42] Eagles H A, Cane K, Eastwood R F, Hollamby G J, Kuchel H, Martin P J, Cornish G.B. Contributions of glutenin and puroindoline genes to grain quality traits in Southern Australian wheat breeding programs., 2006, 57: 179-186.

[43] Nagamine T, Ikeda T M, Yanagisawa T, Yanaka M, Ishikawa N. The effects of hardness alleleon the flour quality of wheat for Japanese white salty noodles., 2003, 37: 337-342.

[44] 穆培源, 桑偉, 王亮, 莊麗, 王祥軍, 蘆靜, 徐紅軍, 韓新年, 于芳祥. 新疆市售小麥面粉制作新疆拉面的加工品質(zhì)特性及其專用粉品質(zhì)評(píng)價(jià)指標(biāo)的研究. 麥類作物學(xué)報(bào), 2007, 27(6): 1034-1046.

MU P Y, SANG W, WANG L, ZHUANG L, WANG X J, LU J, XU H J, HAN X N, YU F X. Study on processing quality of commercial wheat flours in Xinjiang for Xinjiang Hand-Stretched Noodle and quality evaluation parameters of specific flour., 2007, 27(6): 1034-1046. (in Chinese)

[45] 桑偉, 穆培源, 徐紅軍, 莊麗, 王亮, 于芳祥, 韓新年, 聶迎彬, 鄒波. 新疆春小麥品種主要品質(zhì)性狀及其與新疆拉面加工品質(zhì)的關(guān)系. 麥類作物學(xué)報(bào), 2008, 28: 772-779.

SANG W, MU P Y, XU H J, ZHUANG L, WANG L, YU F X, HAN X N, NIE Y B, ZOU B. Main quality traits of the spring wheat cultivars from Xinjiang and their correlations with processing quality of Xinjiang hand-stretched noodle., 2008, 28: 772-779. (in Chinese)

[46] Chen F, He Z H, Chen D S, Zhang C L, Zhang Y, Xia X C. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats., 2007, 45: 59-66.

Allelic Variations ofGenes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang hand-stretched noodles

XIANG JiShan1, LIU PengPeng2, SANG Wei2, CUI FengJuan2, HANXinNian2, NIE YingBin2, KONG DeZhen2, ZOUBo2, XU HongJun2, MU PeiYuan2

(1Academy of Agricultural Sciences, Chifeng University/Key Laboratory of Agro-ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng 024000, Inner Mongolia;2Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi 832000, Xinjiang)

【Objective】The objectives of this study were to detect the allelic variations ofgenes in Xinjiang spring wheat varieties, analyze the difference of grain hardness among differentgenotypes of spring wheats, and explore the effects ofgenes on different quality characters and the processing quality of Xinjiang hand-stretched noodles.【Method】First, the allelic variations ofgenes in 386 Xinjiang spring wheats varieties were detected with molecular markers. Second, the quality characters of these materials were determined, including milling quality, gluten quality, dough character, and starch gelatinization character. Third, the processing qualities of Xinjiang hand-stretched noodles were evaluated. 【Result】The allelic variations ofgenes: in Xinjiang spring wheat varieties, there were two alleles (and) atlocus with proportions of 86.79% and 13.21%, respectively, three alleles (,,) atlocus with proportions of 64.77%, 32.12%, and 3.11%, respectively, and six genotype combinations (,,,,,) forwith proportions of 58.81%, 25.39%, 2.59%, 5.96%, 6.74%, and 0.52%, respectively. The effect ofgene on the quality characters of Xinjiang spring wheat: the grain protein content, and flour ash content, whiteness, and wet gluten content, Zeleny sedimentation value withwere significantly higher than those with(<0.05), whereas the grain hardness, flour yellowness (b*), gluten index, mid line peak time, 8 min integral, and starch breakdown ofwere significantly lower than those of(<0.05). Among different alleles of, the flour whiteness and weak gluten content of, the grain flour yield and flour yellowness (b*) of, and the grain hardness and flour gluten index ofwere significantly higher than those of other alleles(<0.05). Among different genotype combinations of, the flour whiteness of, the grain hardness, flour gluten index, and dough 8 min integral of, the starch breakdown of, and the grain protein content, flour yield, and flour wet gluten content ofwere significantly higher than those of other genotype combinations(<0.05 or<0.01). The effect ofgenes on processing qualities of Xinjiang hand-stretched noodles: the stretch feeling, viscoelasticity, and total score ofwere significantly lower than those of(<0.01). The stretch feeling ofwas significantly higher than those of other genotype combinations(<0.01). The viscoelasticity of,, andwere significantly higher than those of other genotype combinations(<0.05). The total score ofandwere significantly higher than those of other genotype combinations(<0.01). 【Conclusion】 The mutation ofgene can significantly(<0.05) increase the grain hardness and the total score of Xinjiang hand-stretched noodles. But the mutation ofgene had no significant effect on the processing qualities of Xinjiang hand-stretched noodles.andare the key genotype combinations of high quality breeding for Xinjiang hand-stretched noodles.

Xinjiang spring wheats; germplasms;gene; quality characters; Xinjiang hand-stretched noodles

2019-11-20;

2020-03-10

國(guó)家自然科學(xué)基金(31260324,31560391,U1178306)、新疆兵團(tuán)農(nóng)業(yè)領(lǐng)域攻關(guān)項(xiàng)目(2012BB047,2016AC027,2019AB021)、國(guó)家重點(diǎn)研發(fā)計(jì)劃育種專項(xiàng)(2017YFD0101003)

相吉山,E-mail:xiangjsh@163.com。劉鵬鵬,E-mail:nkylpp@163.com。相吉山和劉鵬鵬為同等貢獻(xiàn)作者。通信作者穆培源,E-mail:mupy@163.com

(責(zé)任編輯 李莉)

猜你喜歡
春小麥拉面基因型
HBV基因型的研究現(xiàn)狀與發(fā)展趨勢(shì)探討
PD-1和CTLA-4 3′UTR基因交互作用在HBV感染中的作用*
早春小麥田間管理抓哪些
綠色農(nóng)產(chǎn)品春小麥主要蟲害防治技術(shù)
數(shù)學(xué)工具在自交和自由交配相關(guān)計(jì)算中的應(yīng)用探討
一碗拉面加個(gè)蛋
克什克騰旗旱地優(yōu)質(zhì)春小麥高產(chǎn)栽培技術(shù)探討
乙型肝炎病毒基因型的臨床意義
长泰县| 岳阳县| 平安县| 长海县| 吉水县| 垣曲县| 中山市| 深泽县| 高密市| 河北区| 富锦市| 黎川县| 青铜峡市| 铜鼓县| 谷城县| 石阡县| 锡林郭勒盟| 维西| 宽甸| 石嘴山市| 时尚| 城固县| 东乌| 靖西县| 韶山市| 东至县| 女性| 娄底市| 吉水县| 广河县| 商河县| 吉木萨尔县| 冕宁县| 邳州市| 兴文县| 金寨县| 华宁县| 西丰县| 盖州市| 敦化市| 松桃|