婁婧婧,高雪峰
運(yùn)動(dòng)基因組學(xué)的研究進(jìn)展
婁婧婧,高雪峰
廣州市體育科學(xué)研究所,廣東 廣州,510620。
目的:回顧目前在理解運(yùn)動(dòng)員能力遺傳決定論方面的進(jìn)展,并描述一些新的、重要的、可能成為精英運(yùn)動(dòng)員的差異標(biāo)記的基礎(chǔ)的DNA多態(tài)性。方法:通過文獻(xiàn)綜述和歸納分析法對過去幾十年運(yùn)動(dòng)基因組學(xué)的研究進(jìn)展作了簡單的回顧。結(jié)果:運(yùn)用全基因組關(guān)聯(lián)研究(GWAS),在過去幾年確定了41種標(biāo)志物,這表明GWASs是一種有前景、富有成效的研究運(yùn)動(dòng)相關(guān)表型的方法。結(jié)論:未來的研究,包括多中心GWAS和大群運(yùn)動(dòng)員的全基因組測序的驗(yàn)證和復(fù)制研究,將有助于發(fā)現(xiàn)大量能部分解釋運(yùn)動(dòng)能力和相關(guān)表型的遺傳力的遺傳變異(突變和DNA多態(tài)性)。
DNA多態(tài)性;全基因組關(guān)聯(lián)研究;運(yùn)動(dòng)基因組學(xué);運(yùn)動(dòng)能力;遺傳因素
遺傳因素被認(rèn)為在運(yùn)動(dòng)能力和相關(guān)表型(如力量、爆發(fā)力、有氧能力、柔韌性、協(xié)調(diào)能力等)中起關(guān)鍵作用。盡管運(yùn)動(dòng)能力[1]和中間表型[2]的遺傳度高達(dá)70%(視不同項(xiàng)目而定),尋找具有遺傳傾向性的特定運(yùn)動(dòng)項(xiàng)目的基因變異仍然是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。運(yùn)動(dòng)基因組學(xué)是一門相對較新的學(xué)科,關(guān)注精英運(yùn)動(dòng)員基因組的結(jié)構(gòu)和功能[3]。運(yùn)動(dòng)基因組學(xué)始于21世紀(jì)初,發(fā)現(xiàn)了與運(yùn)動(dòng)能力相關(guān)的遺傳標(biāo)記(例如ACE,ACTN3,AMPD1和PPARGC1A基因多態(tài)性)。隨著基因分型,測序和DNA微陣列技術(shù)的使用越來越廣泛,大量評估候選基因變異的遺傳學(xué)研究已經(jīng)發(fā)表,這些研究中的變異大多與運(yùn)動(dòng)能力存在未經(jīng)證實(shí)的關(guān)聯(lián)性[4]。
病例對照研究仍然是運(yùn)動(dòng)基因組學(xué)中最常見的研究設(shè)計(jì),通常涉及確定DNA序列的一個(gè)等位基因(基因或DNA的非編碼區(qū))在一群優(yōu)秀運(yùn)動(dòng)員中是否比在一般人群中更常見,意味著該等位基因提高了某種運(yùn)動(dòng)能力。為了避免假陽性結(jié)果,病例對照研究應(yīng)該至少在不同人群(外部復(fù)制)或同一群體的亞組(內(nèi)部復(fù)制)中復(fù)制1次[5-7]。識別運(yùn)動(dòng)相關(guān)遺傳標(biāo)記的另一種方法是比較成績最好和最差的運(yùn)動(dòng)員之間的基因型和等位基因頻率[8,9]。
由于耐力和力量是肌肉運(yùn)動(dòng)能力的相反的性狀,因此在耐力和力量運(yùn)動(dòng)員(或力量運(yùn)動(dòng)員與參加低強(qiáng)度運(yùn)動(dòng)的運(yùn)動(dòng)員等)之間的等位基因或基因型頻率的比較也是一種識別耐力、力量標(biāo)記的方法[10,11]。橫截面研究是運(yùn)動(dòng)基因組學(xué)中另一種類型的研究設(shè)計(jì),檢驗(yàn)具有特定DNA序列的一種基因型(或等位基因)的運(yùn)動(dòng)員與其他人相比是否具有不同的性狀測量值(例如VO2 max,跑步時(shí)間,快肌纖維的百分比、心臟大小,乳酸閾等)[12,13]。
全基因組關(guān)聯(lián)研究(GWAS)是一種新的研究方法,它通過許多人的微芯片快速掃描整套DNA中的數(shù)十萬(多達(dá)500萬)標(biāo)記,以找到與特定性狀相關(guān)的DNA多態(tài)性。GWAS方法的一個(gè)優(yōu)點(diǎn)是:與候選基因研究方法相比,它在基因組結(jié)構(gòu)和先前的性狀知識方面沒有傾向性[14]。因此,通過高通量基因分型技術(shù)實(shí)現(xiàn)的GWASs在鑒定與復(fù)雜性狀相關(guān)的單核苷酸多態(tài)性(SNPs)方面取得了巨大成功。
DNA多態(tài)性(在人群中頻率為1%或更高)和罕見突變(在人群中頻率小于1%)大致可以分為耐力、速度、爆發(fā)力(速度、爆發(fā)力相結(jié)合)運(yùn)動(dòng)能力相關(guān)的遺傳標(biāo)記。需要指出的是,協(xié)調(diào)性、柔韌性等運(yùn)動(dòng)能力的遺傳標(biāo)記還未被研究。與一種特定運(yùn)動(dòng)相關(guān)的遺傳標(biāo)記的顯著性基于以下幾個(gè)標(biāo)準(zhǔn):多態(tài)性的類型(移碼突變、缺失、同義突變、3’/5’-UTR,內(nèi)含子、非編碼RNA等);在特定人群中的頻率;病例對照和橫截面研究中陽性和陰性(有爭議)的結(jié)果數(shù)量;研究的運(yùn)動(dòng)員的數(shù)量;功能研究的支持證據(jù)(過表達(dá)或基因敲除模型、特定等位基因熒光素酶活性的分析等)[15]。
盡管基因在人類運(yùn)動(dòng)能力中具有明顯的作用,但幾乎沒有明確的證據(jù)證明特定的遺傳變異對一種相關(guān)表型具有主要影響(至少在人類性狀分布的正常范圍內(nèi))。這可能是因?yàn)閺?fù)雜性狀基本上是多基因影響的,也可能是因?yàn)檠芯咳藛T沒有考慮到全面的環(huán)境影響,或兩者兼而有之。值得注意的是,每個(gè)DNA基因座都可以解釋很小比例的表型變異(例如~0.1到~1%)[4]。因此,需要非常大的樣本量來檢測這種關(guān)聯(lián)性,并且應(yīng)該使用多種方法的組合。
迄今為止,一些研究試圖定義或量化影響人體物理性能的多種基因型組合的影響[16-34]。
文獻(xiàn)檢索顯示,至少有155個(gè)遺傳標(biāo)記(位于常染色體基因,線粒體DNA,X和Y染色體內(nèi))與精英運(yùn)動(dòng)員相關(guān)。這些遺傳標(biāo)記中93個(gè)與耐力相關(guān),62個(gè)與速度、爆發(fā)力相關(guān)。重要的是,通過對非洲裔美國、牙買加、日本和俄羅斯運(yùn)動(dòng)員的GWAS研究,在過去的兩年內(nèi)確定了41個(gè)與運(yùn)動(dòng)能力相關(guān)的遺傳標(biāo)記,表明了GWAS是研究運(yùn)動(dòng)相關(guān)表型的卓有成效的方法。值得注意的是,31種遺傳標(biāo)記(耐力標(biāo)記:ACE I,ACTN3 577X,ADRB2 16Arg,AQP1 rs1049305 C,AMPD1 Gln12,BDKRB2 -9,COL5A1 rs12722 T,GABPB1 rs12594956 A和rs7181866 G,HFE 63Asp,KCNJ11 Glu23,mtDNA H haplogroup, mtDNA K haplogroup(unfavourable),PPARA rs4253778 G,PPARD rs2016520 C,PPARGC1A Gly482,UCP3 rs1800849 T;速度、爆發(fā)力標(biāo)記:ACE D,ACTN3 Arg577,AGT 235Thr,AMPD1 Gln12,CKM rs1803285 G,CREM rs1531550 A,GALNT13 rs10196189 G,HIF1A 582Ser,IL6 rs1800795 G,MTHFR rs1801131 C,NOS3 rs2070744 T,PPARA rs4253778 C,PPARG 12Ala ,SOD2 Ala16)在至少2項(xiàng)研究中顯示出與運(yùn)動(dòng)能力呈正相關(guān),其中12項(xiàng)(耐力標(biāo)記:ACE I,ACTN3 577X,HFE 63Asp,PPARA rs4253778 G,PPARGC1A Gly482;速度、爆發(fā)力標(biāo)記:ACE D, ACTN3 Arg577,AMPD1 Gln12,HIF1A 582Ser,MTHFR rs1801131 C,NOS3 rs2070744 T,PPARG 12Ala)在3項(xiàng)或更多研究中與運(yùn)動(dòng)能力呈正相關(guān)。至少有1項(xiàng)研究無法重復(fù)29種遺傳標(biāo)記的研究結(jié)果[4],這增加了有的發(fā)現(xiàn)可能是假陽性結(jié)果并需要進(jìn)一步驗(yàn)證的可能性。有趣的是,幾乎所有染色體(除了20號染色體)都包含與運(yùn)動(dòng)相關(guān)的遺傳標(biāo)記。
根據(jù)現(xiàn)有數(shù)據(jù),耐力素質(zhì)仍然是研究最多的特質(zhì)。由于篇幅限制,本文無法描述所有155種DNA多態(tài)性,但應(yīng)注意的是,這些遺傳標(biāo)記中的120種(主要通過候選基因方法鑒定)在最近的一篇綜述中進(jìn)行了全面的描述[4]。鑒于此,在本綜述中,我們重點(diǎn)關(guān)注GWAS方法最近確定的新DNA多態(tài)性的描述。
文獻(xiàn)檢索顯示,至少有93種遺傳標(biāo)記與耐力素質(zhì)相關(guān),其中19種是通過使用微芯片技術(shù)發(fā)現(xiàn)的。最初,Ahmetov等人[7]檢驗(yàn)了80名國際級俄羅斯耐力運(yùn)動(dòng)員(46名男性和34名女性)中1,140,??419個(gè)SNP與相對最大攝氧量(VO2max)之間的關(guān)系,確定了6個(gè)“耐力等位基因”(p < 10-5至10-8)(結(jié)果在男性和女性中都能被復(fù)制)。為了驗(yàn)證獲得的結(jié)果,作者進(jìn)一步通過比較218名耐力運(yùn)動(dòng)員(或100名精英耐力運(yùn)動(dòng)員)和相反隊(duì)列(192名俄羅斯對照組,1,367名歐洲對照組和230名俄羅斯力量運(yùn)動(dòng)員)之間6個(gè)SNP的頻率進(jìn)行病例對照研究。假設(shè)與耐力運(yùn)動(dòng)員相比,“耐力等位基因”應(yīng)該在至少一個(gè)相反隊(duì)列(俄羅斯對照和俄羅斯力量運(yùn)動(dòng)員)中出現(xiàn)較少。這一方法證實(shí)NFIA-AS2 rs1572312 C, TSHR rs7144481C, RBFOX1 rs7191721 G 這3個(gè)SNP與耐力素質(zhì)相關(guān)。
NFIA-AS2基因編碼未描述功能的長鏈非編碼RNA。長鏈非編碼RNA反義鏈的基因從相同的基因組位點(diǎn)或遠(yuǎn)離產(chǎn)生有義轉(zhuǎn)錄物對應(yīng)物的基因座位的位點(diǎn)開始轉(zhuǎn)錄。長鏈非編碼RNA的反義鏈通過靶基因的基因組位點(diǎn)上的DNA甲基化和染色質(zhì)修飾等機(jī)制抑制(在某些情況下還可以激活)靶向蛋白編碼基因的轉(zhuǎn)錄。假設(shè)NFIA-AS2參與調(diào)節(jié)核因子IA(NFIA)基因或紅細(xì)胞/骨髓特異性RNA的表達(dá)。NFIA作為轉(zhuǎn)錄因子誘導(dǎo)紅細(xì)胞生成,而其沉默驅(qū)動(dòng)粒細(xì)胞生成。與該假設(shè)一致,作者還報(bào)道了C等位基因與紅細(xì)胞生成的激活(高水平的血紅蛋白,大量的網(wǎng)織紅細(xì)胞和紅細(xì)胞)相關(guān),而A等位基因與激活的粒細(xì)胞生成有關(guān)(大量的中性粒細(xì)胞和更高的白細(xì)胞/紅細(xì)胞比例)[7]。
至于其他2個(gè)基因多態(tài)性,RNA結(jié)合蛋白,fox-1同源物(Caenorhabditis elegans)1(由RBFOX1基因編碼)是心臟、肌肉和神經(jīng)組織中調(diào)節(jié)發(fā)育和組織特異性選擇性剪接的重要剪接因子[35]。因此,RBFOX1涉及多種醫(yī)學(xué)病癥,包括肌營養(yǎng)不良癥,癌癥,神經(jīng)發(fā)育和神經(jīng)精神病癥。由TSHR基因編碼的促甲狀腺激素受體是促甲狀腺素(產(chǎn)生甲狀腺激素)和甲狀腺激活素(激活TSHR蛋白)的膜受體,因此是甲狀腺細(xì)胞代謝的主要控制者。甲狀腺激素被認(rèn)為是骨骼肌代謝和收縮類型的決定因素[36]。TSHR還通過cAMP-哺乳動(dòng)物雷帕霉素信號傳導(dǎo)靶點(diǎn)介導(dǎo)促甲狀腺激素對血管生成的影響[37]。rs7144481多態(tài)性位于TSHR基因的調(diào)節(jié)區(qū)(3'-UTR)。
對于使用不同標(biāo)準(zhǔn)的相同運(yùn)動(dòng)員組和GWAS數(shù)據(jù):(1)SNP和VO2max的關(guān)系在男性和女性中應(yīng)該被單獨(dú)研究(調(diào)整性別后的p<10-3);(2)相比普通人和力量運(yùn)動(dòng)員,耐力相關(guān)等位基因頻率在耐力運(yùn)動(dòng)員中應(yīng)該更高。同一組作者確定了另外6個(gè)等位基因(ZNF429 rs1984771 G,F(xiàn)MNL2 rs12693407 G,ACOXL rs13027870 G,ITPR1 rs2131458 A,GALM rs3821023 A,NATD1 rs732928 G)與耐力相關(guān)[38]。這些SNP位于參與調(diào)節(jié)脂質(zhì)(ACOXL)和碳水化合物(GALM)代謝,形態(tài)發(fā)生和胞質(zhì)分裂(FMNL2),細(xì)胞內(nèi)Ca2 +信號傳導(dǎo)(ITPR1)和其他過程(ZNF429,NATD1)的基因中。
在同1組科學(xué)家的第3項(xiàng)研究中,Galeeva等[39]在俄羅斯耐力運(yùn)動(dòng)員(n = 223;所有和精英長跑運(yùn)動(dòng)員,所有和精英中長跑運(yùn)動(dòng)員)和對照(n = 173)的4個(gè)亞組中進(jìn)行了GWAS研究,發(fā)現(xiàn)93個(gè)與耐力相關(guān)的SNP,并可在所有亞組中復(fù)制(p <10-4),但沒有一個(gè)達(dá)到全基因組顯著性水平。增加3個(gè)標(biāo)準(zhǔn):(1)效應(yīng)等位基因的頻率增加,耐力運(yùn)動(dòng)員的成績水平提高;(2)56名精英耐力運(yùn)動(dòng)員和67名精英力量運(yùn)動(dòng)員之間等位頻率的顯著差異;(3)效應(yīng)等位基因與高VO2 max值的正相關(guān)。則余下5個(gè)SNP(效應(yīng)等位基因:CAMK1D rs11257754 A,CPQ rs6468527 A,GRM3 rs724225 G, SGMS1 rs884880 A,L3MBTL4 rs17483463 T)與優(yōu)秀耐力素質(zhì)相關(guān)。這些SNP位于參與調(diào)節(jié)碳水化合物代謝(CAMK1D),合成甲狀腺素(CPQ),谷氨酸能神經(jīng)傳遞(GRM3),鞘磷脂和二?;视痛x(SGMS1)和染色質(zhì)修飾(L3MBTL4)的基因中。
Gabdrakhmanova等[40]使用GWAS方法研究了俄羅斯耐力運(yùn)動(dòng)員和力量運(yùn)動(dòng)員之間基因組圖譜的差異。在第1階段,通過比較兩組精英運(yùn)動(dòng)員(171名精英運(yùn)動(dòng)員和56名精英耐力運(yùn)動(dòng)員)的基因圖譜,作者確定了13個(gè)有意義的SNP(p值從10-5到10-6)。在第2階段,他們比較了223名耐力運(yùn)動(dòng)員和173名對照者之間以上SNP的等位基因頻率。最后,進(jìn)行回歸分析以揭示與VO2max的關(guān)聯(lián)(n = 71)。通過這些分析,只余下5個(gè)SNP(CLSTN2 rs2194938 A,TPK1 rs10275875 T,ITPR1 rs1038639 T,NALCN-AS1 rs4772341 A,SPOCK1 rs1051854 T)與耐力素質(zhì)相關(guān)。這些SNP位于參與調(diào)節(jié)神經(jīng)元興奮性(CLSTN2,NALCN-AS1),維生素B1代謝(TPK1),肌肉收縮(ITPR1)和蛋白質(zhì)代謝(SPOCK1)的基因中。
文獻(xiàn)檢索顯示,至少有62種遺傳標(biāo)記與力量素質(zhì)相關(guān),其中22種是通過使用微芯片技術(shù)發(fā)現(xiàn)的。通過3項(xiàng)GWAS研究(95個(gè)牙買加、108個(gè)美國非洲裔、54個(gè)日本的優(yōu)秀短跑運(yùn)動(dòng)員和617個(gè)對照)和綜合分析,王[41]等人發(fā)現(xiàn)rs1531550(G/A)多態(tài)性的CREMA等位基因和rs10196189(A/G)多態(tài)性的GALNT13 G等位基因在精英短跑運(yùn)動(dòng)員中的比例(p <2×10-6)比對照組高。在俄羅斯短跑運(yùn)動(dòng)員和力量運(yùn)動(dòng)員中,這些結(jié)果也能被復(fù)制(p <0.001)。
在483名俄羅斯運(yùn)動(dòng)員和173個(gè)對照者的GWAS研究中(49名力量運(yùn)動(dòng)員,103名耐力運(yùn)動(dòng)員和331名來自其他力量相關(guān)項(xiàng)目的運(yùn)動(dòng)員:其中包括89名短跑運(yùn)動(dòng)員,38名力量/速度運(yùn)動(dòng)員,64名摔跤運(yùn)動(dòng)員,42名橄欖球運(yùn)動(dòng)員,98名賽艇/皮劃艇運(yùn)動(dòng)員),Egorova等[42]首先確定了與精英力量運(yùn)動(dòng)員狀態(tài)相關(guān)的43個(gè)SNP(p <10-5)(與對照組相比),但沒有一個(gè)達(dá)到全基因組顯著性水平。增加3個(gè)標(biāo)準(zhǔn):(1)效應(yīng)等位基因的頻率增加,力量運(yùn)動(dòng)員的成績提高;(2)力量和耐力運(yùn)動(dòng)員之間等位基因頻率的顯著差異;(3)效應(yīng)等位基因與力量相關(guān)運(yùn)動(dòng)傾向之間的關(guān)聯(lián)性至少可復(fù)制1次。余下的8個(gè)SNP [SUCLA2 rs10397 A,MED4 rs7337521 T,GPC5 rs852918 T,GABRR1 rs282114 A,CACNG1 rs1799938 A(196Ser),ARHGEF28 rs17664695 G,WAPAL rs4934207 C,MPRIP rs6502557 A等位基因],p值為9.1×10-5至3.1×10-6。這些SNP位于參與ATP產(chǎn)生(SUCLA2)調(diào)控,DNA轉(zhuǎn)錄(MED4),細(xì)胞分裂和生長(GPC5,ARHGEF28),神經(jīng)遞質(zhì)(GABRR1),肌肉收縮(CACNG1,MPRIP)和DNA修復(fù)(WAPAL)的基因中。
在另一項(xiàng)研究中,Ischenko等人[43]在176名俄羅斯力量(89名短跑運(yùn)動(dòng)員,38名速度/力量運(yùn)動(dòng)員和49名力量運(yùn)動(dòng)員)運(yùn)動(dòng)員中,一組速度/力量項(xiàng)目的運(yùn)動(dòng)員(n = 204;64名摔跤運(yùn)動(dòng)員,42名橄欖球運(yùn)動(dòng)員,98名劃艇運(yùn)動(dòng)員/皮劃艇運(yùn)動(dòng)員/運(yùn)動(dòng)員),223名耐力運(yùn)動(dòng)員和173名對照組進(jìn)行了GWAS研究。最初,他們使用GWAS數(shù)據(jù)進(jìn)行了7次分析(精英力量運(yùn)動(dòng)員與對照組,所有短跑運(yùn)動(dòng)員與對照組,精英短跑運(yùn)動(dòng)員與對照組,所有速度/力量運(yùn)動(dòng)員與對照組,精英速度/力量運(yùn)動(dòng)員與對照組,所有力量運(yùn)動(dòng)員與對照組,精英力量運(yùn)動(dòng)員與對照組)并發(fā)現(xiàn)68個(gè)與力量相關(guān)的SNP(p值從0.001到1.34×10-5)并在所有3個(gè)亞組中都可復(fù)制。比較力量運(yùn)動(dòng)員(n=380;上速度/力量項(xiàng)目的運(yùn)動(dòng)員組)和耐力運(yùn)動(dòng)員(作為第2對照組)之間這些SNP的等位基因頻率導(dǎo)致剩下8個(gè)與力量素質(zhì)相關(guān)的SNP(PPARGC1B rs10060424 C,NRG1 rs17721043 A,ZNF423 rs1186513 C,RC3H1 rs767053 G,IP6K3 rs6942022 C,HSD17B14 rs7247312 G,CALCR rs17734766 G,COTL1 rs7458 T)。這些SNP位于參與調(diào)節(jié)肌纖維成分和碳水化合物/脂質(zhì)代謝(PPARGC1B),生長和發(fā)育(NRG1,ZNF423),mRNA去腺苷酸化和降解(RC3H1),肌醇六磷酸(IP6K3)代謝,類固醇(HSD17B14),鈣穩(wěn)態(tài)(CALCR)和肌動(dòng)蛋白細(xì)胞骨架(COTL1)新陳代謝的基因中。
將492名優(yōu)秀力量運(yùn)動(dòng)員與227名耐力運(yùn)動(dòng)員(8.8%;p = 3.9×10-9)和對照組(16.3%;p = 0.0354)的基因組圖譜進(jìn)行比較顯示,罕見的DMD rs939787 T等位基因在力量運(yùn)動(dòng)員(25.0%)中的比例較高,相比耐力運(yùn)動(dòng)員(8.8%;p = 3.9×10-9)和對照組(16.3%;p = 0.0354)。這些結(jié)果表明DMD rs939787 T等位基因有利于力量素質(zhì)[44]。在隨后的研究中,Gabdra- khmanova等[40]鑒定了與力量素質(zhì)相關(guān)的3個(gè)SNP(效應(yīng)等位基因:CLSTN2 rs2194938 C,F(xiàn)OCAD rs17759424 C,TPK1rs10275875C)。這些SNP位于參與調(diào)節(jié)神經(jīng)元興奮性(CLSTN2),細(xì)胞生長(FOCAD)和維生素B1代謝(TPK1)的基因中。
目前的綜述提供的證據(jù)表明,至少有155種遺傳標(biāo)記與運(yùn)動(dòng)能力相關(guān)。然而,應(yīng)該強(qiáng)調(diào)的是,大多數(shù)(80%)病例對照和關(guān)聯(lián)研究尚未在獨(dú)立樣本中復(fù)制?;诖?,我們堅(jiān)信在將這些研究結(jié)果運(yùn)用到實(shí)踐之前,還需要進(jìn)行更多的研究。另一方面,由于運(yùn)動(dòng)相關(guān)的DNA多態(tài)性不能完全解釋運(yùn)動(dòng)能力的遺傳性,因此必須考慮其他形式的變異,例如罕見突變和表觀遺傳標(biāo)記(即基因表達(dá)的穩(wěn)定和遺傳變化)。適當(dāng)?shù)难芯吭O(shè)計(jì),樣本量,種群分層和基因型/表型測量質(zhì)量的問題也非常重要。未來的研究還應(yīng)側(cè)重于確定與其他運(yùn)動(dòng)相關(guān)的表型相關(guān)的遺傳標(biāo)記,如運(yùn)動(dòng)員的靈活性,協(xié)調(diào)性和性格特質(zhì)。
[1] Simonides WS, van Hardeveld C: Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 2017; 10: 812~820.
[2] Alonso L, Souza E, Oliveira M, do Nascimento L Dantas P: Heritability of aerobic power of individuals in northeast Brazil. Biol Sport 2014; 31: 267~270.
[3] Ahmetov II, Fedotovskaya ON: Current progress in sports genomics. Adv Clin Chem 2015; 70: 247~314.
[4] Gómez-Gallego F, Santiago C, González-Freire M, Muniesa CA, Fernández del Valle M, Pérez M, Foster C, Lucia A: Endurance performance: genes or gene combinations? Int J Sports Med 2018; 30: 66~72.
[5] Eynon N, Nasibulina ES, Banting LK, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, Bondareva EA, Shagimardanova RR, Raz M, Sharon Y, Williams AG, Ahmetov II, Lucia A, Birk R: The FTO A/T polymorphism and elite athletic performance: a study involving three groups of European athletes. PLoS One 2013; 8:e60570.
[6] Wang G, Mikami E, Chiu LL, de Perini A, Deason M, Fuku N, Miyachi M, Kaneoka K, Murakami H, Tanaka M, Hsieh LL, Hsieh SS, Caporossi D, Pigozzi F, Hilley A, Lee R, Galloway SD, Gulbin J, Rogozkin VA, Ahmetov II, Yang N, North KN, Ploutarhos S, Montgomery HE, Bailey ME, Pitsiladis YP: Association analysis of ACE and ACTN3 in elite Caucasian and East Asian swimmers. Med Sci Sports Exerc 2013; 45: 892~900.
[7] Ahmetov II, Kulemin NA, Popov DV, Naumov VA,Akimov EB, Bravy YR, Egorova ES, Galeeva AA,Generozov EV, Kostryukova ES, Larin AK, MustafinaLJ, Ospanova EA, Pavlenko AV, Starnes LM,?mijewski P, Alexeev DG, Vinogradova OL, Govorun VM: Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport 2015; 32: 3~9.
[8] O’Connell K, Posthumus M, Collins M: COL6A1 gene and Ironman triathlon performance. Int J Sports Med 2011; 32: 896~901.
[9] Brown JC, Miller CJ, Posthumus M, Schwellnus MP, Collins M: The COL5A1 gene, ultra-marathon running performance, and range of motion. Int J Sports Physiol Perform 2017; 6: 485~496.
[10] Drozdovska SB, Dosenko VE, Ahmetov II, Ilyin VN: The association of gene polymorphisms with athlete status in Ukrainians. Biol Sport 2013; 30: 163~167.
[11] Ahmetov II, Naumov VA, Donnikov AE, Maciejewska-Kar?owska A, Kostryukova ES, Larin AK, Maykova EV, Alexeev DG, Fedotovskaya ON, Generozov EV, Jastrz?bski Z, Zmijewski P, Kravtsova OA, Kulemin NA, Leonska-Duniec A, Martykanova DS, Ospanova EA, Pavlenko AV, Podol’skaya AA, Sawczuk M, Alimova FK, Trofimov DY, Govorun VM, Cieszczyk P: SOD2 gene polymorphism and muscle damage markers in elite athletes.Free Radic Res 2014; 48: 948~955.
[12] Ahmetov II, Hakimullina AM, Popov DV, Lyubaeva EV, Missina SS, Vinogradova OL, Williams AG, Rogozkin VA: Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes. Eur J Appl Physiol 2015; 107: 95~103.
[13] Mustafina LJ, Naumov VA, Cieszczyk P, Popov DV, Lyubaeva EV, Kostryukova ES, Fedotovskaya ON, Druzhevskaya AM, Astratenkova IV, Glotov AS, Alexeev DG, Mustafina MM, Egorova ES, Maciejewska-Kar?owska A, Larin AK, Generozov EV, Nurullin RE, Jastrz?bski Z, Kulemin NA, Ospanova EA, Pavlenko AV, Sawczuk M, Akimov EB, Danilushkina AA, Zmijewski P, Vinogradova OL, Govorun VM, Ahmetov II: AGTR2 gene polymorphism is associated with muscle fibre composition,athletic status and aerobic performance. Exp Physiol 2014; 99: 1042~1052.
[14] Wang G, Padmanabhan S, Wolfarth B, Fuku N, Lucia A, Ahmetov II, Cieszczyk P, Collins M, Eynon N, Klissouras V, Williams A, Pitsiladis Y: Genomics of elite sporting performance: what little we know and necessary advances. Adv Genet 2013; 84: 123~149.
[15] Ahmetov II, Donnikov AE, Trofimov DY: ACTN3 genotype is associated with testosterone levels of athletes.Biol Sport 2014; 31: 105~108.
[16] Williams AG, Dhamrait SS, Wootton PT, Day SH, Hawe E, Payne JR, Myerson SG, World M, Budgett R, Humphries SE, Montgomery HE: Bradykinin receptor gene variant and human physical performance.J Appl Physiol 2016; 96: 938~942.
[17] Saunders CJ, Xenophontos SL, Cariolou MA, Anastassiades LC, Noakes TD, Collins M: The bradykinin b2 receptor ( BDKRB2 ) and endothelial nitric oxide synthase 3 ( NOS3 ) genes and endurance performance during Ironman triathlons. Hum Mol Genet 2016; 15: 979~987.
[18] Akhmetov II, Popov DV, Mozhayskaya IA, Missina SS, Astratenkova IV, Vinogradova OL, Rogozkin VA: Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross Fiziol Zh Im I M Sechenova 2017; 93: 837~843.
[19] Ahmetov II, Popov DV, Astratenkova IV, Druzhevskaia AM, Missina SS, Vinogradova OL, Rogozkin VA: The use of molecular genetic methods for prognosis of aerobic and anaerobic performance in athletes. Hum Physiol 2018; 34: 338~342.
[20] Williams AG, Folland JP: Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol 2018; 586: 113~121.
[21] Eynon N, Meckel Y, Alves AJ, Yamin C, Sagiv M, Goldhammer E, Sagiv M: Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance?Exp Physiol 2009; 94: 1147~1152.
[22] Muniesa CA, Fernández del Valle M, Pérez M, Foster C, Lucia A: Endurance performance: genes or gene combinations? Int J Sports Med 2014; 30: 66~72.
[23] Ruiz JR, Gómez-Gallego F, Santiago C, González- Freire M, Verde Z, Foster C, Lucia A: Is there an optimum endurance polygenic profile? J Physiol 2009;587: 1527~1534.
[24] Ruiz JR, Arteta D, Buxens A, Artieda M, Gómez-Gallego F, Santiago C, Yvert T, Morán M, Lucia A: Can we identify a power-oriented polygenic profile? JAppl Physiol 2010; 108: 561~566.
[25] Muniesa CA, González-Freire M, Santiago C, Lao JI, Buxens A, Rubio JC, Martín MA, Arenas J, Gomez- Gallego F, Lucia A: World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br J Sports Med 2010; 44: 898~901.
[26] Santiago C, Ruiz JR, Muniesa CA, González-Freire M, Gómez-Gallego F, Lucia A: Does the polygenic profile determine the potential for becoming a world-class athlete? Insights from the sport of rowing. Scand J Med Sci Sports 2010; 20: 188~194.
[27] Buxens A, Ruiz JR, Arteta D, Artieda M, Santiago C, González-Freire M, Martínez A, Tejedor D, Lao JI, Gómez-Gallego F, Lucia A: Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports 2011; 21: 570~579.
[28] Eynon N, Ruiz JR, Meckel Y, Morán M, Lucia A: Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion 2011; 11: 64~69.
[29] Hughes DC, Day SH, Ahmetov II, Williams AG: Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J Sports Sci 2011; 29: 1425~1434.
[30] Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, Rogozkin VA: The association of ACE , ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J Physiol Sci 2013; 63: 79~85.
[31] Ben-Zaken S, Meckel Y, Lidor R, Nemet D, Eliakim A: Genetic profiles and prediction of the success of young athletes’ transition from middle- to long-distance runs: an exploratory study. Pediatr Exerc Sci 2013; 25: 435~447.
[32] Egorova ES, Borisova AV, Mustafina LJ, Arkhipova AA, Gabbasov RT, Druzhevskaya AM, Astratenkova IV, Ahmetov II: The polygenic profile of Russian football players. J Sports Sci 2014; 32: 1286~1293.
[33] Gineviciene V, Jakaitiene A, Tubelis L, Kucinskas V: Variation in the ACE , PPARGC1A and PPARA genes in Lithuanian football players. Eur J Sport Sci 2014;14: 289~295.
[34] Ben-Zaken S, Meckel Y, Nemet D, Eliakim A. Genetic score of power-speed and endurance track and field athletes. Scand J Med Sci Sports 2015; 25: 166~174.
[35] Kuroyanagi H: Fox-1 family of RNA-binding proteins.Cell Mol Life Sci 2009; 66: 3895~3907.
[36] De Moor MHM, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, De Geus EJC: Genomewide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet 2008; 18: 205~216.
[37] Balzan S, Del Carratore R, Nicolini G, Beffy P, LubranoV, Forini F, Iervasi G: Proangiogenic effect of TSH in human microvascular endothelial cells through its membrane receptor. J Clin Endocrinol Metab 2012; 97: 1763~1770.
[38] Ahmetov II, Ischenko DS, Kulemin NA, Popov DV, Galeeva AA, Kostryukova ES, Alexeev DG, Egorova ES, Gabdrakhmanova LJ, Larin AK, Generozov EV, Ospanova EA, Pavlenko AV, Akimov EB, Vinogradova OL, Govorun VM: Genome-wide association study reveals seven genetic markers associated with maximal oxygen consumption rate in elite Russian endurance athletes. Eur J Hum Genet 2015; 23(suppl 1):470.
[39] Galeeva AA, Ischenko DS, Kulemin NA, Popov DV, Kostryukova ES, Alexeev DG, Egorova ES, Gabdrakhmanova LJ, Larin AK, Generozov EV, Ospanova EA, Pavlenko AV, Akimov EB, Vinogradova OL, Govorun VM, Ahmetov II: A multi-stage genomewide association study of elite endurance athlete status. Eur J Hum Genet 2015; 23(suppl 1):472.
[40] Gabdrakhmanova LJ, Ischenko DS, Kulemin NA, Popov DV, Galeeva AA, Kostryukova ES, Alexeev DG, Egorova ES, Larin AK, Generozov EV, Ospanova EA, Pavlenko AV, Akimov EB, Vinogradova OL, Govorun VM, Ahmetov II: The difference in genomic profiles between endurance and power athletes. Eur J Hum Genet 2015; 23(suppl 1):471.
[41] Wang G, Padmanabhan S, Miyamoto-Mikami E, Fuku N, Tanaka M, Miyachi M, Murakami H, Cheng YC, Mitchell BD, Austin KG, Pitsiladis YP: GWAS of elite Jamaican, African American and Japanese sprint athletes. Med Sci Sports Exerc 2014; 46(suppl):596~598.
[42] Egorova ES, Ischenko DS, Kulemin NA, Galeeva AA, Kostryukova ES, Alexeev DG, Gabdrakhmanova LJ, Larin AK, Generozov EV, Ospanova EA, Pavlenko AV, Govorun VM, Ahmetov II: Genome-wide association study of elite strength athlete status in Russians. Eur J Hum Genet 2015; 23(suppl 1):468~469.
[43] Ischenko DS, Galeeva AA, Kulemin NA, Kostryukova ES, Alexeev DG, Egorova ES, Gabdrakhmanova LJ, Larin AK, Generozov EV, Ospanova EA, Pavlenko AV, Govorun VM, Ahmetov II: Genome-wide association study of elite power athlete status. Eur J Hum Genet 2015; 23(suppl 1):472.
[44] Naumov VA, Ahmetov II, Larin AK, Generozov EV, Kulemin NA, Ospanova EA, Pavlenko AV, Kostryukova ES, Alexeev DG, Govorun VM: Genome-wide association analysis identifies a locus on DMD (dystrophin) gene for power athlete status in Russians. Eur J Hum Genet 2014; 22(suppl 1):502.
Advances in Sports Genomics
LOU Jingjing, GAO Xuefeng
Guangzhou Institute of Sports Science, Guangzhou Guangdong, 510620, China.
The main goal of this work was to review the current progress in the understanding of genetic determinism of athlete status and to describe some novel and important DNA polymorphismsthat may underlie differences in the potential to be an elite athlete. Methods: a brief review was made on the progress of sports genomics in the past decades by means of literature review and inductive analysis.Result:41 markers were identified within the past few years by performing genome-wide association studies (GWASs), indicating that GWASs represent a promising and productive way to study sports-related phenotypes .Conclusion:Future research, including multicentre GWASs and whole-genome sequencing in large cohorts of athletes with further validation and replication, will substantially contribute to the discovery of large numbers of the causal genetic variants (mutations and DNA polymorphisms) that would partly explain the heritability of athlete status and related phenotypes.
DNA polymorphism; Genome-wide association studies; Sports genomics; Athletic doility; Genetic factors
G804.22
A
1007―6891(2021)01―0035―06
10.13932/j.cnki.sctykx.2021.01.08
2019-10-11
2019-12-09