孟鑫浩,鄧洪濤,李麗,崔順立,Charles Y. Chen,侯名語(yǔ),楊鑫雷,劉立峰
栽培種花生株型相關(guān)性狀的QTL定位
孟鑫浩1,鄧洪濤1,李麗2,崔順立1,Charles Y. Chen3,侯名語(yǔ)1,楊鑫雷1,劉立峰1
1河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/華北作物改良與調(diào)控國(guó)家重點(diǎn)實(shí)驗(yàn)室/河北省種質(zhì)資源實(shí)驗(yàn)室,中國(guó)河北保定 071001;2河北工程大學(xué)園林與生態(tài)工程學(xué)院,中國(guó)河北邯鄲 056038;3奧本大學(xué)/作物、土壤與環(huán)境科學(xué)系,美國(guó)奧本 36849
【】栽培種花生是世界范圍內(nèi)重要的油料作物和經(jīng)濟(jì)作物,其株型相關(guān)性狀是典型的數(shù)量性狀,亦是重要的農(nóng)藝性狀,與產(chǎn)量和機(jī)械化收獲密切相關(guān)。對(duì)花生株型相關(guān)性狀進(jìn)行遺傳分析和QTL定位,篩選與之緊密連鎖的分子標(biāo)記,有助于花生的品種保護(hù)和品種鑒別,為花生株型分子育種提供重要的理論依據(jù)。以直立型花生品種冀花5號(hào)和匍匐型M130為親本構(gòu)建的包含321個(gè)家系的RIL群體為研究材料,于2016—2018年分別在海南市、邯鄲市、保定市和唐山市等7個(gè)環(huán)境下種植,各個(gè)環(huán)境均在收獲時(shí)調(diào)查統(tǒng)計(jì)花生側(cè)枝夾角、主莖高、側(cè)枝長(zhǎng)、株型指數(shù)和擴(kuò)展半徑等5個(gè)株型相關(guān)性狀的表型值。同時(shí),利用SSR、AhTE、SRAP和TRAP等分子標(biāo)記掃描親本及群體的基因型用于構(gòu)建分子遺傳連鎖圖譜。最后結(jié)合多年多點(diǎn)的表型數(shù)據(jù),采用QTL Icimapping V4.2中的完備區(qū)間作圖法(inclusive composite interval mapping,ICIM)對(duì)7個(gè)環(huán)境下的株型相關(guān)性狀進(jìn)行加性QTL和上位性QTL分析。構(gòu)建了一張包含363個(gè)多態(tài)性位點(diǎn)的分子遺傳連鎖圖譜,所有標(biāo)記被分配到20條染色體和1個(gè)未知連鎖群;圖譜總長(zhǎng)度覆蓋全基因組的1 360.38 cM,標(biāo)記間平均距離為3.75 cM;單個(gè)連鎖群長(zhǎng)度為39.599—101.056 cM,包括4—50個(gè)分子標(biāo)記。共檢測(cè)到30個(gè)與株型相關(guān)性狀的加性QTL,分布在A04、A05、A06、A08、A09、B02、B09等7條染色體上。其中,5個(gè)QTL與側(cè)枝夾角相關(guān),可解釋的表型變異(phenotypic variance explained,PVE)為3.48%—11.22%;15個(gè)QTL與主莖高相關(guān),PVE為3.58%—10.05%;2個(gè)QTL與側(cè)枝長(zhǎng)相關(guān),PVE為6.03%—8.56%;4個(gè)QTL與株型指數(shù)相關(guān),PVE為4.68%—15.08%;4個(gè)QTL與擴(kuò)展半徑相關(guān),PVE為3.30%—9.33%。、、和等4個(gè)主效QTL,可解釋的表型變異分別為11.22%、10.59%、10.23%、10.05%和15.08%。此外,共檢測(cè)到59對(duì)上位性QTL。其中,6對(duì)上位性QTL與側(cè)枝長(zhǎng)相關(guān),PVE為2.23%—2.78%;50對(duì)上位性QTL與株型指數(shù)相關(guān),PVE為0.25%—1.44%;3對(duì)上位性QTL與擴(kuò)展半徑相關(guān),PVE為7.28%—12.25%。發(fā)現(xiàn)3個(gè)QTL聚集區(qū),分別為A04染色體的GM1867—AHGS1967區(qū)間、A05染色體的me14em5-116—PM418區(qū)間和A08染色體的HBAUAh177—AhTE0658區(qū)間,涉及側(cè)枝夾角、主莖高、株型指數(shù)和擴(kuò)展半徑等4個(gè)株型相關(guān)性狀。構(gòu)建了一張包含363個(gè)標(biāo)記位點(diǎn)的分子遺傳連鎖圖譜;獲得30個(gè)與株型相關(guān)性狀的加性QTL和59對(duì)上位性QTL;發(fā)現(xiàn)3個(gè)QTL聚集區(qū)。
花生;株型;QTL;重組自交系
【研究意義】花生(L.)是世界上重要的油料作物之一,也是植物蛋白質(zhì)的來(lái)源,具有較高的經(jīng)濟(jì)價(jià)值?;ㄉ鷤?cè)枝夾角(第一對(duì)側(cè)枝與主莖間的夾角)是重要的株型性狀,與產(chǎn)量和機(jī)械化收獲密切相關(guān)[1]。為了使農(nóng)機(jī)農(nóng)藝更好地結(jié)合,降低勞動(dòng)成本,生產(chǎn)上選育適合機(jī)械化采收、高產(chǎn)株型品種是花生增產(chǎn)增效的重要方面。因此,開展株型相關(guān)性狀的遺傳研究對(duì)選育理想株型的花生品種具有重要的理論意義和實(shí)際參考價(jià)值?!厩叭搜芯窟M(jìn)展】不同學(xué)者對(duì)植物株型持有不同的觀點(diǎn),盡管目前對(duì)株型的度量沒(méi)有統(tǒng)一的標(biāo)準(zhǔn),但合理的株型,不僅要求具有理想的組織形態(tài),同時(shí)在空間上也要有最佳的排布方式,使其最大限度獲得太陽(yáng)光,達(dá)到最適的葉面積指數(shù)。為了探究理想的花生株型,許多研究人員對(duì)花生主莖高、第一對(duì)側(cè)枝長(zhǎng)度、和總分枝數(shù)進(jìn)行了研究[2-5]。在花生種質(zhì)中存在直立型、匍匐型和幾種中間類型等不同的株型。直立型品種具有緊湊的株型,結(jié)果部位集中在底部,適合高密度種植,匍匐型品種側(cè)枝擴(kuò)展較大,與地面有更大的接觸面積,更有利于果針下扎。姜慧芳[6]根據(jù)匍匐枝與第一對(duì)側(cè)枝的長(zhǎng)度比以及主莖與第一對(duì)側(cè)枝間的角度,將花生株型從匍匐到直立連續(xù)分為6個(gè)等級(jí)。KAYAM等[7]將栽培種花生的株型劃分為匍匐、半匍匐、半直立和直立4種類型。曹敏建等[8]根據(jù)株型指數(shù)(即第一對(duì)側(cè)枝長(zhǎng)度與主莖高度的比值)將花生的生長(zhǎng)習(xí)性分為3類:株型指數(shù)在2.0左右為匍匐型,株型指數(shù)在1.5左右為半匍匐型,株型指數(shù)在1.1—1.2為直立型。盡管有很多方法定義花生生長(zhǎng)習(xí)性,但仍然很難區(qū)分這些類別。與其他作物不同,花生是地上開花、地下結(jié)果的作物,所以側(cè)枝夾角是其重要的特征,這不但影響果針下扎形成莢果,而且與種植密度密切相關(guān)。因此,側(cè)枝夾角便成為描述花生株型結(jié)構(gòu)特征的重要指標(biāo)[9]。此外,花生的主莖高和第一對(duì)側(cè)枝長(zhǎng)度也是影響生長(zhǎng)習(xí)性的重要農(nóng)藝性狀[3]。花生是雙子葉植物,其生長(zhǎng)習(xí)性的分子遺傳基礎(chǔ)尚不明確。早期,研究者利用孟德爾定律,基于不同的遺傳方式分析了花生生長(zhǎng)習(xí)性的遺傳規(guī)律。近年來(lái),許多研究者對(duì)花生生長(zhǎng)習(xí)性的相關(guān)性狀進(jìn)行QTL定位。FONCEKA等[10]利用染色體片段置換系檢測(cè)到14個(gè)與花生株型相關(guān)的QTL。SHIRASAWA等[11]使用F2群體定位到3個(gè)與主莖高相關(guān)的QTL和2個(gè)與第一對(duì)側(cè)枝長(zhǎng)相關(guān)的主效QTL。HUANG等[12]以F2:3群體為材料,在A03、B04和B07上檢測(cè)到3個(gè)與主莖高相關(guān)的QTL。KAYAM等[7]利用一個(gè)F2:3群體在B05染色體上定位到1個(gè)與株型性狀相關(guān)的QTL,LI等[13]的研究也在B05染色體上定位獲得與生長(zhǎng)習(xí)性相關(guān)的共定位群,但QTL位置區(qū)別于KAYAM等的研究。Lü等[4]利用2個(gè)遺傳背景不同的重組自交系群體為試驗(yàn)材料,在A09、B03和B04上同時(shí)檢測(cè)到與主莖高相關(guān)的QTL。【本研究切入點(diǎn)】目前,對(duì)花生株型相關(guān)性狀的研究仍較少,不足以揭示其復(fù)雜的遺傳機(jī)制?!緮M解決的關(guān)鍵問(wèn)題】本研究以直立型花生品種冀花5號(hào)和匍匐型種質(zhì)M130構(gòu)建的重組自交系F6群體為試驗(yàn)材料,采用傳統(tǒng)標(biāo)記方法SSR、AhTE、SRAP和TRAP技術(shù),挖掘與花生側(cè)枝夾角性狀相關(guān)且能在多環(huán)境下穩(wěn)定表達(dá)QTL。明確花生側(cè)枝夾角性狀的遺傳特性,挖掘與花生側(cè)枝夾角性狀連鎖的標(biāo)記位點(diǎn),促進(jìn)側(cè)枝夾角性狀的遺傳解析及適宜機(jī)械采收、高產(chǎn)理想株型花生品種的選育。
以直立型花生品種冀花5號(hào)為母本,匍匐型種質(zhì)M130為父本[13]。采用單粒傳法,構(gòu)建包含321個(gè)家系的F6重組自交系群體為試驗(yàn)材料。2016年分別種植在保定市(BD,38o40'N和115o30'E)和海南市(HN,18o590'N和109o110'E),每個(gè)家系種植一行,行長(zhǎng)1.5 m,行距為0.9 m,株距為0.17 m。每行種植10株。隨機(jī)區(qū)組設(shè)計(jì),2次重復(fù),常規(guī)田間管理。2017年分別種植在邯鄲市(HD,35o57'N和115o09'E)和保定市;2018年在唐山市(TS,39o99'N和118o70'E)、邯鄲市和保定市等地分別種植親本和群體,種植方法同2016年。
試驗(yàn)材料收獲后每個(gè)家系選擇3個(gè)典型單株,參考Li等[13]提出的株型性狀考察標(biāo)準(zhǔn)對(duì)花生株型相關(guān)性狀進(jìn)行室內(nèi)考種,主要性狀包括側(cè)枝夾角(lateral branch angle,LBA)、主莖高度(main stem height,MSH)、側(cè)枝長(zhǎng)度(lateral branch length,LBL)、株型指數(shù)(index of plant type,IOPT)和擴(kuò)展半徑(extent radius,ER)等5項(xiàng)指標(biāo)。采用公式h2=VG/VP計(jì)算親本和RIL群體在7個(gè)環(huán)境下的廣義遺傳力,VP=VG+VE。其中,VP表示表型方差,VG表示遺傳方差,VE表示環(huán)境方差。采用GraphPad Prism 8(https://www.graphpad.com/scientific-software/prism/)軟件進(jìn)行表型變異分析、方差分析和相關(guān)性分析。
在田間取親本和RIL群體代表性株系的幼嫩葉片,采用改良SDS-CTAB法[14]提取花生基因組總DNA。利用3 964對(duì)SSR和AhTE花生標(biāo)記(http:www.peanutbase.org),238對(duì)SRAP引物組合[15]和155對(duì)TRAP引物組合[16]對(duì)親本行多態(tài)性篩選。PCR體系及PCR擴(kuò)增的反應(yīng)程序參考崔順立等[17]方法進(jìn)行,PCR的產(chǎn)物通過(guò)8%非變性聚丙烯酰胺凝膠電泳進(jìn)行分子標(biāo)記的多態(tài)性檢測(cè)。
基因型數(shù)據(jù)統(tǒng)計(jì)時(shí),母本帶型記為“a”,父本帶型記為“b”,雜合帶型記為“h”。帶型模糊不清或數(shù)據(jù)缺失均用“–”表示。采用Join Map 4.0[18]對(duì)群體基因型進(jìn)行遺傳連鎖分析,設(shè)置步長(zhǎng)為0.5,LOD>3,在LOD值在3—10范圍內(nèi)將所得到的標(biāo)記進(jìn)行分組,隨后利用Kosambi函數(shù)將重組率轉(zhuǎn)化為遺傳距離[19]。利用Mapchart 2.3[20]繪制遺傳連鎖圖譜。連鎖群所屬染色體通過(guò)與Kazusa Marker Database(http://marker. kazusa.or.jp/Peanut/)上的整合圖譜進(jìn)行比對(duì)后確定。
利用QTL IciMapping 4.2[21]中的ICIM-ADD方法對(duì)不同環(huán)境下各個(gè)性狀進(jìn)行QTL定位和效應(yīng)估計(jì),采用ICIM-EPI方法計(jì)算上位性QTL。QTL的命名以“”開頭,加上性狀名稱和染色體名稱,如果同一連鎖群上出現(xiàn)2個(gè)或2個(gè)以上相同性狀的QTL,則在連鎖群后面加上“.”和數(shù)字進(jìn)行區(qū)分[22],如在A05染色體上有2個(gè)與側(cè)枝夾角相關(guān)的QTL,則分別命名為和。
對(duì)2016—2018年7個(gè)環(huán)境下花生株型相關(guān)性狀的表型數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析(表1),發(fā)現(xiàn)5個(gè)性狀在親本之間表現(xiàn)出顯著差異,而且在RIL群體中的變異范圍較大,最大值和最小值均超過(guò)親本表型值,表明5個(gè)株型相關(guān)性狀同時(shí)具有正向或者負(fù)向超親優(yōu)勢(shì)。表現(xiàn)出不同程度的顯著性,各性狀在7環(huán)境下均呈現(xiàn)連續(xù)分布(圖1)且偏度、峰度均趨向0,說(shuō)明適合進(jìn)行QTL定位。
環(huán)境16BD、16HN、17BD、17HD、18BD、18HD和18TS分別代表2016年、2017年和2018年保定市、海南市、邯鄲市和唐山市;LBA:側(cè)枝夾角;MSH:主莖高;LBL:側(cè)枝長(zhǎng);IOPT:株型指數(shù);ER:擴(kuò)展半徑
表1 親本及RIL群體表型數(shù)據(jù)統(tǒng)計(jì)分析
**和***分別代表在0.01和0.001水平上差異顯著。環(huán)境16BD、16HN、17BD、17HD、18BD、18HD和18TS分別代表2016年、2017年和2018年保定市、海南市、邯鄲市和唐山市。LBA:側(cè)枝夾角;MSH:主莖高;LBL:側(cè)枝長(zhǎng);IOPT:株型指數(shù);ER:擴(kuò)展半徑。下同
** and *** Significant difference at 0.01 and 0.001 level, respectively. Environments 16BD, 16HN, 17BD, 17HD, 18BD, 18HD and 18TS represent in 2016, 2017 and 2018 from Baoding (BD), Hainan (HD), Handan (HD) and Tangshan (TS), respectively. LBA: lateral branch angle; MSH: main stem height; LBL: lateral branch length; IOPT: index of plant type; ER: extent radius. The same as below
花生的側(cè)枝夾角、主莖高度、側(cè)枝長(zhǎng)、株型指數(shù)和擴(kuò)展半徑等5個(gè)性狀在各環(huán)境下均表現(xiàn)出兩兩顯著或極顯著的正相關(guān)或者負(fù)相關(guān)關(guān)系(表2),主莖高和擴(kuò)展半徑在7個(gè)環(huán)境下均表現(xiàn)出極顯著(<0.01)正相關(guān)關(guān)系(16BD=0.820、16HN=0.761、17BD=0.736、17HD=0.820、18BD=0.815、18HD=0.897、18TS=0.878),表明植株擴(kuò)展半徑隨主莖高的增加而變大,生產(chǎn)上可能會(huì)造成植株倒伏;主莖高與側(cè)枝夾角的相關(guān)性在所有環(huán)境下表現(xiàn)出顯著(<0.05)或極顯著(<0.01)負(fù)相關(guān)關(guān)系(16BD=-0.323、16HN=-0.172、17BD=-0.278、17HD=-0.372、18BD=-0.118、18HD=-0.184、18TS= -0.117),說(shuō)明側(cè)枝夾角可能受主莖高的反向調(diào)節(jié)。方差分析結(jié)果(表3)表明,除了側(cè)枝基角的基因型×環(huán)境外(>0.05),所有性狀的基因型、環(huán)境和基因型×環(huán)境均存在顯著差異(<0.01)。廣義遺傳力計(jì)算結(jié)果表明,LBA、MSH、LBL、IOPT和ER等5個(gè)性狀均呈現(xiàn)出較高的遺傳力(0.86—0.92),推測(cè)單個(gè)性狀可能會(huì)定位到主效QTL。
表2 栽培種花生株型相關(guān)性狀的相關(guān)分析
表3 RIL群體各性狀方差分析及廣義遺傳力
利用SSR、AhTE、SRAP和TRAP等分子標(biāo)記對(duì)親本進(jìn)行多態(tài)性篩選,獲得640對(duì)條帶清晰、多態(tài)性好的分子標(biāo)記用于RIL群體基因分型。將分型后的基因型數(shù)據(jù)通過(guò)Join Map 4.0軟件(設(shè)置LOD=3.0—10.0)進(jìn)行連鎖分析,獲得1張包含21個(gè)連鎖群的遺傳連鎖圖譜(圖2),該圖譜包含363個(gè)標(biāo)記位點(diǎn),單條連鎖群長(zhǎng)度為39.599—101.056 cM,包含4—50個(gè)分子標(biāo)記,標(biāo)記間平均距離為3.75 cM,標(biāo)記位點(diǎn)最少的染色體為B06(4個(gè)),標(biāo)記位點(diǎn)最多的染色體為B09(50個(gè)),29個(gè)標(biāo)記位點(diǎn)未匹配到染色體上,命名為Unknown連鎖群。
將2016—2018年7個(gè)環(huán)境下株型相關(guān)性狀的表型數(shù)據(jù)在已構(gòu)建的遺傳連鎖圖譜上進(jìn)行加性QTL定位分析,結(jié)果表明,在7個(gè)環(huán)境下共獲得30個(gè)QTL(表4和圖2),分布在A04、A05、A06、A08、A09、B02、B09等7條染色體上,單條染色體上QTL的數(shù)量為2—19個(gè)。與側(cè)枝夾角相關(guān)的QTL有5個(gè),PVE為3.48%—11.22%,LOD值為2.89—7.44;15個(gè)QTL與主莖高相關(guān),PVE為3.58%—10.05%,LOD值為2.96—7.92;與第一對(duì)側(cè)枝長(zhǎng)度相關(guān)的QTL有2個(gè),PVE為6.03%—8.56%,LOD值為4.86—6.13;4個(gè)QTL與株型指數(shù)相關(guān),PVE為4.68%—15.08%,LOD值為3.23—10.15;與擴(kuò)展半徑相關(guān)的QTL有4個(gè),PVE為3.30%—9.33%,LOD值為3.01—6.63。其中,主效QTL有4個(gè),2個(gè)與側(cè)枝夾角相關(guān)(和),位于A05染色體me14em5-116—PM418-A05標(biāo)記區(qū)間上,PVE為10.23%—11.22%,LOD值為6.99—7.44;1個(gè)與主莖高相關(guān)(),位于A04染色體GM1867-A04—AHGS1967-A04區(qū)間上,PVE為10.05%(LOD=7.49);1個(gè)與株型指數(shù)相關(guān)(),位于A05染色體me14em5-116—PM418-A05區(qū)間上,PVE為15.08%(LOD=10.15)。
共獲得3個(gè)QTL聚集區(qū)(表5),分布在A04染色體的GM1867-A04—AHGS1967-A04區(qū)間、A05的me14em5-116—PM418-A05區(qū)間和A08染色體的HBAUAh177—AhTE0658-A08區(qū)間,涉及MSH、LBA、IOPT、ER和LBL等5個(gè)性狀。如在A05的me14em5- 116—PM418-A05區(qū)間上共檢測(cè)到9個(gè)QTL,其中,2個(gè)與側(cè)枝夾角相關(guān)的QTL(和),2個(gè)與主莖高相關(guān)的QTL(和),5個(gè)與株型指數(shù)相關(guān)的QTL(、、、和),2個(gè)與擴(kuò)展半徑相關(guān)的QTL(和),說(shuō)明該區(qū)段上可能存在控制側(cè)枝夾角、主莖高、株型指數(shù)和擴(kuò)展半徑等性狀的多個(gè)基因或者是存在“一因多效”現(xiàn)象。
圖2 栽培種花生遺傳連鎖圖譜
表4 株型相關(guān)性狀的QTL定位結(jié)果
對(duì)7個(gè)環(huán)境下株型相關(guān)性狀的表型數(shù)據(jù)進(jìn)行上位性QTL定位分析,結(jié)果表明,在7個(gè)環(huán)境下共檢測(cè)到59對(duì)上位性QTL(表6),涉及側(cè)枝長(zhǎng)、株型指數(shù)和擴(kuò)展半徑等3個(gè)性狀,LOD值為5.06—27.99,上位性效應(yīng)值為0.25%—12.25%。其中,與側(cè)枝長(zhǎng)相關(guān)的上位性QTL有6對(duì),LOD值為7.81—13.76,上位性效應(yīng)值為2.23%—2.78%;與株型指數(shù)相關(guān)的上位性QTL有50對(duì),LOD值為5.06—27.99,PVE為0.25%—1.44%;與擴(kuò)展半徑相關(guān)的上位性QTL有3對(duì),LOD值為5.83—6.59,上位性效應(yīng)值為7.28%—12.25%。
表6 株型相關(guān)性狀的上位性QTL定位結(jié)果
續(xù)表6 Continued table 6
盡管不同學(xué)者對(duì)花生株型度量持有不同的觀點(diǎn)[23-25],但對(duì)于花生側(cè)枝夾角的研究尚少。本研究參考Li等[13]對(duì)株型的考察標(biāo)準(zhǔn)對(duì)花生側(cè)枝夾角進(jìn)行測(cè)量,具體測(cè)量方法是花生收獲時(shí),在花生秧自然狀態(tài)下,使用數(shù)顯量角器測(cè)量第一對(duì)側(cè)枝與主莖間的夾角。該方法可將花生株型進(jìn)行數(shù)字化度量,從而將花生株型的直觀定性轉(zhuǎn)變?yōu)閿?shù)值定量,為以后花生株型的遺傳解析提供了理論支撐。
花生株型相關(guān)性狀是花生重要的農(nóng)藝性狀之一,直接關(guān)系到花生的株型結(jié)構(gòu),進(jìn)而影響花生產(chǎn)量。因此,研究株型相關(guān)性狀的分子遺傳機(jī)制對(duì)選育花生新品種具有重要的現(xiàn)實(shí)意義和理論價(jià)值。此前,國(guó)內(nèi)外研究人員已對(duì)花生株型相關(guān)性狀進(jìn)行了QTL定位研究,Shirasawa等[11]在A01、A03、A05、A06、A07、B04、B05和B06等染色體上檢測(cè)到與花生生長(zhǎng)習(xí)性相關(guān)的QTL。成良強(qiáng)等[26]在A06染色體TC1A2—AHGS0153和AHGS1375—PM377區(qū)間、A09染色體GM2839—EM87和AHGS1478—GM2839區(qū)間、A10染色體AHGS0288—pPGPseq3E10區(qū)間和B01染色體AC2C8—AHGS2027區(qū)間上檢測(cè)到與主莖高相關(guān)的QTL。Huang等[27]在A03、A04、A09、B03和B06等染色體上檢測(cè)到與花生植株高度相關(guān)的QTL。Zhou等[28]在A05染色體的Ahsnp1180—Ahsnp1133和Ahsnp1338—Ahsnp213區(qū)間、A09的Ahsnp1103—Ahsnp1059和Ahsnp902—Ahsnp1167區(qū)間、A10的Ahsnp77—Ahsnp787和Ahsnp712—GM692區(qū)間、B03的Ahsnp1331—Ahsnp1308、Ahsnp586—Ahsnp1194和Ahsnp1236—Ahsnp1549區(qū)間以及B06的Ahsnp227—Ahsnp295上定位到與花生主莖高的QTL。本研究檢測(cè)到與主莖高相關(guān)的QTL分布在A04染色體GM1867—AHGS1967區(qū)間、A05染色體me14em5-116—PM418區(qū)間、A06染色體TC7C06-A06—AHTE0372區(qū)間、A08染色體TC9B08—AHGS1947b和Ah4-4—TC9B08區(qū)間、B02染色體AHTE0398—CTW_NEW_ 38區(qū)間和B09染色體AHGS1576—me11em4-144區(qū)間上,與側(cè)枝夾角相關(guān)的QTL分布在A05染色體的me14em5-116—PM418-A05區(qū)間、A09的GM66-A09—GM1076和RN27A10—AHTE0122區(qū)間以及B09的me5em5-100—me13em8-142區(qū)間上。綜合比較分析這些QTL定位結(jié)果發(fā)現(xiàn),部分QTL定位在相同的染色體上,但其在染色體上的具體的位置是不相同的,可能由于每個(gè)研究中所使用的材料、作圖群體、圖譜標(biāo)記密度、QTL作圖方法以及試驗(yàn)所在的環(huán)境不相同,加上栽培花生染色體數(shù)目較多,所以導(dǎo)致其定位結(jié)果也不同。值得關(guān)注的是,A05染色體上關(guān)于株型相關(guān)性狀的QTL鮮有報(bào)道,可以推斷,本研究中A05染色體上的QTL是新的QTL。本研究共獲得4個(gè)主效QTL,涉及側(cè)枝夾角(和)、主莖高()和株型指數(shù)()等性狀,因此,這些QTL對(duì)于花生株型育種研究具有重要價(jià)值。
本研究發(fā)現(xiàn)3個(gè)QTL聚集區(qū)(表5),與前人的研究略有相似,分布在A04、A05和A08染色體上。值得注意的是,在A05的me14em5-116—PM418區(qū)間上,共檢測(cè)到、、、、、和等7個(gè)QTL,涉及側(cè)枝夾角、主莖高、株型指數(shù)和擴(kuò)展半徑等4個(gè)性狀,說(shuō)明在此區(qū)段上可能存在“一因多效”現(xiàn)象,這也可以通過(guò)性狀之間的相關(guān)性得到驗(yàn)證。因此,應(yīng)該重點(diǎn)關(guān)注此區(qū)間,可進(jìn)一步進(jìn)行精細(xì)定位研究。
目前,對(duì)花生上位性QTL的研究?jī)H涉及蛋白質(zhì)、脂肪[29]和莢果等產(chǎn)量相關(guān)性狀[30],但對(duì)于株型相關(guān)性狀的上位性QTL的研究鮮有報(bào)道。本研究檢測(cè)到59對(duì)上位性QTL,涉及側(cè)枝長(zhǎng)、株型指數(shù)和擴(kuò)展半徑等3個(gè)性狀,可以推測(cè)控制該3個(gè)性狀的QTL是相互作用,且3個(gè)性狀可能有一定協(xié)同關(guān)系,但對(duì)于側(cè)枝夾角和主莖高,本研究未檢測(cè)到相關(guān)上位性QTL,推測(cè)這兩個(gè)性狀在本研究中可能是獨(dú)立遺傳,且與其他性狀無(wú)互作現(xiàn)象。
共獲得41個(gè)加性QTL,8個(gè)與側(cè)枝夾角相關(guān),16個(gè)與主莖高相關(guān),3個(gè)與側(cè)枝長(zhǎng)度相關(guān),6個(gè)與株型指數(shù)相關(guān),8個(gè)與擴(kuò)展半徑相關(guān),其中,主效QTL有5個(gè),涉及側(cè)枝夾角、主莖高和株型指數(shù)等性狀。4個(gè)QTL聚集區(qū),分布在A04、A05、A06和A08等染色體上。在7個(gè)環(huán)境下共得到59對(duì)上位性QTL,涉及側(cè)枝長(zhǎng)、株型指數(shù)和擴(kuò)展半徑等3個(gè)性狀,可解釋表型變異的0.25%—12.25%。
[1] 張新友. 栽培花生產(chǎn)量、品質(zhì)和抗病性的遺傳分析與QTL定位研究[D]. 杭州: 浙江大學(xué), 2011.
Zhang X Y. Inheritance of main traits related to yield, quality and disease resistance and their QTLs mapping in peanut (L.) [D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[2] Hake A A, Kenta S, Arati Y, Sukruth M, Malagouda P, Nayak S N, Lingaraju S, Patil P V, Nadaf H L, Gowda M V C, Bhat R S. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (L.). Plos One, 2017, 12(10): e0186113.
[3] Li Y J, Li L Z, Zhang X R, Zhang K, Ma D C, Liu J Q, Wang X J, Liu F Z. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (L.). Euphytica, 2017, 213(2): 57.
[4] Lü J W, Liu N, Guo J B, Xu Z J, Li X P, Li Z D, Luo H Y, Ren X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Tu J X, Jiang H F, Liao B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (L.). Frontiers in Plant Science, 2018, 9: 684.
[5] Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing, and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Frontiers in Plant Science, 2018, 9: 827.
[6] 姜慧芳. 花生種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)3-9. 北京: 中國(guó)農(nóng)業(yè)出版社, 2006.
Jiang H F. Specification for description and data of peanut germplasm resources 3-9. Beijing: China Agriculture Press, 2006. (in Chinese)
[7] KAYAM G, BRAND Y, FAIGENBOIM D A, PATIL A, HEDVAT I, HOVAV R. Fine-mapping the branching habit trait in cultivated peanut by combining bulked segregant analysis and high-throughput sequencing. Frontiers in Plant Science, 2017, 8(467): 1-11.
[8] 曹敏建, 王曉光, 于海秋. 花生: 歷史?栽培?育種?加工. 沈陽(yáng): 遼寧科學(xué)技術(shù)出版社, 2013.
Cao M J, Wang X G, Yu H Q. Peanut: history?growth?breeding?process. Shenyang: Liaoning Science and Techinology Publishing House, 2013. (in Chinese)
[9] 藍(lán)新隆, 唐兆秀, 徐日榮. 福建花生產(chǎn)量與主要農(nóng)藝性狀之間的灰色關(guān)聯(lián)度分析. 江西農(nóng)業(yè)學(xué)報(bào), 2011, 23(8): 61-63.
Lan X L, Tang Z X, Xu R R. Analysis of gray correlation between yield and major agronomic traits of peanut in Fujian province. Acta Agriculturae Jiangxi, 2011, 23(8): 61-63. (in Chinese)
[10] Fonceka D, Tossim H A, Rivallan R, Vignes H, Lacut E, Bellis F, Faye I, Ndoye O, Soraya C M L B, Jose ?F M V, David J B, Glaszmann J C, Courtois B, Rami J F.Construction of chromosome segment substitution lines in peanut (L.) using a wild synthetic and QTL mapping for plant morphology. Plos One, 2012, 7(11): e48642.
[11] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Chika T, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 2012, 12: 80.
[12] Huang L, He H, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X J, Liao B S, Jiang H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (L.). Theoretical and Applied Genetics, 2015, 128(6): 1103-1115.
[13] Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (L.). Frontiers in Plant Science, 2019, 10: 745.
[14] 王亮, 楊鑫雷, GETAHUN Addisu, 崔順立, 穆國(guó)俊, 劉立峰, 李自超. 栽培種花生AFLP標(biāo)記體系的優(yōu)化及多態(tài)性引物篩選. 核農(nóng)學(xué)報(bào), 2017, 31(11): 2087-2095.
Wang L, Yang X L, GETAHUN A, Cui S L, Mu G J, Liu L F, Li Z C. Screening for polymorphic primer pairs and optimization of AFLP marker system in peanut. Journal of Nuclear Agricultural Sciences, 2017, 31(11): 2087-2095. (in Chinese)
[15] Lin Z X, He D H, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding, 2008, 124(2): 180-187.
[16] Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. Journal of Integrative Plant Biology, 2007, 49(5): 716-724.
[17] 崔順立, 劉立峰, 陳煥英, 耿立格, 孟成生, 楊余. 河北省花生地方品種基于SSR標(biāo)記的遺傳多樣性. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42(9): 3346-3353.
Cui S L, Liu L F, Chen H Y, Geng L G, Meng C S, Yang Y. Genetic diversity of peanut landraces in Hebei province revealed by SSR markers. Scientia Agricultura Sinica, 2009, 42(9): 3346-3353. (in Chinese)
[18] JoinMap 4.0 Software for the calculation of genetic linkage maps in experimental populations. Wageningen: Kyazma B.V; 2006.
[19] Kosambi D D. The estimation of map distances from recombination values. Annals of Human Genetics, 2011; 1: 172-175.
[20] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. journal of heredity, 2002; 1: 77-78.
[21] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
[22] 呂維娜. 花生栽培種SSR遺傳連鎖圖譜構(gòu)建及重要產(chǎn)量性狀QTL定位分析[D]. 鄭州: 鄭州大學(xué), 2014.
Lü W N. Contruction of genetic linkage map based on SSR markers and QTLs identification for major yield traits in the cultivated peanut (L.) [D]. Zhengzhou: Zhengzhou University, 2014. (in Chinese)
[23] Hake A A, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak S N. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (L.). PLoS one, 2017, 12: e0186113.
[24] Li Y, Li L, Zhang X, Zhang K, Ma D, Liu J. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (L.). Euphytica, 2017, 213: 57.
[25] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
[26] 成良強(qiáng), 唐梅, 任小平, 黃莉, 陳偉剛, 李振動(dòng), 周小靜, 陳玉寧, 廖伯壽, 姜慧芳. 栽培種花生遺傳圖譜的構(gòu)建及主莖高和總分枝數(shù)QTL分析. 作物學(xué)報(bào), 2015, 41(6): 979-987.
Cheng L Q, Tang M, Ren X P, Huang L, Chen W G, Li Z D, Zhou X J, Chen Y N, Liao B S, Jiang H F. Construction of genetic map and QTL analysis for mainstem height and total branch number in peanut (L.). Acta Agronomica Sinica, 2015, 41(6): 979-987. (in Chinese)
[27] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Guo B Z, Jiang H F. Development and deployment of a high- density linkage map identified quantitative trait loci for plant height in peanut (L.). Scientific Reports, 2016, 6: 39478.
[28] Zhou X J, Xia Y L, Liao J H, Liu K D, Li Q, Dong Y, Ren X P, Chen Y N, Huang L, Liao B S, Lei Y, Yan L Y, Jiang H F. Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (L.) under multi-environments. Plos One, 2016, 11(11): e0166873.
[29] Upadhyaya H D, Nigam S N. Detection of epistasis for protein and oil contents and oil quality parameters in peanut. Crop Science, 1999, 39(1): 115-118.
[30] Upadhyaya H D, Nigam S N. Epistasis for vegetative and reproductive traits in peanut. Crop Science, 1998, 38(1): 44-49.
QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (L.)
MENG XinHao1, DENG HongTao1, LI Li2, CUI ShunLi1, Charles Y. CHEN3, HOU MingYu1, YANG XinLei1, LIU LiFeng1
1College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Baoding 071001, Hebei, China;2College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China;3Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
【】Cultivated peanut (L.) is an important oil and economic crop in worldwide. Plant type is a typical quantitative trait and an important agronomic trait, which is closely related to yield and mechanized harvesting in peanut. Genetic analysis, QTL mapping and identifying tightly linked molecular markers of plant type, will be conducive to the germplasm protection and cultivar identification, and provide an important theoretical basis for the molecular breeding of plant type in cultivated peanut. 【】In the present study, a RIL population as research material was established, which consisted of 321 families and derived from Jihua 5 with erect plant type and M130 with prostrate type. Two parents and RIL population were planted at Hainan city, Handan city, Baoding city and Tangshan city during the growing season (May to September) from 2016 to 2018. The phenotypic data of plant type related traits, such as lateral branch angle, main stem height, lateral branch length, index of plant type and extension radius, were investigated at harvesting season under seven environments. Meanwhile, SSR, AhTE, SRAP and TRAP were used to identify genotypic data of parents and RIL that was applied to construct the molecular genetic linkage map. Later, we combined phenotypic data of seven environments, and identified QTLs for plant type related traits using ICIM of QTL Icimapping V4.2. 【】A molecular genetic linkage map containing 363 polymorphism sites was constructed, and all markers were assigned to 20 chromosomes and an unknown linkage group. The total length of the map covered 1 360.38 cM of the whole genome, and the average distance between the markers was 3.75 cM. The length of a single linkage group was 39.599-101.056 cM, including 4-50 molecular markers. Subsequently, 30 additive QTLs for plant type related traits were detected by ICIM-ADD method, which were distributed on A04, A05, A06, A08, A09, B02 and B09 chromosomes. Among these QTLs, 5 QTLs for LBA with PVE was 3.48%-11.22%, 15 QTLs for MSH with PVE was 3.58%-10.05%, 2 QTLs for LBL with PVE was 6.03%-8.56%, 4 QTLs for IOPT with PVE was 4.68%-15.08%, 4 QTLs for ER with PVE was 3.30%-9.33%. Of these,,,, andwere main-effect QTLs, explaining 11.22%, 10.59%, 10.23%, 10.05% and 15.08% of the phenotypic variance, respectively. In addition, 59 pairs epistatic QTLs were detected by ICIM-EPI method. Among them, 6 pairs of epistatic QTLs for LBL with PVE were 2.23% to 2.78%, 50 pairs of epistatic QTLs for IOPT with PVE were 0.25% to 1.44%, and 3 pairs of epistatic QTLs for ER with PVE were 7.28% to 12.25%. Finally, we also found 3 QTL clusters for LBA, MSH, IOPT and ER on GM1867-AHGS1967interval of A04, me14em5-116-PM418 interval of A05and HBAUAh177-AhTE0658interval of A08, respectively. 【】In brief, we constructed a molecular genetic linkage map containing 363 loci, and identified 30 additive QTLs and 59 pairs of epistatic QTLs for plant type related traits, and found 3 QTL clusters.
peanut; plant type; QTL; RILs
10.3864/j.issn.0578-1752.2021.08.003
2020-09-23;
2020-12-07
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(CARS-13)、國(guó)家自然科學(xué)基金(31701459,31771833)、河北省科技計(jì)劃(16226301D)、河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系油料創(chuàng)新團(tuán)隊(duì)項(xiàng)目(HBCT2018090202)、河北省青年拔尖人才資助項(xiàng)目(0602015)、河北農(nóng)業(yè)大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(2018138)
孟鑫浩,E-mail:mxinhao1994@126.com。鄧洪濤,E-mail:3462096839@qq.com。孟鑫浩和鄧洪濤為同等貢獻(xiàn)作者。通信作者楊鑫雷,E-mail:peanut@hebau.edu.cn。通信作者劉立峰,E-mail:liulifeng@hebau.edu.cn
(責(zé)任編輯 李莉)
中國(guó)農(nóng)業(yè)科學(xué)2021年8期