李燕
摘? 要:隨著新課改的不斷推進(jìn)和發(fā)展,新的教學(xué)大綱明確指出在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中要注重應(yīng)用數(shù)學(xué)建模思想。小學(xué)數(shù)學(xué)作為小學(xué)教育階段的重要學(xué)科之一,在基礎(chǔ)教育階段有著重要的地位和作用,在很大程度上能夠直接影響學(xué)生今后的數(shù)學(xué)學(xué)習(xí)興趣和學(xué)習(xí)基礎(chǔ)能力發(fā)展。數(shù)學(xué)建模思想的滲透,有利于促進(jìn)小學(xué)數(shù)學(xué)教學(xué)改革,因此,本文主要針對(duì)小學(xué)數(shù)學(xué)教學(xué)中的數(shù)學(xué)建模思想應(yīng)用進(jìn)行深入的分析和探討,僅供同行學(xué)習(xí)參考。
關(guān)鍵詞:小學(xué)數(shù)學(xué);數(shù)學(xué)建模思想;教學(xué)應(yīng)用
數(shù)學(xué)建模思想的應(yīng)用是一種將數(shù)學(xué)方法與模型語(yǔ)言相結(jié)合的應(yīng)用模式,能夠使抽象的數(shù)學(xué)問(wèn)題簡(jiǎn)單化,從而更好地幫助小學(xué)生理解和學(xué)習(xí)相對(duì)比較抽象的數(shù)學(xué)概念和數(shù)學(xué)符號(hào),促使學(xué)生更好地理解和掌握數(shù)學(xué)知識(shí)。
一、應(yīng)用數(shù)學(xué)建模思想存在的問(wèn)題
教學(xué)實(shí)踐經(jīng)驗(yàn)發(fā)現(xiàn),當(dāng)前仍然存在大部分的小學(xué)數(shù)學(xué)教師缺少對(duì)數(shù)學(xué)建模思想應(yīng)用的重視。在教育不斷改革的影響下,數(shù)學(xué)教學(xué)無(wú)論是在教學(xué)模式上,還是教學(xué)方法上,都有別于傳統(tǒng)的教學(xué)方法。小學(xué)數(shù)學(xué)教師仍需要一段時(shí)間來(lái)擺脫傳統(tǒng)教學(xué)模式和應(yīng)試教育理念的影響,對(duì)新事物的認(rèn)識(shí)過(guò)程能使教師們充分意識(shí)到教育改革和數(shù)學(xué)建模思想的重要作用,小學(xué)數(shù)學(xué)教師們需要在充分理解的基礎(chǔ)上恰當(dāng)應(yīng)用數(shù)學(xué)建模思想。
其次,教師們往往會(huì)受到教學(xué)條件和教學(xué)環(huán)境等各因素的影響。在小學(xué)數(shù)學(xué)教學(xué)過(guò)程當(dāng)中,大多數(shù)的教師使用數(shù)學(xué)建模思想不夠規(guī)范,使得數(shù)學(xué)建模思想的真正作用和價(jià)值無(wú)法充分地發(fā)揮和體現(xiàn)。數(shù)學(xué)建模思想的主要目的在于幫助和引導(dǎo)學(xué)生更好地解決數(shù)學(xué)問(wèn)題,并能夠?qū)⒊橄蠡臄?shù)學(xué)問(wèn)題簡(jiǎn)單化,最終達(dá)到解決問(wèn)題的目的。
二、應(yīng)用數(shù)學(xué)建模思想的策略方法
(一)提高對(duì)數(shù)學(xué)建模思想的重視
在應(yīng)用數(shù)學(xué)建模思想的過(guò)程當(dāng)中,教師們應(yīng)當(dāng)考慮到小學(xué)生的認(rèn)知能力和智力水平。首先,教師們只有對(duì)數(shù)學(xué)建模思想足夠重視才有可能在教學(xué)中加以運(yùn)用。教師需要明確數(shù)學(xué)建模思想的內(nèi)容,明確教學(xué)目標(biāo),從而制定出有針對(duì)性的教學(xué)計(jì)劃。
(二)創(chuàng)設(shè)生活化建模思想教學(xué)情境
小學(xué)數(shù)學(xué)教師在進(jìn)行數(shù)學(xué)建模時(shí),必須要注重與實(shí)際生活相結(jié)合,在理解題目的基礎(chǔ)上,引導(dǎo)學(xué)生分析題目,轉(zhuǎn)換問(wèn)題。抽象性是數(shù)學(xué)學(xué)科的特點(diǎn)之一,因此,創(chuàng)設(shè)生活化的情境教學(xué)有助于將抽象化的數(shù)學(xué)知識(shí)與生活實(shí)際相結(jié)合。
例如在學(xué)習(xí)《角的度量》這一章節(jié)的時(shí)候,教師應(yīng)當(dāng)首先明確教學(xué)目標(biāo)即讓學(xué)生能夠理解和掌握如何進(jìn)行角度的測(cè)量,利用數(shù)學(xué)模型將生活常識(shí)與知識(shí)相結(jié)合起來(lái),這就是最簡(jiǎn)單的數(shù)學(xué)模型的應(yīng)用。
三、結(jié)語(yǔ)
在小學(xué)教學(xué)的過(guò)程當(dāng)中,運(yùn)用數(shù)學(xué)建模思想是一個(gè)相對(duì)比較綜合的教學(xué)模式。教師們?cè)趥湔n過(guò)程中需要考慮學(xué)生的認(rèn)知能力和建模思想的轉(zhuǎn)換方式,逐步進(jìn)行數(shù)學(xué)建模思想的滲透,慢慢培養(yǎng)學(xué)生的數(shù)學(xué)思維能力,小學(xué)數(shù)學(xué)是學(xué)生數(shù)學(xué)學(xué)習(xí)的起步階段,教師在教學(xué)時(shí)要注意對(duì)學(xué)生學(xué)習(xí)興趣的培養(yǎng)。
參考文獻(xiàn):
[1]楊柏富. 試論數(shù)學(xué)建模思想在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用[J]. 神州,2018(36):95.
[2]薛建忠. 數(shù)學(xué)建模思想在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用研究[J]. 中華少年,2017(36):176-177.
(責(zé)任編輯:淳? 潔)