柏文心,趙愛民
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院婦產(chǎn)科,上海 200127
復(fù)發(fā)性流產(chǎn)(recurrent spontaneous abortion,RSA)是一種常見的妊娠并發(fā)癥,發(fā)病率通常為1%~5%[1]。截至目前,不同國家和地區(qū)對RSA的定義仍存在差異。英國皇家婦產(chǎn)科醫(yī)師協(xié)會(Royal College of Obstetricians and Gynaecologists,RCOG)將RSA定義為連續(xù)發(fā)生≥3次妊娠24周前的自然流產(chǎn),包括生化妊娠;美國生殖醫(yī)學(xué) 協(xié) 會(American Society for Reproductive Medicine,ASRM)的標(biāo)準(zhǔn)則是≥2次的自然流產(chǎn),且未強(qiáng)調(diào)流產(chǎn)發(fā)生的連續(xù)性,但明確排除生化妊娠;歐洲人類生殖與胚胎學(xué)會(European Society of Human Reproduction and Embryology,ESHRE)在2017年發(fā)布的復(fù)發(fā)性流產(chǎn)診治指南中將RSA定義為連續(xù)發(fā)生≥2次妊娠24周前的自然流產(chǎn)[2]。我國目前仍將RSA定義為與同一性伴侶發(fā)生≥3次妊娠28周內(nèi)的自然流產(chǎn)。但近年來專家們提出,應(yīng)當(dāng)將連續(xù)發(fā)生≥2次的自然流產(chǎn)定義為RSA,需引起重視。
RSA患者再次妊娠發(fā)生流產(chǎn)的風(fēng)險(xiǎn)較高,尤其是已連續(xù)發(fā)生3次流產(chǎn)者,其再發(fā)風(fēng)險(xiǎn)高達(dá)70%~80%[3],嚴(yán)重影響患者的身心健康。導(dǎo)致RSA的病因復(fù)雜,且存在明顯的異質(zhì)性。除了已知的母體病因如自身免疫異常、血栓前狀態(tài)、女性生殖道解剖結(jié)構(gòu)異常、內(nèi)分泌功能異常、夫妻染色體異常,以及胚胎染色體或基因異常外,目前仍有40%~50%的患者流產(chǎn)原因不明,稱之為不明原因 復(fù) 發(fā) 性 流 產(chǎn)(unexplained RSA,URSA)[4]。由 于URSA病因及發(fā)病機(jī)制不明,目前尚缺乏有效的治療手段。深入研究并闡明URSA的發(fā)病機(jī)制對尋找有效的治療靶點(diǎn)以及制定新的診療策略具有極其重要的意義。近年來,隨著生殖免疫學(xué)的不斷發(fā)展,越來越多的研究證據(jù)顯示,URSA的發(fā)生與母胎免疫耐受機(jī)制失衡關(guān)聯(lián)密切。正常妊娠時(shí),母胎免疫耐受機(jī)制的形成取決于母胎界面免疫活性細(xì)胞、蛻膜基質(zhì)細(xì)胞(decidual stromal cells,DSCs)以及滋養(yǎng)細(xì)胞之間正常的交互對話形成的有利于胚胎種植和生長的免疫網(wǎng)絡(luò)微環(huán)境,其中任何一個(gè)環(huán)節(jié)出現(xiàn)異常則可打破該耐受機(jī)制,從而使胚胎遭受母體免疫系統(tǒng)的殺傷,最終導(dǎo)致流產(chǎn)的發(fā)生[5]。本文就母胎免疫耐受的形成機(jī)制以及URSA的免疫發(fā)病機(jī)制的國內(nèi)外研究作一綜述。
從免疫學(xué)角度而言,妊娠時(shí)胚胎可看作一個(gè)半同種移植物,因?yàn)樘翰糠值淖甜B(yǎng)細(xì)胞表達(dá)的抗原一半來自父系,對于母體免疫系統(tǒng)是一種外來抗原。正常妊娠時(shí),母體免疫系統(tǒng)對胎兒抗原的識別能產(chǎn)生保護(hù)性的免疫反應(yīng),從而保護(hù)胚胎和胎兒免遭免疫攻擊而得以生長發(fā)育直至分娩。母胎免疫耐受的概念正是基于此理論提出。成功的妊娠有賴于母胎免疫耐受機(jī)制的建立。如果母體未能對植入的胚胎建立適當(dāng)?shù)拿庖吣褪?,則可導(dǎo)致類似器官移植的免疫反應(yīng),使胚胎遭受母體免疫系統(tǒng)的攻擊而流產(chǎn)[6]。因此,URSA的發(fā)生可能與母胎免疫機(jī)制失衡有關(guān)。胚胎來源具有侵襲性的滋養(yǎng)細(xì)胞和母體來源的蛻膜組織中各種免疫細(xì)胞之間存在的精密而復(fù)雜的交互對話機(jī)制,并構(gòu)成了具有特殊結(jié)構(gòu)和功能的母胎界面[7]。母胎界面免疫反應(yīng)貫穿于妊娠期,從受精卵黏附與著床、胚胎及胎兒生長發(fā)育直至分娩的全過程;其中,各種細(xì)胞之間的交互對話所形成的免疫網(wǎng)絡(luò)微環(huán)境,對正常母胎免疫耐受的建立起至關(guān)重要的作用。研究[8]已經(jīng)證實(shí)在母胎界面中涉及母胎免疫耐受的細(xì)胞主要包括母體來源的蛻膜免疫細(xì)胞、DSCs以及胚胎來源的滋養(yǎng)細(xì)胞。蛻膜免疫細(xì)胞以自然殺傷細(xì)胞(nature killer cell,NK cell,NK細(xì)胞)比例最多,占總免疫細(xì)胞的70%以上;其次為巨噬細(xì)胞(macrophage,Mφ)、T細(xì)胞、樹突狀細(xì)胞(dendritic cells,DCs)以及髓系抑制細(xì)胞(myeloid suppressor cells,MDSCs)等。此外,研究還發(fā)現(xiàn),DSCs與滋養(yǎng)細(xì)胞也參與了蛻膜免疫細(xì)胞的調(diào)控,對母胎界面耐受格局的形成也起到至關(guān)重要的作用。
NK細(xì)胞作為蛻膜中比例最高的免疫細(xì)胞,對維持正常妊娠,尤其是早期妊娠的重要性已得到公認(rèn)。NK細(xì)胞是具有多種生物學(xué)作用的淋巴細(xì)胞亞群,具有細(xì)胞毒性和產(chǎn)生細(xì)胞因子的能力等[9]。NK細(xì)胞可根據(jù)其表面表達(dá)分子的不同分為不同的亞型,其中外周血NK(peripheral NK,pNK)細(xì)胞以CD56dimCD16+為主,而蛻膜NK(decidual NK,dNK)細(xì)胞則以CD56brightCD16-為主[10]。pNK細(xì)胞可以表達(dá)完整的激活受體,包括NKp46、NKp30以及NKG2D等,而dNK細(xì)胞僅表達(dá)NKp44受體[11]。由于dNK細(xì)胞缺乏殺傷性表型,不能與靶細(xì)胞形成主動免疫突觸,從而對妊娠早期母胎免疫耐受機(jī)制格局的形成起重要作用[12]。
研究[12-13]發(fā)現(xiàn),在正常妊娠早期,dNK細(xì)胞主要聚集在侵襲的滋養(yǎng)細(xì)胞附近,活化的dNK細(xì)胞可產(chǎn)生血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)和促血管生成素2(angiopoietin 2,ANG2)并分泌大量的細(xì)胞因子,包括粒細(xì)胞集落刺激因子(granulocyte colony stimulating factor,G-CSF)、粒細(xì)胞巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、γ干擾素(interferon-γ,IFN-γ)、轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)、CXC趨化因 子10(C-X-C chemokine ligand 10,CXCL10)和CXCL12等,表明其在促進(jìn)滋養(yǎng)細(xì)胞侵襲、保護(hù)胚胎免受母體免疫攻擊以及促進(jìn)胎盤血管生成和子宮內(nèi)膜血管重塑方面起重要作用。還有研究[14-15]發(fā)現(xiàn),dNK細(xì)胞可針對滋養(yǎng)細(xì)胞表達(dá)特定人類白細(xì)胞抗原(human leukocyte antigen,HLA)的受體,例如HLA-C的殺傷細(xì)胞免疫球蛋白樣受體(killer inhibitory receptor,KIR)、HLA-E的CD94/NKG2A受體和HLA-G的白細(xì)胞免疫球蛋白樣受體(leukocyte immunoglobulin-like receptor,ILR),而兩者之間的交互作用可以進(jìn)一步下調(diào)dNK細(xì)胞的免疫功能。因此,dNK細(xì)胞與滋養(yǎng)層細(xì)胞HLA之間的相互作用被認(rèn)為是預(yù)防母體對胎兒抗原產(chǎn)生免疫排斥反應(yīng)的關(guān)鍵因素[16]。
在URSA患者中,CD56brightCD16-dNK細(xì)胞的數(shù)量較正常妊娠者顯著下降[17],而具有細(xì)胞毒性的CD16+dNK細(xì)胞以及表達(dá)自然細(xì)胞毒性受體的dNK細(xì)胞數(shù)量則顯著高于正常婦女[18],這提示在URSA患者中dNK細(xì)胞的細(xì)胞毒性大大增強(qiáng)。URSA患者子宮內(nèi)膜和dNK細(xì)胞的失調(diào)可能導(dǎo)致致命的妊娠損害,其中dNK細(xì)胞的毒性增強(qiáng)、與滋養(yǎng)層特異性HLA相互作用能力減弱、參與子宮螺旋動脈重塑和抑制T細(xì)胞毒性的能力受損以及dNK細(xì)胞產(chǎn)生細(xì)胞因子的模式改變等,都可能參與了URSA的發(fā)生機(jī)制[19-20]。在NK細(xì)胞中,還有一類表達(dá)白細(xì)胞介素-22(interleukin-22,IL-22)的NK22細(xì)胞。與健康婦女相比,RSA患者外周血NK22的細(xì)胞比例增加[21],而在RSA患者dNK細(xì)胞中IL-22的基因與蛋白表達(dá)量卻是下調(diào)的[22]。因此,今后還需要進(jìn)一步的實(shí)驗(yàn)來探究IL-22與NK22細(xì)胞在RSA病因機(jī)制中發(fā)揮的潛在作用,并為URSA的免疫治療方法提供新的思路。
Mφ在非妊娠的子宮內(nèi)膜中數(shù)量很少,其數(shù)量隨著妊娠的發(fā)生而急劇增加,最高可達(dá)到蛻膜中所有白細(xì)胞的20%~25%。在妊娠期間,蛻膜Mφ(dMφ)可及時(shí)吞噬凋亡的滋養(yǎng)細(xì)胞,從而維持母胎內(nèi)環(huán)境的穩(wěn)定[23]。研究證實(shí):在非妊娠狀態(tài)時(shí),子宮Mφ主要向M 1型偏移;而在妊娠過程中,Mφ會在胎盤形成后向M 2表型轉(zhuǎn)變,并一直持續(xù)至分娩。M 2型Mφ可以分泌一系列細(xì)胞因子,如轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)、IL-10、吲哚氨2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO)等,這些細(xì)胞因子均可促進(jìn)母胎免疫耐受的形成,從而保護(hù)胎兒免受母體免疫攻擊[24]。目前已有研究證實(shí),有多種分子機(jī)制參與了dMφ的M 1/M 2極化。阻斷程序性死亡蛋白-1/程序性死亡蛋白配體-1(PD-1/PD-L1)軸可以通過磷酸肌醇3激酶-蛋白激酶B-哺乳動物雷帕霉素靶蛋白信號通路導(dǎo)致M 2型dMφ數(shù)量下降并引起流產(chǎn)[25]。最新的研究[26]發(fā)現(xiàn),miR-103可以通過抑制STAT-1/IRF1信號通路,促進(jìn)dMφ向M 2型極化,從而防止流產(chǎn)的發(fā)生。在正常妊娠早期,與dNK細(xì)胞類似,dMφ主要聚集在侵襲的滋養(yǎng)細(xì)胞和子宮螺旋動脈周圍,這可能對胚胎著床、滋養(yǎng)細(xì)胞的侵襲以及子宮螺旋動脈重塑等起到正面作用,同時(shí)可有效保護(hù)胎兒免受外來病原體的侵害[27]。
在URSA患者中dMφ向M 2型極化的能力減弱,分泌具有免疫抑制作用的細(xì)胞因子IL-10能力降低,而分泌炎性因子如IL-6的水平升高。一項(xiàng)研究[27]結(jié)果顯示,與對照組相比,URSA患者dMφ表達(dá)CD80、CD86水平明顯增高。CD80是CD86活化T淋巴細(xì)胞時(shí)的協(xié)同刺激因子,這表明在URSA患者中,dMφ可能通過活化T細(xì)胞而導(dǎo)致免疫應(yīng)答的增強(qiáng)。研究[28-29]還發(fā)現(xiàn),在URSA患者中,dMφ通過分泌TGF-β調(diào)節(jié)調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)的能力減弱,此外URSA患者中CD86+dMφ上的Fas配體(Fas ligand,F(xiàn)asL)表達(dá)增加,而FasL可以誘導(dǎo)滋養(yǎng)細(xì)胞的凋亡,這提示Mφ通過FasL介導(dǎo)的滋養(yǎng)細(xì)胞凋亡可能是導(dǎo)致URSA的發(fā)病機(jī)制之一。然而,在偶發(fā)性流產(chǎn)的患者中同樣發(fā)現(xiàn)了M 2型Mφ的減少[27],因此還需要進(jìn)一步的研究來闡明Mφ在URSA中的作用及其機(jī)制[30]。
DCs占蛻膜免疫細(xì)胞的1%~2%,具有雙重作用,可以分化為功能強(qiáng)大的抗原提呈細(xì)胞,激活效應(yīng)T細(xì)胞以介導(dǎo)細(xì)胞免疫應(yīng)答。而不成熟DCs(immature DCs,imDCs)又可以通過誘導(dǎo)分化Tregs細(xì)胞的生成來增強(qiáng)免疫耐受性[31]。研究[32]證實(shí),DCs在母體識別父系抗原的過程中起到了重要的作用。蛻膜DCs(dDCs)在特定的細(xì)胞因子如GM-CSF、IL-4、IL-10和TGF-β以及IDO的作用下,可以獲得耐受型DCs(tolerogenic DCs,tDCs)的表型,并能夠驅(qū)動Th0細(xì)胞向Tregs細(xì)胞分化。除了上述免疫作用外,DCs還具有促進(jìn)子宮內(nèi)膜間質(zhì)細(xì)胞的分化、增殖以及促進(jìn)局部血管生成的作用[33]。與正常妊娠婦女相比,URSA患者蛻膜中表達(dá)CD83的成熟DCs數(shù)量較高[34],同時(shí)URSA患者外周血中能誘導(dǎo)Th0向Th1細(xì)胞分化的DCs數(shù)量顯著增高而表達(dá)CD200+的耐受型DCs亞群顯著降低[35]。一項(xiàng)基于小鼠模型的研究[36]表明,注入多能細(xì)胞間充質(zhì)干細(xì)胞(mesenchyma stem cells,MSCs)可顯著提高dDCs的數(shù)量,降低dDCs上成熟標(biāo)記物CD86、CD40和MHC-II的表達(dá),并可以明顯改善妊娠結(jié)局,這提示MSCs有望在未來成為治療URSA的有效手段。
T細(xì)胞占蛻膜白細(xì)胞總數(shù)的5%~15%。越來越多的研究證據(jù)表明,T細(xì)胞在母胎免疫耐受機(jī)制的形成和URSA的發(fā)病中發(fā)揮了重要的作用。
CD4+CD25+Foxp3+表型的Treg是CD4+T細(xì)胞的一個(gè)亞群,其主要功能是抑制免疫反應(yīng),包括抑制母體對胎兒的特異性與非特異性淋巴細(xì)胞免疫應(yīng)答,誘導(dǎo)免疫耐受,同時(shí)也參與胎盤血管的重塑[37]。Tregs主要在孕早期發(fā)揮作用,而在妊娠后期的作用有限[38]。在母胎界面中,Tregs對多種免疫細(xì)胞都具有調(diào)節(jié)作用,可以通過分泌TGF-β、IL-10以及細(xì)胞毒性T淋巴細(xì)胞相關(guān)蛋白4介導(dǎo)Mφ與DCs分別向M 2表型和tDCs表型轉(zhuǎn)換,tDCs又可以釋放IDO抑制Th1細(xì)胞活性[39-40]。此外,Treg還可以分泌血紅素加氧酶-1使uDCs保持在未成熟狀態(tài),而這些M 2型Mφ和tDCs又可以反過來進(jìn)一步促進(jìn)Treg的增殖[41]。
在正常妊娠中,受雌/孕激素和β-人絨毛膜促性腺素(β-human chorionic gonadotropin,β-hCG)的影響,母胎界面會出現(xiàn)Treg的募集現(xiàn)象。研究[42]發(fā)現(xiàn),CXCL-20/CCR6軸可將Treg募集至母胎界面,同時(shí)激活其免疫活性并促進(jìn)其增殖水平。此外,還有研究[43]發(fā)現(xiàn)G-CSF也可以促進(jìn)Treg的增殖,因此G-CSF免疫療法可能可以改善URSA患者的妊娠結(jié)局。在URSA患者中,患者蛻膜和外周血中Treg的數(shù)量明顯低于健康婦女[38,42],患者蛻膜Treg水平下降常伴有Th17細(xì)胞的數(shù)量增加[44],這提示Treg/Th17平衡失調(diào)在URSA的發(fā)病機(jī)制中可能發(fā)揮著重要作用。Foxp3是Treg表達(dá)的、對Treg發(fā)育和功能都有重要作用的轉(zhuǎn)錄因子。研究[45]發(fā)現(xiàn),與對照組相比,URSA患者外周血和蛻膜中Foxp3的表達(dá)均顯著降低,且其在rs2232365、rs3761548和rs2294021等位基因點(diǎn)的單核苷酸多態(tài)性發(fā)生率增加。信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活蛋白3(signal transducer and activator of transcription 3,STAT3)過度磷酸化也與URSA的發(fā)生有關(guān)。研究[46]發(fā)現(xiàn),磷酸化的STAT3可以通過下調(diào)Foxp3和STAT5的表達(dá)而增加效應(yīng)T細(xì)胞的數(shù)量,并抑制Treg分泌IL-10和TGF-β。不過由于Treg具有高度可塑性,可以在特定條件下轉(zhuǎn)化為效應(yīng)T細(xì)胞,因此目前也不能排除Treg在某種特定的條件下也參與了對胚胎的免疫排斥反應(yīng)[47]。
根據(jù)分泌細(xì)胞因子的不同,CD4+T細(xì)胞被進(jìn)一步分為Th1和Th2亞型,這一概念廣泛用于解釋母胎界面同種免疫的耐受性。目前,人們普遍認(rèn)為妊娠期間Th2型細(xì)胞占主導(dǎo)地位,保護(hù)胎兒免受母體免疫應(yīng)答。Th2細(xì)胞主要分泌IL-4、IL-5、IL-10和TGF-β等Th2型細(xì)胞因子,輔助B細(xì)胞活化,介導(dǎo)體液免疫,并抑制Th1細(xì)胞增殖,從而抑制免疫炎癥反應(yīng),促進(jìn)同種免疫耐受性;Th1型細(xì)胞則主要分泌IL-2、TNF-α和IFN-γ等Th1型細(xì)胞因子,它們參與免疫監(jiān)視,抑制滋養(yǎng)細(xì)胞侵襲力,并可激活NK細(xì)胞,導(dǎo)致流產(chǎn)發(fā)生[48]。在妊娠早期,母胎界面的Th1/Th2平衡是維持妊娠的重要因素,Th1和Th2細(xì)胞相互制衡,其平衡受到Treg的調(diào)控。研究[49]證實(shí),在正常妊娠過程中,這一平衡會向Th2型偏移;但在URSA患者的蛻膜中,Th1型細(xì)胞因子如IL-2、IFN-γ和TNF-α等均較正常孕婦明顯升高。PD-1/PD-L1軸可以通過抑制T細(xì)胞活化和分化、改變細(xì)胞因子分泌方式以及誘導(dǎo)T細(xì)胞凋亡參與T細(xì)胞調(diào)節(jié)[50]。阻斷PD-1/PD-L1軸可以使其下游通路磷酸肌醇3激酶-蛋白激酶B和有絲分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號通路失活,抑制Treg并促進(jìn)Th1細(xì)胞分化而導(dǎo)致流產(chǎn)[51]。因此,這一信號通路或許可以成為今后治療URSA的新靶點(diǎn)。
Th17細(xì)胞來源于幼稚CD4+T細(xì)胞,是一種炎性Th淋巴細(xì)胞亞群,受到TGF-β和IL-6的調(diào)控[40]。研究[52]證實(shí),Th17細(xì)胞分泌的IL-17是妊娠早期關(guān)鍵的促炎細(xì)胞因子,可能參與了正常妊娠和病理妊娠的免疫反應(yīng)過程。促炎性的免疫應(yīng)答在胚胎植入期間是必要的,它可以促進(jìn)組織重塑與血管形成;但是在隨后的妊娠過程中,若這一免疫應(yīng)答不能控制的話,就會導(dǎo)致流產(chǎn)[53]。在URSA患者中,蛻膜Th17細(xì)胞數(shù)量明顯上調(diào),而Treg水平明顯下調(diào),提示Th17/Treg平衡失調(diào)可能參與了URSA的發(fā)生[54]。有研究[55]發(fā)現(xiàn),誘導(dǎo)細(xì)胞凋亡相關(guān)基因-19(GRIM 19)在調(diào)節(jié)Th17/Treg平衡中發(fā)揮了重要作用,即GRIM 19可能會通過活性氧(reactive oxygen species,ROS)/m TOR信號軸來調(diào)節(jié)Th17/Treg的平衡。NOD樣受體家族3炎癥小體(NOD-like receptors family pyrin domain containing 3,NLRP3)是人固有免疫的重要組成部分。有研究發(fā)現(xiàn)過度激活的NLPR3炎癥小體可以造成IL-1β和IL-18的表達(dá)增加,引起炎癥反應(yīng)而導(dǎo)致流產(chǎn)的發(fā)生。NLPR3炎癥小體的激活與Th17的數(shù)量呈正相關(guān),與Treg的數(shù)量呈負(fù)相關(guān),這表明NLPP3炎癥小體參與了TH17/Treg的平衡[56]。然而,Th17是否會對妊娠結(jié)局造成不利影響仍然存在爭議。研究[57]顯示,升高的Th17可以增加滋養(yǎng)層細(xì)胞孕酮的分泌水平,而升高的孕激素水平可以促進(jìn)孕激素誘導(dǎo)的封閉因子(progesterone-induced blocking factor,PIBF)的產(chǎn)生,從而對妊娠起到保護(hù)作用。因此,關(guān)于Th17與URSA的關(guān)系仍有待進(jìn)一步研究證實(shí)。
MDSCs最 早 于1987年 在 肺 癌 模 型 中 被 報(bào) 道[58]。MDSCs是一種骨髓來源的異質(zhì)性細(xì)胞,是DCs、Mφ以及粒細(xì)胞的前體細(xì)胞,具有很強(qiáng)的抑制免疫細(xì)胞應(yīng)答的能力[8]。在小鼠中,MDSCs的表型為CD11b+Gr-1+,并可 以 分 為CD11b+LY6G+LY6Clow(G-MDSCs) 和CD11b+LY6G-LY6Chigh(M-MDSCs)亞型[59]。與小鼠不同,人MDSCs不表達(dá)Gr-1抗原,一般定義為CD33+CD11 b+HLA-DRlow/-,但又不表達(dá)成熟髓系和淋巴細(xì)胞標(biāo)記的一類細(xì)胞,因此將其分為具有單核細(xì)胞樣表型的CD14+細(xì)胞(M-MDSCs)和具有粒細(xì)胞樣特征的CD15+細(xì)胞(PMNMDSCs/G-MDSCs)[60]。盡管針對MDSCs的研究多集中在腫瘤領(lǐng)域,但已有研究[61]指出MDSCs在妊娠母胎界面免疫平衡中發(fā)揮了積極作用。
我們長期致力于探索MDSCs在URSA母胎界面免疫因素中發(fā)揮的作用,并取得了一定的成果。在正常妊娠中,蛻膜PMN-MDSCs的比例超過M-MDSCs[62],其可以通過分泌精氨酸酶I、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、IDO、ROS以及表達(dá)PDL1、PD-L2發(fā)揮免疫抑制作用[60]。蛻膜PMN-MDSCs還可以通過激活TGF-β/β-catenin途徑誘導(dǎo)CD4+CD25-T細(xì)胞Foxp3表達(dá),抑制T細(xì)胞免疫應(yīng)答,參與維持母體對胎兒的免疫耐受[63]。MDSCs還具有抑制NK細(xì)胞毒性、激活Treg和促進(jìn)胎盤血管生成[61]的作用。但PMN-MDSCs是如何增殖并募集到母胎界面的機(jī)制仍然不清楚。我們的研究[64]發(fā)現(xiàn),趨化因子CXC亞家族受體2/CXC趨化因子1(C-X-C subfamily receptor 2/C-X-C chemokine ligand 1,CXCR2/CXCL1)軸在MDSCs的募集與遷移過程中起到了重要的作用,并可以增強(qiáng)MDSCs分泌iNOS的功能。我們的研究[65]發(fā)現(xiàn),外周血中性粒細(xì)胞在蛻膜來源的GM-CSF的作用下,可以通過pSTAT5/PD-L2的信號轉(zhuǎn)導(dǎo)來獲得類似PMN-MDSC的表型和功能。這一研究結(jié)果或許可以解釋母胎界面MDSCs的來源和增殖的機(jī)制。同時(shí),我們的研究[63]首次揭示在URSA患者中,PMNMDSCs的數(shù)量顯著下降,但是M-MDSCs的數(shù)量保持不變。此外,我們的研究[66]還發(fā)現(xiàn),蛻膜PMN-MDSCs的凋亡是由TNF相關(guān)的凋亡誘導(dǎo)配體(TNF-related apoptosis-inducing ligand,TRAIL)以 胱 天 蛋 白 酶3(caspase3)依賴性的途徑介導(dǎo)的,TRAIL在URSA患者蛻膜中的表達(dá)上調(diào),且誘騙受體(decoy receptor 2,DCR2)下調(diào),這使得蛻膜PMN-MDSC對TRAIL誘導(dǎo)的細(xì)胞凋亡反應(yīng)敏感,是造成URSA患者中蛻膜PMNMDSCs下降的原因。因此,針對TRAIL誘導(dǎo)的細(xì)胞凋亡信號這一治療靶點(diǎn)可能為URSA治療提供新的思路。
子宮內(nèi)膜孕后轉(zhuǎn)化為蛻膜,是直接接觸胎兒的母體組織。其主要功能是創(chuàng)造并確保最佳的內(nèi)分泌和免疫微環(huán)境,以允許胚胎的植入、侵襲和發(fā)育直至分娩[67]。為了實(shí)現(xiàn)并維持這些功能,在胚胎植入后子宮內(nèi)膜基質(zhì)細(xì)胞(endometrial stromal cells,ESCs)會在雌/孕激素等蛻膜化誘導(dǎo)因子的作用下蛻膜化轉(zhuǎn)化為DSCs[68]。DSCs對母胎界面多種免疫細(xì)胞有調(diào)控作用,在構(gòu)成母胎界面免疫微環(huán)境中也起到了重要的作用。研究發(fā)現(xiàn)孕酮會直接影響ESC蛻膜化的進(jìn)程,并影響DSCs的分泌功能以及免疫細(xì)胞的分化和效應(yīng)。DSCs在孕酮的刺激下可以通過旁分泌信號募集外周血中的NK細(xì)胞至蛻膜界面,并分泌IL-15促進(jìn)dNK細(xì)胞的轉(zhuǎn)化與增殖[69]。此外孕酮還可以通過刺激DSCs中的白血病抑制因子(leukemia inhibitory factor,LIF)使其分泌多種細(xì)胞因子、趨化因子和金屬蛋白酶,包括GM-CSF、IL-1、IL-6等[70]。研究[71]發(fā)現(xiàn),DSCs還可在hCG的刺激下通過誘導(dǎo)分泌趨化因子CCL2來募集Treg至母胎界面。此外,DSCs與DCs之間也存在著復(fù)雜的交互對話,DSCs產(chǎn)生的巨噬細(xì)胞抑制細(xì)胞因子-1,可抑制DCs的成熟,從而減弱其對T細(xì)胞的刺激能力[72]。這些都有利于正常母胎免疫耐受機(jī)制的建立和維持。
滋養(yǎng)細(xì)胞是母胎界面與蛻膜組織直接接觸的胎兒部分。越來越多的研究證據(jù)提示滋養(yǎng)細(xì)胞能調(diào)控與訓(xùn)導(dǎo)蛻膜免疫細(xì)胞,使之向有利于胚胎著床及生長發(fā)育的細(xì)胞類型轉(zhuǎn)化,積極主動參與母胎免疫耐受機(jī)制的形成。研究發(fā)現(xiàn),滋養(yǎng)細(xì)胞可分泌表達(dá)多種細(xì)胞因子與趨化因子來維持母胎免疫耐受性。在母胎界面,滋養(yǎng)細(xì)胞可以分泌糖蛋白A選擇性抑制Th1細(xì)胞活性并誘導(dǎo)其凋亡,并通過促進(jìn)NK細(xì)胞分泌IL-6和IL-13使Th1/Th2平衡向Th2偏移[73]。滋養(yǎng)細(xì)胞還可以直接表達(dá)IL-35,并通過STAT1和STAT3磷酸化途徑抑制人原始T細(xì)胞增殖,同時(shí)誘導(dǎo)其向具有免疫調(diào)節(jié)功能的iTR35細(xì)胞轉(zhuǎn)化,促進(jìn)母胎免疫耐受[74]。此外,滋養(yǎng)細(xì)胞還可以通過CXCL12/CD82/CD29信號通路促進(jìn)蛻膜中CD56brightCD16-NK細(xì)胞的募集。當(dāng)滋養(yǎng)細(xì)胞CXCL12被阻斷時(shí),就會使dNK細(xì)胞黏附力下降,并在上調(diào)CD82的表達(dá)的同時(shí)下調(diào)CD29的表達(dá)。這一結(jié)果會進(jìn)一步導(dǎo)致CD56dimCD16+NK細(xì)胞富集,進(jìn)而導(dǎo)致流產(chǎn)發(fā)生[75]。研究[76]顯示,URSA患者中滋養(yǎng)細(xì)胞胱硫醚β合酶(cystathionine β synthase,CBS)表達(dá)降低,CBS可以和胱硫醚γ-lie裂合酶合成硫化氫(H2S);在小鼠中失調(diào)的CBS/H2S信號轉(zhuǎn)導(dǎo)會導(dǎo)致Th1/Th2平衡失調(diào)而誘發(fā)流產(chǎn)。CBS/H2S信號轉(zhuǎn)導(dǎo)通路可能在通過母胎界面免疫調(diào)節(jié)維持早期妊娠過程中起到重要作用,因此這也可能成為URSA新的治療靶點(diǎn),但還需要更多的基于人體的研究來加以驗(yàn)證。
URSA仍是婦產(chǎn)科及生殖免疫學(xué)領(lǐng)域亟待解決的難題。盡管已有大量證據(jù)表明母胎免疫耐受機(jī)制失衡在URSA的發(fā)病中扮演了重要的角色,但導(dǎo)致URSA母胎免疫耐受機(jī)制失衡的原因和具體的機(jī)制仍然不明確。深入研究并闡明母胎免疫耐受形成機(jī)制和URSA的發(fā)病機(jī)制,不僅可以豐富和發(fā)展免疫耐受理論,對于尋找和建立針對URSA的新的免疫檢查點(diǎn)和治療策略也有重大意義。
參·考·文·獻(xiàn)
[1]Rai R,Regan L.Recurrent miscarriage[J].Lancet,2006,368(9535):601-611.
[2]Youssef A,Vermeulen N,Lashley EELO,et al.Comparison and appraisal of(inter)national recurrent pregnancy loss guidelines[J].Reprod Biomed Online,2019,39(3):497-503.
[3]Wu M J,Liu P,Cheng LC.Galectin-1 reduction and changes in Tregulatory cells may play crucial roles in patients with unexplained recurrent spontaneous abortion[J].Int J Clin Exp Pathol,2015,8(2):1973-1978.
[4]Christiansen OB,Nybo Andersen AM,Bosch E,et al.Evidence-based investigations and treatments of recurrent pregnancy loss[J].Fertil Steril,2005,83(4):821-839.
[5]Yang FL,Zheng QL,Jin LP.Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternalfetal interface[J].Front Immunol,2019,10:2317.
[6]Krieg S,Westphal L.Immune function and recurrent pregnancy loss[J].Semin Reprod Med,2015,33(4):305-312.
[7]Ander SE,Diamond MS,Coyne CB.Immune responses at the maternalfetal interface[J].Sci Immunol,2019,4(31):eaat6114.
[8]Zhao AM,Xu HJ,Kang XM,et al.New insights into myeloid-derived suppressor cells and their roles infeto-maternal immune cross-talk[J].J Reprod Immunol,2016,113:35-41.
[9]O′Brien KL,Finlay DK.Immunometabolism and natural killer cell responses[J].Nat Rev Immunol,2019,19(5):282-290.
[10]Arnon TI,Markel G,Mandelboim O.Tumor and viral recognition by natural killer cells receptors[J].Semin Cancer Biol,2006,16(5):348-358.
[11]Kalkunte SS,Mselle TF,Norris WE,et al.Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface[J].J Immunol,2009,182(7):4085-4092.
[12]Koopman LA,Kopcow HD,Rybalov B,et al.Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential[J].J Exp Med,2003,198(8):1201-1212.
[13]Helige C,Ahammer H,Moser G,et al.Distribution of decidual natural killer cells and macrophages in the neighbourhood of the trophoblast invasion front:a quantitative evaluation[J].Hum Reprod,2014,29(1):8-17.
[14]Liu S,Diao LH,Huang CY,et al.The role of decidual immune cells on human pregnancy[J].J Reprod Immunol,2017,124:44-53.
[15]Moffett A,Chazara O,Colucci F.Maternal allo-recognition of the fetus[J].Fertil Steril,2017,107(6):1269-1272.
[16]Kennedy PR,Chazara O,Gardner L,et al.Activating KIR2DS4 is expressed by uterine NK cells and contributes to successful pregnancy[J].J Immunol,2016,197(11):4292-4300.
[17]Lachapelle MH,Miron P,Hemmings R,et al.Endometrial T,B,and NK cells in patients with recurrent spontaneous abortion.Altered profile and pregnancy outcome[J].J Immunol,1996,156(10):4027-4034.
[18]Fukui A,Funamizu A,Fukuhara R,et al.Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure,and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss[J].J Obstet Gynaecol Res,2017,43(11):1678-1686.
[19]PrabhuDas M,Bonney E,Caron K,et al.Immune mechanisms at the maternal-fetal interface:perspectives and challenges[J].Nat Immunol,2015,16(4):328-334.
[20]El-Azzamy H,Dambaeva SV,Katukurundage D,et al.Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses[J].Am J Reprod Immunol,2018,80(4):e13024.
[21]Kamoi M,Fukui A,Kwak-Kim J,et al.NK22 cells in the uterine midsecretory endometrium and peripheral blood of women with recurrent pregnancy loss and unexplained infertility[J].Am J Reprod Immunol,2015,73(6):557-567.
[22]O′Hern Perfetto C,Fan XJ,Dahl S,et al.Expression of interleukin-22 in decidua of patients with early pregnancy and unexplained recurrent pregnancy loss[J].J Assist Reprod Genet,2015,32(6):977-984.
[23]Abrahams VM,Kim YM,Straszewski SL,et al.Macrophages and apoptotic cell clearance during pregnancy[J].Am J Reprod Immunol,2004,51(4):275-282.
[24]Faas MM,de Vos P.Uterine NK cells and macrophages in pregnancy[J].Placenta,2017,56:44-52.
[25]Zhang YH,Ma LN,Hu XH,et al.The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy[J].Hum Reprod,2019,34(1):25-36.
[26]Zhu XX,Liu HP,Zhang Z,et al.MiR-103 protects from recurrent spontaneous abortionviainhibiting STAT1 mediated M 1 macrophage polarization[J].Int J Biol Sci,2020,16(12):2248-2264.
[27]Tsao FY,Wu MY,Chang YL,et al.M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions[J].J Formos Med Assoc,2018,117(3):204-211.
[28]Wang WJ,Hao CF,Lin QD.Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients[J].J Reprod Immunol,2011,92(1/2):97-102.
[29]Ding JL,Yin TL,Yan NN,et al.FasL on decidual macrophages mediates trophoblast apoptosis:a potential cause of recurrent miscarriage[J].Int J Mol Med,2019,43(6):2376-2386.
[30]Ning F,Liu HS,Lash GE.The role of decidual macrophages during normal and pathological pregnancy[J].Am J Reprod Immunol,2016,75(3):298-309.
[31]Arck PC,Hecher K.Fetomaternal immune cross-talk and its consequences for maternal and offspring′s health[J].Nat Med,2013,19(5):548-556.
[32]Robertson SA,Care AS,Moldenhauer LM.Regulatory T cells in embryo implantation and the immune response to pregnancy[J].J Clin Invest,2018,128(10):4224-4235.
[33]Tagliani E,Erlebacher A.Dendritic cell function at the maternal-fetal interface[J].Expert Rev Clin Immunol,2011,7(5):593-602.
[34]Askelund K,Liddell HS,Zanderigo AM,et al.CD83+dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy[J].Placenta,2004,25(2/3):140-145.
[35]Huang CY,Zhang HZ,Chen X,et al.Association of peripheral blood dendritic cells with recurrent pregnancy loss:a case-controlled study[J].Am J Reprod Immunol,2016,76(4):326-332.
[36]Eskandarian M,Moazzeni SM.Uterine dendritic cells modulation by mesenchymal stem cells provides a protective microenvironment at the fetomaternal interface:improved pregnancy outcome in abortion-prone mice[J].Cell J,2019,21(3):274-280.
[37]Sharma A,Rudra D.Emerging functions of regulatory T cells in tissue homeostasis[J].Front Immunol,2018,9:883.
[38]Shima T,Sasaki Y,Itoh M,et al.Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice[J].J Reproductive Immunol,2010,85(2):121-129.
[39]Fallarino F,Grohmann U,Hwang KW,et al.Modulation of tryptophan catabolism by regulatory T cells[J].Nat Immunol,2003,4(12):1206-1212.
[40]Bansal AS.Joining the immunological dots in recurrent miscarriage[J].Am J Reprod Immunol,2010,64(5):307-315.
[41]Schumacher A,Wafula PO,Teles A,et al.Blockage of heme oxygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells[J].PLoS One,2012,7(8):e42301.
[42]Zhang XX,Kang XM,Zhao AM.Regulation of CD4?FOXP3?T cells by CCL20/CCR6 axis in early unexplained recurrent miscarriage patients[J].Genet Mol Res,2015,14(3):9145-9154.
[43]Rahmati M,Petitbarat M,Dubanchet S,et al.Granulocyte-colony stimulating factor related pathways tested on an endometrialex-vivomodel[J].PLoS One,2014,9(9):e102286.
[44]Qian JF,Zhang N,Lin J,et al.Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion[J].Biosci Trends,2018,12(2):157-167.
[45]Zidan HE,Abdul-Maksoud RS,Mowafy HE,et al.The association of IL-33 and Foxp3 gene polymorphisms with recurrent pregnancy loss in Egyptian women[J].Cytokine,2018,108:115-119.
[46]Liu B,Wu HM,Huang QY,et al.Phosphorylated STAT3 inhibited the proliferation and suppression of decidual Treg cells in unexplained recurrent spontaneous abortion[J].Int Immunopharmacol,2020,82:106337.
[47]Sadlon T,Brown CY,Bandara V,et al.Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease[J].Clin Transl Immunology,2018,7(2):e1011.
[48]M itchell RE,Hassan M,Burton BR,et al.IL-4 enhances IL-10 production in Th1 cells:implications for Th1 and Th2 regulation[J].Sci Rep,2017,7(1):11315.
[49]Liu J,Dong P,Wang SJ,et al.Natural killer,natural killer T,helper and cytotoxic T cells in the decidua from recurrent spontaneous abortion with normal and abnormal chromosome karyotypes[J].Biochem Biophys Res Commun,2019,508(2):354-360.
[50]Zhang YH,Tian M,Tang MX,et al.Recent insight into the role of the PD-1/PD-L1 pathway infeto-maternal tolerance and pregnancy[J].Am J Reprod Immunol,2015,74(3):201-208.
[51]Wang WJ,Salazar Garcia MD,Deutsch G,et al.PD-1 and PD-L1 expression on T-cell subsets in w omen with unexplained recurrent pregnancy losses[J].Am J Reprod Immunol,2020,83(5):e13230.
[52]Travis OK,White D,Pierce WA,et al.Chronic infusion of interleukin-17 promotes hypertension,activation of cytolytic natural killer cells,and vascular dysfunction in pregnant rats[J].Physiol Rep,2019,7(7):e14038.
[53]LéDée N.Endometrial immune profiling:an emerging paradigm for reproductive disorders[M]//Endometrial Gene Expression.Cham:Springer International Publishing,2019:75-89.
[54]Wu L,Li J,Xu HL,et al.IL-7/IL-7R signaling pathway might play a role in recurrent pregnancy losses by increasing inflammatory Th17 cells and decreasing Treg cells[J].Am J Reprod Immunol,2016,76(6):454-464.
[55]Yang Y,Cheng LY,Deng XH,et al.Expression of GRIM-19 in unexplained recurrent spontaneous abortion and possible pathogenesis[J].Mol Hum Reprod,2018,24(7):366-374.
[56]Lu MD,Ma FY,Xiao JP,et al.NLRP3 inflammasome as the potential target mechanism and therapy in recurrent spontaneous abortions[J].Mol Med Rep,2019,19(3):1935-1941.
[57]Sha J,Liu FM,Zhai JF,et al.Alteration of Th17 and Foxp3+regulatory T cells in patients with unexplained recurrent spontaneous abortion before and after the therapy of hCG combined with immunoglobulin[J].Exp Ther Med,2017,14(2):1114-1118.
[58]Gabrilovich DI.Myeloid-derived suppressor cells[J].Cancer Immunol Res,2017,5(1):3-8.
[59]Arocena AR,Onofrio LI,Pellegrini AV,et al.Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection[J].Eur J Immunol,2014,44(1):184-194.
[60]Veglia F,Perego M,Gabrilovich D.Myeloid-derived suppressor cells coming of age[J].Nat Immunol,2018,19(2):108-119.
[61]Ren JB,Zeng WH,Tian FJ,et al.Myeloid-derived suppressor cells depletion may cause pregnancy lossviaupregulating the cytotoxicity of decidual natural killer cells[J].Am J Reprod Immunol,2019,81(4):e13099.
[62]K?stlin N,Ostermeir AL,Spring B,et al.HLA-G promotes myeloidderived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4[J].Eur J Immunol,2017,47(2):374-384.
[63]Kang XM,Zhang XX,Liu ZL,et al.Granulocytic myeloid-derived suppressor cells maintainfeto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-β/β-catenin pathway[J].Mol Hum Reprod,2016,22(7):499-511.
[64]Kang XM,Zhang XX,Liu ZL,et al.CXCR2-mediated granulocytic myeloid-derived suppressor cells′functional characterization and their role in maternal fetal interface[J].DNA Cell Biol,2016,35(7):358-365.
[65]Li CC,Chen C,Kang XM,et al.Decidua-derived granulocyte macrophage colony-stimulating factor induces polymorphonuclear myeloid-derived suppressor cells from circulating CD15+neutrophils[J].Hum Reprod,2020,35(12):2677-2691.
[66]Li CC,Zhang XX,Kang XM,et al.Upregulated TRAIL and reduced DcR2 mediate apoptosis of decidual PMN-MDSC in unexplained recurrent pregnancy loss[J].Front Immunol,2020,11:1345.
[67]Gleicher N,Kushnir VA,Barad DH.Redirecting reproductive immunology research toward pregnancy as a period of temporary immune tolerance[J].J Assist Reprod Genet,2017,34(4):425-430.
[68]Zhu H,Hou CC,Luo LF,et al.Endometrial stromal cells and decidualized stromal cells:origins,transformation and functions[J].Gene,2014,551(1):1-14.
[69]Carlino C,Stabile H,Morrone S,et al.Recruitment of circulating NK cells through decidual tissues:a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy[J].Blood,2008,111(6):3108-3115.
[70]Engert S,Rieger L,Kapp M,et al.Profiling chemokines,cytokines and growth factors in human early pregnancy decidua by protein array[J].Am J Reprod Immunol,2007,58(2):129-137.
[71]Huang XM,Cai YN,Ding M,et al.Human chorionic gonadotropin promotes recruitment of regulatory T cells in endometrium by inducing chemokine CCL2[J].J Reprod Immunol,2020,137:102856.
[72]Segerer SE,Rieger L,Kapp M,et al.MIC-1(a multifunctional modulator of dendritic cell phenotype and function)is produced by decidual stromal cells and trophoblasts[J].Hum Reprod,2012,27(1):200-209.
[73]Lee CL,Lam KK,Vijayan M,et al.The pleiotropic effect of glycodelin:a in early pregnancy[J].Am J Reprod Immunol,2016,75(3):290-297.
[74]Liu J,Hao SN,Chen X,et al.Human placental trophoblast cells contribute to maternal-fetal tolerance through expressing IL-35 and mediating iTR35 conversion[J].Nat Commun,2019,10(1):4601.
[75]Lu H,Jin LP,Huang HL,et al.Trophoblast-derived CXCL12 promotes CD56brightCD82-CD29+NK cell enrichment in the decidua[J].Am J Reprod Immunol,2020,83(2):e13203.
[76]Wang BQ,Xu TH,Li Y,et al.Trophoblast H2S maintains early pregnancyviaregulating maternal-fetal interface immune hemostasis[J].J Clin Endocrinol Metab,2020,105(12):e4275-e4289.